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A new method is presented for the calculation of the reaction
matrix G of the Brueckner-Goldstone theory. The spectrum of the
intermediate states is replaced by a "reference spectrum" of the
form A+8k' where the constants A and 8 are chosen so as to
approximate, as closely as possible, the actual particle energies
for k between 3 and 6 F '. The reason for this choice is explained.
With the reference spectrum, the Brueckner integral equation
reduces to a differential equation which is easily solved. The case
of a repulsive core can be solved explicitly, and can be summed
over angular momentum, taking into account the correct sta-
tistical weights. If an attractive potential is added to the repulsive
core, a simple "modified Born approximation" can be developed.
Noncentral forces, such as tensor forces, are considered.

The actual G matrix, G~, is calculated from the reference ma-
trix G~. It is shown that this can be done to sufficient accuracy
(0.1 to 0.2 MeV per nucleon) by a simple quadrature. The dif-
ference G~—G" arises mainly from the Pauli principle which is
not taken into account in G~. A small correction, less than 1 MeV
per nucleon, arises from the inaccuracy of the reference spectrum.

This shows that the details of the particle energy spectrum are
not important for the calculation of the nuclear binding energy.

The particle energy spectrum is carefully investigated. In
agreement with Brueckner and Goldman, the G matrices determin-

ing the potential energy of states in the Fermi sea are calculated
"on the energy shell, " and a more detailed justification is given
for this procedure. Those for states above the Fermi sea are
calculated "off the energy shell. " This, in combination with the
repulsive core, has the consequence of making the potential energy
very large and positive for large k, corresponding to an effective
mass between 0.8 and 0.9 for highly excited states. In addition,
there is an energy gap at the Fermi momentum, a feature which
helps to justify the reference spectrum.

A modified Moszkowski-Scott separation into short- and long-
range potentials is developed and gives, in second order, results
accurate to better than 0.1 MeV per particle. The wave functions
of interacting particles are calculated in the reference spectrum
approximation for central and tensor forces.

1. INTRODUCTION

'HE theory of Brueckner and co-workers' permits,
in principle, the calculation of the properties of

complex nuclei in terms of the potential between two
nucleons. The theoretical foundation of the theory has
been given by Goldstone' whose proof was generalized
by Hugenholtz. ' Brueckner and Gammel, 4 aside from
further developing the method, did extensive numerical
calculations, using the best results then available on
the interaction between two nucleons, 5 and obtained
results in good agreement with experiment.

The Brueckner-Goldstone (BrG) method can be
criticized from two points of view: From the basic
point of view it may be questioned whether it actually
leads to the ground state of nuclear matter, and from
the practical point of view the numerical calculations
required are complicated and not very transparent. On
the basic side, there are two questions, (a) whether
perturbation theory is valid, and (b) whether the BrG
theory gives the correct perturbation result. On ques-
tion (b), Luttinger, Kohn, and Ward'r have shown that
the BrG method is indeed correct to all orders of per-
turbation theory if (1) the particles have spin 1/2, (2)
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the interaction between them is isotropic, and (3) the
Fermi surface without interactions is isotropic in mo-
mentum space. These conditions are evidently satisfied
for nucleons interacting with central forces. For elec-
trons in solids, condition (3) is obviously violated, and
Kohn and Luttinger' show that a correct perturbation
calculation deviates from BrG in second order. For the
case of nucleons interacting with tensor forces, they
showed that the BrG theory is correct in second order',
it is likely that it is correct in all orders but we have
not seen a proof of this.

On problem (a), i.e., whether perturbation theory is

valid, the chief argument is that nuclear matter may
exhibit a phenomenon similar to superconductivity. This
was first suggested by Bohr et a/. ' who pointed out that
the first intrinsic excited states of heavy, deformed,
even-even nuclei lie at about 1 MeV while the spacing
between single-nucleon levels is expected to be only
about ~ MeV. Bohr et ul. , attribute this to a pairing
energy similar to that found by Bardeen, Cooper, and
Schrieffer' in superconductors. Emery and Sessler'
developed a theory of the energy gap in infinite nuclear
matter, using for the interaction between two nucleons
the singlet-even" potential of Gammel and Thaler. 5

They found that the energy gap is very sensitive to the
density of nuclear matter and to the effective mass M*
of the nucleons near the Fermi surface. For the ob-
served nuclear density which Emery and Sessler' used,
corresponding to a Fermi momentum t|:p= l.4 F '

A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936
(1958).

9 J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108,
1175 (1957).' V. J.Emery and A. M. Sessler, Phys. Rev. 119,248 (1960).

"This state is likely to give the largest energy gap. "See refer-
ence 10.
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(F=—fermi—=10 " cm), the calculated gap is only 0.1
MeV at m*=M*/M= 1, and falls to a negligible value
when the effective mass is reduced to 0.75 which should
be close to the actual value. At reduced density, kp
=4.0F ', the calculated gap is much larger, from 1
MeV at m*=0.75 to 4 MeV at no*= 1. Thus, the calcu-
lated energy gap tends to be less than that deduced'
from empirical data. To be on the safe side, we assume
the latter, viz. , DE= 1 MeV. But even then, the effect
on the average energy per nucleon is likely to be less
than

&W=sAE'/El&=0. 008 MeV,

where E+ is the Fermi energy, 47 MeV for k& ——|.5 F '
(which is the value we use), and the factor s is the
statistical probability of having a pair of nucleons in a
state of even relative angular momentum. We therefore
believe that the "superconductivity pairing, " while

probably of interest for the detailed level structure of
even-even nuclei, has a negligible influence on the
average binding energy of nuclei.

We therefore consider the Brueckner-Goldstone
method as sufficiently established on theoretical
grounds. However, the numerical work is complicated,
especially due to the repulsive core in the nucleon inter-
action. It has therefore been suggested, especially by
I.evinger, Peierls, and collaborators, " to ignore the re-
pulsive core and to replace its effect by a velocity-
dependent potential. They have fitted the parameters
of this potential so as to reproduce the observed phase
shifts for nucleon-nucleon scattering. The resulting
velocity-dependent potential is then "weak" enough
to justify the use of ordinary perturbation theory,
rather than Bro theory.

There is no objection, in principle, against the use of
velocity-dependent potentials. It is well known that the
measurement of scattering phase shifts of real nucleons,
on the energy shell, does not fully determine the inter-
action of nucleons. The interaction off the energy shell
is still largely arbitrary, and can only be determined
experimentally by studying processes involving Inore
than two nucleons, e.g., the photoeffect on the deuteron,
the structure of the triton and heavier nuclei, scattering
processes involving these, etc. The velocity-dependent
potential of Levinger et a/. , while agreeing (by defini-
tion) with the standard, static potentials for processes
on the energy shell, differs from them in its predictions
of phenomena off the shell. The theory of nuclear matter
involves off-shell matrix elements to an important de-

'2 R. E. Peierls, in I'roceedings of the International Conference on
nuclear Strnctgre, Eingston, Canada, TWO, edited by D. A.
Sromley and E. Vogt {University of Toronto Press, Toronto,
1960), p. 7; J. S. Levinger and L. M. Simmons, Phys. Rev. 124,
916 (1961); M. Razavy, G. Field, and J. S. Levinger, ibid. 125,
269 {1962);O. Rojo and L. M. Simmons, ibid. 125, 273 {1962).
See especially the recent calculations oi A. M. Green PA. M. Green,
Nuclear Phys. M, 218 (1962};Phys. Letters 1, 136 (1962)j.These
show a distinct difference between the effects of a hard core and
a velocity-dependent potential in nuclear matter. It does not seem
that a velocity-dependent potential can account for the observed
saturation.

gree. 2 priori it is hard to tell whether a velocity-de-
pendent or a static potential gives better results.
However, Charap, Fubini, and Tausner" have shown
that at least at moderate energies, dispersion theory
leads to an unambiguous definition of a (static) po-
tential which can be calculated. in terms of the exchange
of one, two, etc. , pions. The exchange of many pions or
other particles influences the interaction at small dis-
tance which may no longer be describable by a poten-
tial. Now in nuclear matter, the filled states have
momenta up to kp=1.5 F ' which is moderate —a
relative momentum of this magnitude corresponds to a
free nucleon of less than 200-MeV laboratory energy
colliding with a nucleon at rest. We therefore believe
that an ordinary, static, nucleon-nucleon potential
should give a good description of nuclear matter. How-
ever, in calculating the energies of individual particles
in nuclear matter we need (Sec. 9) the interaction of
particles up to about 3.5 F ' with particles essentially at
rest; this corresponds to about 450-MeV laboratory
energy where the static repulsive core is no longer
clearly established by nucleon-nucleon scattering.

Thus we are led back to the nuclear matter problem
for a static potential with a repulsive core. Very im-
portant progress in this problem was made by Moszkow-
ski and Scott" (quoted as MS). They showed that the
theory is greatly simplified if the nucleon-nucleon inter-
action is separated into a short-range part, v„and a
long-range part, v~. The short-range part is then repre-
sented by a reaction matrix G, which is not very
different for nuclear matter and for free nucleons. The
long-range part can be treated by Born approximation
in nuclear matter while for free nucleons this is not
possible and a very different result is obtained. The
separation between short and long range is made in
such a way that the short-range reaction matrix for
free nucleons, G,~, vanishes. Then the total reaction
matrix G consists of two main parts, the first Born
approximation for v~, and the difference between G, in
nuclear matter, G,~, and for free nucleons, G,"; in
addition, there are some small corrections. There is no
problem about v~, and MS show how to calculate
G,N —G,~ in terms of the spectrum of nucleons in
nuclear matter, E(k).

Kohler" has further investigated the MS method.
He finds that the MS calculation of G,~—G,~ may not
be sufficiently accurate and suggests an improved
method which, however, may still leave appreciable
errors. Thus the MS method, while a great simplifica-
tion over the direct solution of the Brueckner integral
equation, should be improved in accuracy. This is the
fiist main task of this paper. In addition, we have been
able to develop a method, even simpler than MS be-

"J. M. Charap and S. P. Fubini, Nuovo Cimento 14, 540
(1959); 15, 73 (1960);J. M. Charap and M. J. Tausner, ibid. 18,
316 (1960)."S.A. Moszkowski and B. L. Scott, Ann. Phys. (New York)
11, 6S (1960)."S.Kohler, Ann. Phys. (New York) 16,375 (1961).
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cause it does not require separation into short and long
range, which is probably more accurate than the original
MS method.

The second problem discussed in this paper is the
calculation of the energies of individual nucleons, E(k).
We do not attempt here to calculate the actual energy
required to remove a nucleon of given momentum
k&4~ from the nucleus, nor to calculate the optical
potential seen by a real nucleon entering from the
outside. We merely wish to define an energy spectrum
E(k) in such a way that the calculation of the total
energy of the nucleus converges as rapidly as possible.
As we show in Sec. 4, this may be accomplished by re-
quiring that the potential energy, U(k), compensate
certain diagrams occurring in the third order of the
BrG expansion. These diagrams correspond to the
interaction of a nucleon in an intermediate state with
all the nucleons in the Fermi sea. If the intermediate
state is a hole in the Fermi sea, k kp, the interaction
should be calculated on the energy shell, as proposed by
Brueckner and Goldman. "If the intermediate state is
above the Fermi sea, k)kp, the interaction must be
calculated off the energy shell, as was indeed done by
Brueckner and Gammel. 4 The "potential energies" for
these states k) kp, therefore, have nothing to do with
the actual potential energy of a real nucleon of such a
momentum, i.e., with the optical potential; our U(k)
turns out much more positive than the optical potential
(Secs. 4, 7, 8). In fact, we find that U(k), for large k,
becomes large and positive, and proportional to the
kinetic energy of the nucleon, thus giving the virtual
nucleon an effective mass less than unity even in this
limit.

The aim of this paper is to provide a method for the
calculation of the binding energy of nuclear matter
which is accurate aed simple once the potential betzoeert

nucleons is known. At present our knowledge of this
potential is still very incomplete although a lot of
progress has been made, both experimentally and theo-
retically. '~ For instance it is quite uncertain what part
of the binding energy of the deuteron is due to tensor
and what part to central forces, and in nuclear rnatter
the central forces seem to be more effective than the
tensor. Also the repulsive core in odd-I. states is not
well known from nucleon-nucleon data. Once a reliable
theory of nuclear matter is available the experimental
properties of nuclear matter may shed light on these
questions. In this paper we do not make any attempt
to calculate nuclear binding energies quantitatively.

"K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
I,'1960).

' See the review articles by M. J. Moravcsik and H. P. Noyes,
Ann. Rev. Nuclear Sci. 11,95 (2962), and by H. P. Stapp, M. H.
MacGregor, and M. J. Moravcsik, Ann. Rev. Nuclear Sci. 10,
29i (1960).

6=v —e—G
e

(2.1)

where v is the potential between two nucleons, Q is the
Pauli operator, and e is the energy denominator which
we de6ne" so as to be positive definite. Throughout
this paper, except where specially indicated otherwise,
we define all energy quantities, such as e, v, and G,
as the actual energy multiplied by MA '. Thus, e has
the dimension fermi . This choice of units, similar to
atomic units in the theory of atoms, has the advantage
that, e.g., the energy of a free nucleon is simply —,'k'.
To translate back to familiar units, we note the relation
(F—=fermi)

1 F '=-41..467 MeV. (2.1a)

G and v, being volume integrals of energies, have the
dimension of a length which makes G directly related
to the scattering length. (2.1) may be written explicitly:

(kiaiko, P)=(k)viko) —(2v.) ' d'k( ki vik')

Q(k')
(2 2)

e(k', kp)

Here kp, k, k denote the initial, intermediate, and final
relative momentum of the two interacting nucleons, and
P is their average momentum" so that, e.g. , the labora-
tory momenta of the two nucleons in the intermediate
state are P+k' and P—k'. The Pauli operator is then

Q=1 if
~
P+ k'~ )kp and

~

P—k'[) kF, (2.3)
Q=0 otherwise.

The energy denominator is

e(k', ko, P) =E(P+k')+E(P —k') —H(kp, P). (2.4)

Note again that e is positive definite. If
~
P+kp~ and

~
P—kp~ are both (kr, i.e., if we calculate the inter-

action of two nucleons actually present in the nucleus,
then the "starting energy" H is simply

H (k op )=E(P+ko)+E(P—ko). (2.5)

If, however, ~P+kp) or ~P—kp[ is )kr, then the
starting energy is much less than (2.5); this is discussed
in Sec. 4. E(k) denotes the energy of an individual par-
ticle of momentum k; the function E(k) is assumed to

' This is opposite to the definition in most of the literature, but
far more convenient.

'9 The momentum of the center of mass is thus 2P; the factor
of 2 by which we differ from Brueckner and Gammel, Moszkowski
and Scott, and others, makes the definitions of P and h sym-
metrical and greatly simplifies the formulas.

2. GENERAL THEORY AND MOSZKOVFSKI-SCOTT
METHOD

The basic quantity of the 8rueckner-Goldstone
theory is the reaction matrix G which satis6es the
integral equation
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be known before the calculation of G is begun. For the
sake of rapid convergence, E(k) must satisfy conditions
of reasonable self-consistency (see Sec. 4). If n is a
simple, local potential, then its matrix elements depend
only on the difference of the momenta occurring,

neglecting such higher order terms as

Q Q Q
(Q 1) vi, 'vi —'vi (Q 1), vi —'vi —si,

e e e
(2.14)

(k~v~ko)=v(k —ko)= m(r)e'&~ "' 'dr (2.6)

but for an exchange potential, also k+ko appears.
Equation (2.2) should be considered an integral

equation in the variable k only; the quantities P and
ko are merely parameters. According to general scat-
tering theory, "

(2.7)

where P is the free-particle wave function for the state
P ko and P is the actual wave function of the two par-
ticles interacting in nuclear matter. It is useful to intro-
duce the wave operator, 0, thus:

(2 g)

so that (2.7) is equivalent to the operator equation

G= vQ.

The Schrodinger equation for P then shows that

(2.9)

(2.10)

(2.9) together with (2.10) yields (2.1). Matrix elements
in momentum space may easily be taken of all these
equations, but it is also useful to consider P as a function
of the relative coordinate r of the nucleons.

The structure of the reaction matrix has been greatly
clarified by the work of ~'loszkowski and Scott."They
suggested the separation of the potential into a short-
and a long-range part, v, and v~, assuming a separation
distance d, and denoting the part of v for r &d by v„
that for r&d by v&. In discussing the MS method, we
leave d undetermined until Sec. 10.

With these assumptions, Kohler" has shown that

G= G,+Q, tviQ, (2 11)

where G, is the contribution to G from the short-range
forces alone, and 0, is the corresponding wave operator,
Eq. (2.10). For a simple proof, see Appendix A, Eq.
(A16). It is easy to show (Sec. 10) that the second term
in (2.11) is approximately r&. Using this in (2.10) we

may write

Q=Q, ——vi,
e

(2.12)

(2.13)

'0 See, e.g., H. A. Bethe and J. Goldstone, Proc. Roy. Soc.
(London) A258, 531 (1957).

and inserting into (2.11) we get

G= ~&+Go+ (Q,t 1)~i+a&(Q, —1) ii& vi,— ——
e

3. REFERENCE SPECTRUM

AVe have shown that it is important to get a good
approximation to the short-range reaction matrix in
nuclear matter, GP, which satisfies (2.1) with v re-
placed by e,. MS point out that G, has matrix elements
mostly to intermediate states of high momentum (of
order 3k~, according to Secs. 7 and 9 of this paper).
Consequently the Pauli principle (the operator Q)
does not have much inhuence on G,~ but the energy
spectrum "e"of the intermediate states does.

This suggests that we approximate G,~ by another
matrix which is easier to calculate. We define the
"reference matrix"

G,~——v, —v,, (1/e~) G,~, (3.1)

i.e., we omit the Pauli principle in this definition. The
G,~ is easy to calculate if e~ is a quadratic function of
the nmmentum k' in the intermediate state. Accord-

' H. A, Bethe, Phys. Rev. 103, 1353 (1956).

which can be shown to be very small (see Sec. 10).
Equation (2.13) shows that G is given by five terms,

the first two of which are large while the other three are
small corrections. The first term is the first Born ap-
proximation due to the long-range forces alone; it is by
far the largest contribution to the nuclear binding
energy per particle, amounting to about 50 ~~leV per
particle. "The last term is the second Born approxima-
tion due to the long-range forces and is'4 less than 1
MeV per particle; its smallness is due to the Pauli
principle; the first Born approximation is even better
for the long-range forces, ~~, than for "conventional"
nuclear forces'-' (such as exponential and Vukawa, with-
out repulsive cores). The second term in (2.13) is the
contribution of short-range forces; it arises in the MS
theory from the "dispersion effect, " i.e. , the fact that
the one-particle energy E(k) in nuclear matter differs
from that for free nucleons. According to MS (refer-
ence 14, Table I) this contribution G, is only about
10% of v&, but it is very important for the saturation
of nuclear forces because it increases strongly with
density: It represents the residual effect of the re-
pulsive core on nuclear matter. This is further discussed
in Secs. 7 and 10. Finally, the third and fourth terms in
(2.13) which are in many cases equal represent an inter-
ference between short- and long-range potential; they
are together about 2 MeV per particle according to
MS (Table I).

Thus a successful calculation of G requires primarily
the calculation of ~~ which is straightforward, and a
good approximation for G, . All other terms are small, as
is discussed in Sec. 10.
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ingly, we define the reference erMrgy of a particle by

EB(k') =A+A "/2m* (3.2)

where m* is an effective mass. Because of our choice of
energy units, m* is dimensionless, viz. ,

m*= M*/M, (3.3)

GB v v(1/e )GR (3.5)

rather than for its short-range part only. In many cases
G~ provides a sufhcient 6rst approximation, and when-
ever this is the case it is unnecessary to use the MS
separation into short- and long-range potential. This
simplifies the calculation,

MS have already shown how to solve (3.5) with eR
given by (3.4), only assuming m*=1 (see Appendix of
reference 14). The solution is most easily obtained by
using (2.9) on both sides of (3.5) to replace G by 0,

eR(1 QB) —vQR (3 6)

Applying this operator to the unperturbed wave func-
tion @( k, pPr) gives, according to (2.8),

eR 8 R (3 7)

The operator e&, by virtue of its quadratic dependence
on k', may be written in coordinate space in terms of
V'. lt is convenient to introduce the abbreviation

P'+ m*—(2A P(k p,P—)5, (3.8)

which is an effective energy in (3.7), and also

(3 9)

i.e., the difference between the free and the actual
wave function. Then (3.7) becomes

(ry2 +p)t B—merppB (3.10)

This is our fundamental diRerential equation. We
solve this equation by means of the usual partial-wave
expansion, with the notation f(L)= Xr,/kpr, in analogy

in terms of the usual definition of effective mass. XVith

(3.2), the energy denominator in (3.1) becomes

e R k"/m——*+2A+P'/m* EI (k—
p,P) . (3.4)

It is important to note that (3.1) is easy to solve re-
gardless of the value of H(kp, P), since H enters the
integral equation only as a parameter, not as a variable;
therefore the acta/ value of the "starting energy" H
can be chosen, without approximation; it is not neces-
sary and in general not desirable to use the reference
spectrum in calculating H. The coeKcients A and m*
in (3.2), of course, can be chosen so as to give the best
average fit to the actual energy spectrum E(k') in that
region of k' which matters most for the solution of
(3.1). Suitable choices are discussed in Secs. 7, 8.

The reference spectrum can, of course, also be used
to advantage to calculate a reference reaction matrix
for the complete potential

to $(L)=gr/kpr. The resulting radial equations are
given in (5.11).

To discuss (3.10), the approximation to G" obtain-
able from the reference spectrum, we now consider the
short-range potential v, alone. Formulas (3.6) to (3.10)
can be taken over, with a subscript s attached. Since ~,
is defined to vanish for r) d, an L=O solution of (3.10)
behaves for r) d as

&„1. O~=e '" (3.11)

~BG & & GBO
eo

(3.12)

The BG wave function has the disadvantage that
oscillates for large r, with frequency kr,

rather than decreasing exponentially, like our (3.11).
Therefore, our reference wave function is easier to
work with and, hence, preferable. Moreover, PR is a good
approximation to the true wave function at small r
while /no is not, because at small r the correct energy
spectrum of the intermediate states is much more
important than the Pauli principle (see the beginning
of this section).

We now consider the solution l R of (3.10) if v is the
complete potential rather than just its short-range part,
v, . The asymptotic behavior of f'B then depends on that
of v: If v decreases faster than e &', Eq. (3.11) still
holds for fB; but if it decreases more slowly, then

as r-+ po. (3.13)

In any case, however, rapid "healing" is assured.
The auestion is now whether G~ so defined is a good

approximation to 6~. We have already shown that
G,B is a good approximation to G R (see Sec. 10 for
further discussion), thus we are mainly concerned with
the long-range part of the potential. Now it is well
known that for the long-range potential the first Born
approximation is good, 4 i.e., G~~=v~. This means that

~ L. C. Gomez, J.D. Walecka, and V. F. Weisskopf, Ann. Phys.
(New York) 3, 241 (1958).

~ A spectrum of the form (3.2) is, however, also considered as
a possibilitv, cf., Eq. (2.27) of reference 20.

Other angular momentum components behave simi-
larly. Thus x and f tend rapidly to zero, the more so
the larger y. Typical values of y for states inside the
Fermi sea are of order 2 F—', and for states outside the
sea even larger, insuring a very rapid decay of l,R.

The reference wave function P,R, Eq. (2.8), thus tends
rapidly towards the free-particle wave function p, cor-
responding to rapid "healing" in the sense of Gon1ez,
Walecka, and Weisskopf. ' The "healing distance" is
0.5 F or less, beyond the separation distance d.

In its rapid healing property, the reference wave
function is similar to the Bethe-Goldstone (BG) wave
function. ' The BG function takes the Pauli principle
into account but replaces, in general, " the energy spec-
trum by the free nucleon spectrum, thus
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f t' I~ in nuclear matter for r)d mustthe wave inunction ~ in
~ ~

be close to the unperturbed wave function ~, i.e.,
ust be ra id. But this is precisely the property

ave function . oe
r the leading termgreatly how/approaches@forlarger r, t e ea ing

in G~ is just

I I
—«U{b)

ff

I I
—«U{m)~ lTl

(a) (b) (c) (8)
~ «4A dia rams, as de6ned zn Sec.Fzo. 2. Lowest order of class A iag a

These may e ma e ob d to cancel "on the average y
choice of U(b), U(m).

(k I
Gi

I
ko)= 9 (k) I

&{
I 4(ko)&. (3.14)

~ ~~ b G~ in the second term. If this is doneto replace G y in
drature the diagonalG~ can be obtained simply by quadrature;

terms are

(ko
I

G"
I
ko&= (ko I

G'I ko&+ (2~)
—'

r idl to zero is acceptable,Therefore any f which goes rapi y
and our {t~ is thus a reasonable first approximation a so

1 l 'n the long-range contribution G~.
It is a quantitative question whether G is a

tl ood a roxima ion ot t theactualreactionmatrix
d 1 dh dhG~. If it is, we can use G iree y an

we can use the MS separation
an calculate G,~. This is discussed in detail in ec.

yte a eo
To determine G~, the wave equation . is s

(Secs. 5—9), then

k'
(3.20)

e~(k') e(k') J

d h fact that G~ is Hermiteanwhere we have use t e ac
,A endix A).

ofIn Sec. 10 we ur er if th discuss the second term
es eciall the accuracy of the approxima ion

f (319) W l
'

hGN =G~ in the second term o
additional terms introduced by the pMS se aration.

(I IG~Ik„P&

(3.15)

1 QyG~ Go+Get IGN

e~ e1

)l

(b)

in that G~ should also be a good~ This is an{.'ther way of argumg a
approximation" for the long-range forces.

y(k, r)g~(kp, r)dr,
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diagrams of Figs. 3(a) and 3 (b). LThe so-called "three-
body cluster" diagram, Fig. 3(c), can be considered an
exchange graph associated with Fig. 3 (a).j

There has been a tendency to regard class 8 diagrams
as small. This was apparently confirmed by Kohler'5
who used the MS separation method and found the
total contribution of third-order clusters to be only 0.4
MeV. However, Rajaraman" has pointed out that, in
third order, the class 8 diagrams are quite similar to
class A. If they are suitably interpreted, they may also
be considered as self-energy diagrams. This involves an
approximation, which, however, works quite well.
Rajaraman estimates that class 8 diagrams are about
as important as class A, which is reasonable. We have
estimated that their inAuence on the binding energy
per nucleon may be several MeV unless there is an
accidental cancellation. The reason for the difference
from previous estimates is that our theory attributes
much greater importance to the hard core interaction
far "off the energy shell. " For simplicity, however, we
ignore class 8 diagrams in this section and return to
Rajaraman's suggestion at the end of this section and
again at the end of Sec. 8.

The free choice of E(k) can now be used to com-

pensate, as far as possible, the diagrams of Fig. 2. If
we choose

E(k) = —',k'+ U(k), (4.i)
then —U(k) is part of the perturbation Hamiltonian.
We therefore try, as closely as possible, to make the
diagrams of Figs. 2(a) and 2(c) cancel by defining

(4.2)

where we have indicated the direct minus the exchange
elements of the reaction matrix" for the interaction of
nucleons b and e, summed over all nucleons e in the
Fermi sea. Equation (4.2), in fact, is the definition
used by Brueckner in all his papers. "

However, (4.2) does not completely define U because
G depends not only on k~ and k„but also on H, see Eq.
(2.4). But H depends generally on all the particles and
holes present while the interaction occurs, "not only on
the two interacting particles, b and e. For instance, in
order to find out the proper H for Fig. 2(a) we expand

FxG. 4. Typical e-interaction ladder dia-
gram contained in Fig. 2(a). j

gr s]ll

h

the interaction with the bubble on the right into ladder
diagrams such as Fig. 4. Then in the step which con-
tains the particle states c and d, the energy denominator
is obviously"

e=E(c)+E(d)+E(a)—E(l)—E(m) —E(e), (4.3)

so that, using the definition of H in (2.4),

H =E(l)+E (nz)+E (e)—E(a). (4.4)

Since state u is above the Fermi sea, and l, m, and n
are all in the sea, it follows that

H«E(N)+E(k, —.), (4 5)

whereas, if b and e interacted "on the energy shell, "
we would have

H'=E(N)+E(b)&)E(e)+E(k —s). (4 6)

This shows that the interaction is "off the energy shell, "
and that the "starting energy" H is always considerably
less than the on-energy-shell value H'. Furthermore,
(4.4) shows that H is not uniquely determined by fi
and e, but depends also on t and m, the nucleons which
originally interacted. It should be noted that

k.=ki+k„—ks, (4 7)

U(b) =average g (bn,
~

G
~

his —rib; lws) (4.8).
l,na k ~&kg

Then the potential is not truly self-consistent; for a
given / and m the sum of the diagrams 2(a) over all
e do not cancel Fig. 2 (c). But we may expect that after
summation over / and m the cancellation will be quite
close." Fortunately, the dependence on / and m is not
very strong because H is not very sensitive to these
parameters. For instance, if k& is very large, (4.7)
gives k,=k&, and (4.4) yieldsss

so k, is not an additional variable.
The dependence on 3 and m means that the definition

(4.2) is ambiguous for states kb&kp, since the right-
hand side depends on three parameters while the left
side must depend only on state b. The best that can be
achieved then is to make

(b) (c) H =E(rl)+2E, E(b), —(4.9)
Fro. 3. Lowest order of class 8 diagrams, as de6ned in Sec. 4.

Rajaraman has shown that these may be considered approximately
equivalent to class A diagrams, i.e., insertions. Diagrams (a), (b),
and (c) are commonly called the particle-hole, hole-hole, and three-
body-cluster diagrams.

"S.Kohler, Ann. Phys. (New York) 12, 444 (1961)."R. Rajaraman, following paper LPhys. Rev. 129, 265 (1963)g.
"The notation is difterent from that in Secs. 2 and 3; we have

kb= 8+k and h = P—h in terms of the previous notation.
'8 See especially reference 16.
s9 Reference 21, Sec. 3, especially Eq. (3.13).

30 This is essentially in agreement with Brueckner and Garnmel,
reference 4, Appendix A."Th" t "cancellation on the average" is the best we can hope to
achieve was pointed out by Goldstone, reference 2, and by D. J.
Thousless, Phys. Rev. 112, 906 (1958).

ss It may be noted thatif (4.9) is rewritten as H=2E, 6,then—
A=E(b}—E(n). Clearly 6 depends strongly on kb In view of .the
influence of H on the resulting U(fi), it is not a good approximation
to replace n(b} by an average value, as done by Brueckner and
Gammel. They justi6ed this by the weak dependence of their
U(b) on 6, but, as shown below, this was a result of their incorrect
treatment of the hard cores.
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l'p beak-II
FIG. 5. Typical v-interaction ladder dia-

gram contained in Fig. 2(b).

&' Refegcggc 20, Note added in proof.

where E, is the average energy of a nucleon in the
Fermi sea.

The definition (4.2), or more accurately (4.8), is of
course in the spirit of the Hartree-Fock method. It is
reasonable to hope, but it still has to be proved, that
this choice also minimizes contributions from the most
important fourth and higher order graphs.

For the potential energy of states m below the
Fermi sea, or "holes, "Brueckner has always calculated
G on the energy shell, i.e., with

(4.10)

This is reasonable, but not obviously the best choice.
At first sight, (4.10) is suggested by the fact that it
makes diagram 1(c) cancel the sum over diagrams 1(a).
But this is not particularly useful: In the total energy
of nuclear matter, in hrst order in G, there is no such
cancellation because we must take one-half the sum
of diagrams 1(a) over nz and rs, minus the full sum of
diagrams 1(c) over nz. Instead, as we have said in con-
nection with (4.2), U(m) in Fig. 2(d) should compensate
the diagrams of Fig. 2(b). In fact, as Goldstone has
demonstrated, the Hartree-Fock definition of U(m) iu
perturbation theory does even better: The term —U(m)
in the perturbing Hamiltonian identically cancels all
diagrams which contain a "bubble interaction" in-
serted into an upgoing or downgoing line of some simpler
diagram. This is no longer true in the G-diagram ex-
pansion, because the starting energies for the G's
associated with the bubble interactions depend on the
remainder of the diagram.

From the foregoing it might seem reasonable to pro-
ceed by analogy to our choice for II(b), but this leads
to a dHFiculty when we follow the Goldstone theory in
a straightforward manner. In this theory, the ladders
of e interactions which combine to form G can only
exist between particle states k)kp, so that a typical
ladder contained in Fig. 2(b) is shown in Fig. 5. The
energy denominator in the section involving c, d can
easily be read from the diagram, and the starting en-

elgy is

H=E(l)+2E(m)+E(u) —E(a)—Z(b). (4.11)

It is easily seen that this is even lower then (4.4)
since it involves four hole energies minus two particle
energies, rather than 3 and 1. On the basis of this
definition of H, Bethe and Goldstone" concluded that
the G matrix due to a pure repulsive core is about the
same for Figs. 4 and 5 if kb is large. We have confirmed
this conclusion under the assumption (4.11).

Unfortunately, in attempting to find the potential
energy as a function of k only, we have obtained a

result (4.11) which depends strongly on kb W. e mention
two ways out of this difIiculty. One is to adopt the
on-energy-shell definition of U(m) as done by Brueck-
ner, and then to consider the difference between Figs.
2(b) and 2(d) as a contribution to U(b). The hole-
bubble G matrix depends strongly on kb and only weakly
on k, so it is reasonable to average over m states as in
Eq. (4.8). This contribution to U(b) has a strong quad-
ratic dependence on kb, of sign opposite to that from
Fig. 2(a). We show below, and in Secs. 5 and 7, that the
quadratic term from Fig. 2(a) leads to an effective mass
considerably less than unity. The result of including
Fig. 2(b) in this manner is to cancel most of this quad-
ratic term so that m~ is much closer to unity. This
interpretation of Fig. 2(b) is due to Bethe and
Goldstone. "

The method which we adopt, however, is based on a
suggestion of Brueckner and Goldman. "A fourth-order
e diagram contained in Fig. 2(b) is shown in Fig. 6(a).
They argue that another fourth-order diagram, Fig.
6(b), should be combined with this because it is of the
same order of magnitude (see Appendix B).They show
that in perturbation theory the energy denominators
of Figs. 6(a), 6(b) combine to give the same result as if

rn

jgn

(b)

Fro. 6. Fourth-order diagrams combined by Brueckner and
Goldman (reference 16) to suggest that the hole-bubble inter-
action be evaluated "on the energy shell. "

Fig. 2(b) were evaluated with the "bubble" energy
denominator evaluated on the energy shell, corre-
sponding to (4.10). The basic idea is then that by in-
cluding suitable higher order diagrams together with
Fig. 2(b) one obtains the same result as by evaluating
the complete hole-bubble interaction on the energy
shell. Although Brueckner and Goldman only showed
this to fourth order, the result is, in fact, valid to all
orders of perturbation theory and thus can be used for
G matrices. We prove this in Appendix B. We must
include all diagrams of the type shown in Fig. 7. Two
holes are created in the state m, by interaction with
holes t and tr. (It does not matter which interaction
occurs first. ) The particles b, c which arise from the two
holes in m, interact alternately with the particles a, d
which originated from the holes in 1 and n. Ultimately,
the two holes in m are 6lled again, the 6rst by inter-
action with n, the second with l. Summing over all
diagrams of this type, and adding 2(b), we obtain
exactly the same result as by evaluating 2(b) on the
energy shell.

It is interesting that when we evaluate 2(b) on the
energy shell the result depends only on the energy of
the interacting particles m and n, not. on that, of any
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other particles as in (4.4). Therefore the cancellation of

2(b) and 2(d) ca,n now be made exact, while Figs. 2(a)
and 2(c) only cancel in an average sense. Furthermore,
this method can be applied to any hole bubble appear-
ing in any diagram, so that this useful cancellation
feature of Hartree-Fock perturbation theory may be
carried over into the G-matrix expansion, but for hole

stutes only. (For the difference between particle and
hole states, see end of Appendix B.)

Note that this discussion has led us back to just the
definitions of U(m) and U(b) used by Brueckner, which
are obtained by ignoring Fig. 5. However, our results
for the G-matrix elements which contribute to U(b)
diRer from his in the region of large kb. %e find that
U(b) should asymptotically be quadratic in k&, corre-
sponding to an eRective mass m* less than unity,
whereas Brueckner and Gammel' obtain U(b) —+0 as

kb —+ ~. The reason for the quadratic term in kb may
easily be seen as follows.

Consider Fig. 2(a), as shown in more detail in Fig. 4.
It is easier to visualize the relations between the various
momenta by means of a "momentum diagram, "Fig. 8.
A number of simplifications result from considering the
asymptotic limit of large kb. Figure 8 shows that inter-

FIG. 7. Typical Goldstone diagram included along with Fig.
2(bl when the hole-bubble interaction in Fig. 2(b) is evaluated
"on the energy shell. "

P'=-', (kg+k )',

ko'=r4(ks —k )'.
(4.13)

(4.14)

Now use Eqs. (3.2) and (4.7) to define E(u). After

averaging over directions of the momenta l, m, rl,, no
terms remain which are linear in kb. Dropping terms
which are small compared to kb',

y'= —'k '

kP'= 4kb'.

(4.15)

(4.16)

Inside the core, f vanishes but ~= ~. Their product is

finite, however, and is found from Eqs. (3.9) and

(3.10) to be

4=( *) 'h"+k')0=( *) 'k'0 (4.17)

mediate states c, d with small momenta should not be
important. For this reason the Pauli exclusion operator,

Q, may be neglected and the reference spectrum ap-
proximation should be very good. For the same reason,
and because we are only interested in quadratic effects,
we need only consider the hard core part of the two-
nucleon interaction. Now we use Eqs. (4.4) and (3.8)
to write, for the interaction of b and e,
p'= P'+m*t 2A —Z(t) —E(m) —E(e)+E(u)], (4.12)

FIG. 8. Momentum-space diagram for Fig. 4, showing the rela-
tions among the states due to momentum conservation. The
Fermi sea is represented by the circle.

The exchange matrix element becomes

(bn~ G)tabb)= (m*) 'kP ~
—2sk0 ~ rd

(c
(4.19)

which vanishes in the limit ko~ ~. The summation
over the states m reduces to a multiplication of Eq.
(4.18) by the density,

4 tk& ' )4~
p=4—

I

—=
/

—rs'
3 E2~

(4.20)

where ro is given approximately by the constant in the
empirical nuclear radius formula. Then from (4.18)
and (4.20)

and using

we 6nd

C' kb'
U(b) =

rp3 m*

k' k'
U(b)+—=

2 2m''

(4.21)

(4.22)

m* = 1—0.566 (krc)s = 1—2 (cire)s. (4.23)

This result was obtained before by Bethe and Gold-
stone, ~ but was then rejected by them in a note added
in proof. This was because they considered only dia-
grams like Fig. 5 for the hole-bubble interaction, as
mentioned above.

Inserting the values kg=1.5 F ', c=0.4 F, we obtain
m*=0.88. The value of nz* obtained in Sec. 8 is smaller
than this, due to the effects, for 6nite values of kb, of
the core boundary term and the different statistical
weights of even and odd angular momentum states. In
fact, the quadratic part of U(b) is approximately
doubled by these eRects. '4 The contribution to m* from
the potential beyond the core is indeed negligible.

~ Because of these corrections for 6nite kq, the cancellation in
Figs. 2{a) and 2{b) in the Bethe-Goldstone treatment is not
complete, and one still obtains an m*&1,

There is also a core boundary term in re, which arises
from the discontinuous change in slope of f at r=c.
This term is proportional to the radial slope of P just
outside of the core boundary, and from Eqs. (3.11) and.
(4.15) it is seen to be linear in kb For .the present we
may neglect this term in comparison to kb'. Then the
(direct) G-matrix element becomes simply

4x
y*vPdr =—c'kss (m*) '. (4.18)

(c



BETHE, BRAN DOW, AN D PETSCHEK

Fro. 9. Typical e-interaction ladder diagram
contained in Fig. 1(a).

If we interpret Fig. 2(b) according to the suggestion
of Brueckner and Goldman, an eRective mass m*(1 is
unavoidable for large k&. We may inquire, then, why
Brueckner and Gamme14 did not find this result. One
reason is their neglect of the "core volume" term, Eq.
(4.18), which we have shown to be the only contribu-
tion to 1—m* in the asymptotic region. In the calcula-
tion of U(m), however, this "core volume" term is
negligible, as shown by Bethe and Goldstone. ' Another
reason is Brueckner and Gammel's neglect of any inter-
action, including the repulsive core, in odd angular
momentum states. Using the results of the next section,
we have found (Sec. 8) that most of the quadratic part
of U(b), in the important region of kt, , comes from I'
states (cf. Fig. 10).'4'

We now want to return to the contribution of Class
8 diagrams, Fig. 3. Rajaraman has observed that these
diagrams can. also be considered, with good accuracy,
as self-energy insertions in the particle line b of Fig. 9,
hence they may be cancelled by a suitable choice of
U(b). This means that a first-order calculation of the
nuc ear binding energy with this U(b) is, in fact,
approximately correct to third order. Rajaraman's pre-
liminary estimates indicate that the effect of including
the third-order diagrams of Class 8, shown in Fig. 3,
in U(b), is to roughly halve the contribution. to 1—m*
from Fig. 2(a) alone. We return to this point at the end
of Sec. 8.

We do not consider this to be a sufFiciently thorough
discussion of the single-particle energies for states
above the Fermi sea. It is quite possible that other
higher order diagrams may be important; if so, it is
likely that most of these may be cancelled or minimized
by further modifications of U(b). Note that the require-
ment of self-consistency for U (Sec. 7) amounts to mak-
ing the assumption that our U(b), Eq. (4.8), is a good
choice also for the intermediate states occurring in the
particle-bubble interaction.

In conclusion we want to make two general remarks
about our particle energies. In the first place, these
energies are not meant to give the observable energies
of particles in the nucleus. For example, for states in
the Fermi sea, —E(m) does not give the energy neces-
sary to remove particle m from the nucleus. This re-
moval energy is the analog, for hole states, of the optical
potential and is a measurable quantity, at least in
principle. It can be calculated within the Brueckner-
GoMstone formalism, as the diRerence between the
total energies of nuclei containing A and 2 —1 par-
ticles. The removal energy differs from our —E(m) by

3 Pote added in proof. A further, and important, reason for
their difFerent result is that their approximation to the off-energy-
shell starting energies, H, was independent of kb. See our foot-
note 32.

the oft-discussed rearrangement energy. "Likewise, for
states above the Fermi sea, U(b) does not give the
optical potential: Our states b are intermediate states
occurring inside a complicated diagram; for a real state
b interacting with e the starting energy is on the energy
shell,

H =E(b)+E(e),

rather than (4.4), and the resulting U(b) is, therefore,
quite different from ours. The only purpose of our
single-particle energies is to facilitate the calculation of
the total energy of nuclear matter, by making the sum
over Goldstone diagrams converge rapidly.

The second remark concerns the occurrence of Cooper
singularities, analogous to the Bardeen-Cooper-Schrief-
fer theory' of superconductivity. Such singularities are
apt to occur if the single-particle energies E(k) are con-
tinuous at the Fermi surface. "Our particle energies are
discontinuous because of the different choice of "starting
energy" below and above k&, Eqs. (4.10) and (4.4).
The averaging over / and I required in (4.8) then
ensures an energy gap at kp. LIf we choose specifically
&~+k~=0, kt and k~=k~ e, and kq—=kF+e, then H in
(4.4) joins continuously to (4.10) below k&, therefore
for this particular choice of momenta, there is no jump
in E at the Fermi surface, and the BCS phenomenon
could occur. ) With such a gap there are no Cooper
singularities. It has been made plausible by the work of
Emery and Sessler' that the Cooper singularities do not
have a substantial inhuence on the bulk properties of
nuclear matter. Our theory, which avoids formal dif6-
culties from these singularities, has the advantage, com-
pared with other theories, of (a) preserving the sim-
plicity of the Goldstone approa, ch, (b) giving a logical
reason for the appearance of an energy gap, therefore
(c) avoiding difhculties associated with vanishing energy
denominators, (d) including the Pauli principle in a
simple way, (e) permitting accurate calculations of the
total energy, and (f) avoiding reformulation of the
two-body problem in terms of an artificial, e.g. , ve-
locity-dependent, potential.

S. METHOD OF CALCULATING t ~

The introduction of 1/e~ in place of Q/e~ in the
G-matrix equation has reduced this equation to a set
of ordinary second-order differential equations for the
various partial waves. This has the great advantage
that a number of standard techniques may now be
applied. It also leads to some new features that are
quite helpful in understanding the essential physics of
nuclear rnatter.

We show in this section that G~ may be separated
into two contributions, one representing the eRect of a
pure hard-core interaction only, and the other the eRect
of the outer potential. By outer potential we mean the
total interaction beyond the hard-core radius. Given the
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anner since theydo tht the are unable to o isy

use the complete nuc ea

+ (gr, SCc)vuidr— 5.14)

outer otential is contained in
so that an exact separation in o "the last integral, so a

as been ac ieve .d. The Ineaning of

(5.1) d (5.11) i ho
'd th o h harts. Insi e e cusling integration y p . c

f the form X5(r—c, w ic
the discontinuous change p
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Q (2L+1)jz,'(kpr)L(L+1)

= r P(2L+1)jz, (kpr) [L(L+1)/r $rjz, (kpr)

[gz, (c)]—' SCzplzdr

ing to (5.13), the slope of Xz at r=c+c is Xc'(c), the have a useful corollary.
result for a pure hard core, plus a correction due to the
outer potential, namely I'

The slope of xz at r=c—c is ~iz'(c), thus if the outer
potential were absent, the change in slope would be
Kz,' —Qz, '.

There is a simple interpretation for the outer integral
in (5.14). For a pure hard core, piz(r)c) = ilz, —Xz so
that this term has the familiar form

=r p(2L+1)jz, (kpr) —+kp' rj L(kpr)
dr'

=P(2I+1) j rr jz+—2jzr Jz+(kpr)'j z,
'

dr2 dr

=—;(kpr)'.

Now consider

(5.20)

(unperturbed Nz) (perturbing e) (exact Nz)dr. (5.15)

This separation formula, (5.14), is actually the partial-
wave decomposition of a general reactjon-matrix iden-

tity which is derived in Appendix A (Eq. A16).

Core Contribution

Ke may use several spherical Bessel function identi-
ties to obtain the total core contribution to (5.1) in
closed form. These identities follow immediately from
the usual partial-wave expansion. " —~[1+L(L+1)/2 (Tr)'1 (5.23)

8IIz'I = Az'(c) (d/«) i~z'-'hr)
~
.. (5.21)

The logarithmic derivative of HL( is a rational func-
tion, and for (pr)'))L(L+1) this may be expanded in
an asymptotic series. But (pr)'))L(L+1) is just the
region of validity for the WEB approximation to
HL& ). The WEB result for the logarithmic derivative is

—&[1+L (L+1)/ (7r)']»0 (5 22)

Expanding this, we see that the leading terms in the
asymptotic expansion must be

Q(2L+1)jz, (kpr) = (40r) ' d'rc '"'c'""=1,
L

Q(2L+1)jz(kpr)r —jz, (kpr)
L dr

l9—(40r)
—1 dprc ik0 rr —cikp ~ r

Br

= (40r)
—' rd( kipr)=0,

d2

P (2L+1)jz, (kpr)r' —jr.(kpr)
L t&

= (40r)
—' d'r" (pkp r)'

= —-', (kpr)'.

(5.16)

(5.17)

(5.18)

Now thanks to the gz,' factor, we are only interested in
the hrst few L's, those where L&koc. We show in Sec. 7
that ko'((y', so that the ratio of the second term to the
first is of order &kp'/2p', which is considerably less
than unity. The first term is what would be obtained
if H&( & were replaced by Ho( ', that is if II&( & were
a simple exponential. The WEB result suggests that
the second term in the asymptotic expansion over-
estimates the correction, which is really quite small. It
is reasonable then to group the leading "exponential"
terms together, by means of the Bessel sum rules given
above, and leave the remaining small corrections to be
approximated in some manner. Using (5.16) and (5.17)
to sum over L's, and remembering the normalization
from (5.1), Eq. (5.14) then gives

(kpiG ikp)....=40r ', (y'+kp')c'+c(1+-yc)

The symbol d'r" is used here to indicate integration over
the entire solid angle. As a simple illustration, we note
that

+Q (2I.+1)c'jz,'(kpc)
L df

(5.24)

C 4x
40r Q(2L+1) gz'(kpr)r'dr= c', —

L 0 3
(5.19)

which is just the hard-core volume. These identities

36 These sum rules may all be obtained, either directly or by
differentiation, from Gegenbauer's addition theorem. See, e.g. ,
G. N. Watson, Theory of Besse/ FNectiols (Cambridge University
Press, New York, 1952), 2nd ed. , Sec. 11.4. (~/~ )(re) I. ,= Vcf(c)—(5.25)

This result is not too surprising. It is possible to hnd
the "inner boundary" term (the sum of the iiz, iiz,

'

terms) and the "core volume" term in (5.24) without
making a partial-wave expansion at all. This is true
also for the "outer-boundary" terms provided that we
approximate Xz, by an exponential, which amounts to
assuming
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Now we claim that a suitable approximation for the
correction term ls

[—y —(d/dr) in3CL&
—

& ~,]
=VL(L+1)[2yc(pc+1)] '. (5.26)

This is justified in connection with Eq. (5.34). This
was chosen to be exact for I.=o and 1, and to have the
correct WEB limit. Then (5.20) gives

Q(2L+ 1)cjL (kpc) —y ——1nHL& &

L dr

=c(kpc)'[3 (pc+1)]-' (5.27)
and hnally

(k, (G~[k,),...
c' (kpc)'

=42r (y2+kp2) —+c 1+pc+ (5.28)
3 3 (pc+1)

(2L+1)j L(kpr)r —j I, (kpr)
even L dr

—
2 (42r)

—1 d2r" c—ikp r(zkp. rcikp r iko. rc—ikp. r)

= —piker(42r)
—' d'r" P1(ko r)e "k"

= —-', korj1(2kor),
d2

(2L+1)jI,(kpr)r' —jI,(kor)
even L df

(42r)
—1 d2r C

—ikP ~ r(kp. r)2(gikP ~ r+&—ikP ~ r)

= —-', (k,r)' 1+ (4~)-1 dpr.

X[2P2 (ko' r)+Po(ko' r)]&

(5.31)

((of& )
G"

t of)—(of ~
G'

~
&o)}core, spin average

3 5
=4~ — g +- P (2I.+1)

4 even L 4 odd L
(5.29)

C

X (p'+ko') jL'(kor)r'«+ko 'gL(gL ~I )
0 C

That these are the correct statistical weights may be
seen as follows: Given the momentum states k„kq,
3/4 of the time the (spin, isospin) states of the two
particles differ, allowing both even and odd spatial
wave functions to contribute. The exchange term van-
ishes because the spin states are orthogonal. The re-
maining 1/4 of the time the (spin, isospin) states
coincide, only odd states exist, but there is a factor
of two since the direct and 'exchange terms both
contribute.

Identities corresponding to (5.16), (5.12), (5.18), and
(5.20) exist for sums over even states only, as can be
seen by replacing

zt kp ~ r by &ikp r
&
—ikp r

at the appropriate steps in the derivations.

2 (2L+1)j"(kor)
even L

1 (42r)
—1 d2$ &

ikp r(&ikp r+&~ ikp r)— —

1+1(4~)—1 d2r" P (k, r)c 2ikp

',[1+jp(2k or)], (-5.30)

Core Statistics

The result, for the core contribution, of including the
exchange matrix element of G~ and averaging over the
spins and isospins of the interacting pair, is to multiply
the even states by 3/4 and the odd states by 5/4.

=
p (kor)'[2 j2(2kor) —jo(2kor) —1]

= gkor j1(2kor) —2 (kor)'jp(2kpr) —
p (kpr)2. (5.32)

In the last step here we have exploited the recurrence
relation

even L

» 'j (g) =jo(g)+j2(g).
(2L+1)jL'(kpr)L(L+1)

(2I.+1) jLr' jL+2j Lr j I.+—(kor)'jL'—
even L dr2 dr

=
p (kpr)' ——,'k prj1(2ki&r). (5.33)

The analogous identities for odd states are easily found
by subtracting these results from the previous results
for all L's. Corresponding to (5.28),

(kp
~
G

~
ko)core, spin average

=4~((5/4) 2 —
2 2 }(2L+1)

all L even I
C

(y'+ko') gL'(kor)r'dr

+cj L(kpc)[c(d/dr)j I, (kpr) ~,+jI.(kpc)]

+cjpL'(koc)p+cjpL'(koc) [ y (d/dr) inHL—i—& ~—,]
C

=42IC —',(X'+y') —-', C '(X'+y') jp(2kor)rpdr
0

+sxj1(2x)+ (1+y)[1—2sjo(2x)]

+4~c[2(y+1)] '((5/4) 2 —2Z }
all L even L

X (2L+1)jL'(x)L (L+1)
= 42rc(-', (xz+y2)+-,'x(1—y'/x') j1(2x)

+ (1+y)[1—bp(2x)]
+(1+y) '[-', x'+31xj1(2x)]}, (5.34)
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where
g—:kpc) g= pc.

We have made a detailed calculation of this core
term both by means of (5.34), and by evaluating the
correction terms in (5.26) without approximation for
1.=1, 2, and 3. The approximation is worst for large
values of kp where L's) 1 are important. We used the
parameters 6=0.75, c=0.4 F, kJ ——1.5 F ', as discussed
in Secs. 7 and 8. In the region from k~ ——kg; to k~= 5k',
the correction term was &3% of the total core term,
while the error in the correction due to this approxima-
tion was &2%. Thus, the over-all error in (5.34) is
&0.06%, which leads to an error of &0.1 MeV in the
calculation of U(b) (Sec. 8).

Outer Contribution

Referring to (5.1) and (5.14),

((tzb ) G [ izb) (Gb
~
G ) biz))outer, spin average

=4or Q (2L+1)p(L,S) (gL—KL)
L,S

Xko 'p (L,S)N (L,S)dr. (5.35)

(5.36)tZL (o&L ~L)+ (~L XL)

Then (5.10) and (5.11) are combined to give

—d' L(L+1)—V' (~L—XL)
dr' r'

=pf(JL —3'L)+ (~L—xLj) (5 3&)

L&L(r) —xL(r)j=

X(LrlL(r') —3'.L(r') j+t BCL(r') —XL(r') j)dr', (5.38)

where gL is the Green's function corresponding to the
operator on the left of (5.37).

Fquation (5.38) may be formally solved by iteration
to generate a modified Born series. It is shown in Secs. 8
and 9 that this series actually converges fairly rapidly,
so that a form of perturbation theory is possible even in
the case of a hard core. The first few terms of this series
form what we call a modified Born approximation
(MBA). In first MBA, the "unperturbed" wave func-
tion is»to&= riL —XL. The Green's function is deter-
mined by the boundary conditions that X&.—y&, =-0 at

In general, the statistical weights, p(LS), are more
complicated than for the core terms. An exception is
the simplified interaction used in Sec. 9. Equation
(5.35) also neglects the additional complications due to
tensor forces. These matters are discussed in detail in
Sec. 6.

From the definition of xL (index S suppressed), we

may write

r= c and ~. Using the definition (5.6), the result is

1 -HLt+& (yc)
BL(r lr') =— I--fL (Vr)+L (Vr')

2y HLt-&(yc)

&L'+—'h'«) JIL' '(vr)) (5 39)

o
Equation (5.38) is quite useful for qualitative dis-

cussions. Writing.= (8.-~.)+(~.-x.) i.&+(~.-x.) t.&+
=»to&+NLtt&+»t»+' ' '~ (5.40)

one sees that the first MBA correction, I&(&), is inversely
proportional to y', at least in the region of large y. One
factor of y ' comes from the coefficient in bL, while the
second comes as a result of the integration. The y de-
pendence is perhaps clearer when gL is expressed in a
form suitable for momentum-space calculations.

IIL' &(vr)
bL(r Ir') = —~r' j z, (kr) jL(kc)—

o — HLt &(yc)

j L(kr')
X k'dk. (5.41)

ry2+ k2

If the Fourier-Bessel transform of Nl, is such that
(k'), &y', then the first 1VIBA correction varies more
slowly with 7 than p

—'.
It appears now that y has two effects. It defines a

"healing distance"" of order y ', through the "pure-
core" term (rlL —BCL). It also tends to stiffen the wave
function so that, for nuclear matter, it is not very dif-
ferent from the case of a pure hard core. Brueckner
and Gammel4 have noted the latter effect; compare the
curves labeled U(r) and S(r) in their Fig. 5.

When the tensor force is considered, eNL, must be
replaced by QL pLL» . It is well known that the tensor
force vanishes in 5 states so that in the deuteron state
its effect first appears in the second Born term. The
tensor force is quite strong, causing a large admixture
of D state within the range of the force. A short-range
admixture of D state corresponds to a moderately large
k~. It turns out that the fractional difference between
(k'), +y', and (k'), —ko' Lthe corresponding de-
nominator in (5.41) for free-particle scatteringj is not
large, so that the effect of the tensor force, relative to a
central force, is only moderately reduced by p.'~ How-
ever, it turns out (Sec. 7) that y increases about as kp,
so that at higher densities the tensor force is consider-
ably less effective. There is another reason why the
tensor force appears to be weakened by the presence of
nuclear matter. This is a consequence of the effective
mass being less than unity, and is discussed in Sec. 7.
These effects are both important in obtaining saturation
at the observed density.

"F.. J. Irwin (private communication).
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For a detailed numerical calculation it is doubtful
whether (5.38) is very useful. (A computer could be
programmed to iterate this equation several times, in
effect generating the&BA series. ) Itis probably simpler
to solve (5.11) directly. In the case of tensor forces,
there are pairs of coupled diRerential equations.

We have only discussed the diagonal elements of G~.
These are the most important, but for evaluating
G~—G" and for higher order clusters it is also necessary
to know the oR-diagonal elements. The procedure is
straightforward, as we show in the next section.

6. TRIPLET STATES, GN —G~ CORRECTION TERM

The detailed treatment of the coupled triplet states
was not discussed in the last section for the sake of
clarity. There are 16 different (S,Sp, T,Tp) states,
available with equal probability, for a pair of particles
in momentum states k„kp. What is actually needed
for a lowest order calculation of the ground-state energy,
or for the single-particle potential, is the average over
these 16 states of the matrix element of (3.19),

Xkp—' yLpLL. INL', I~dr. (6.4)

We have defined

&LL' = LJ & L'J )

which is independent of M."In terms of

fl, p 4'1, 0 4'1, 0

(8~)1/2(k I) 1 Q Q 2L(2I+1)ll2
even L J

(6.5)

C(I1J~OMM)XL IM
~

JJL I~)40~ (66)

the diRerential equation for the coupled states is

M; this is discussed in connection with (6.11).Thus,

(y, P'~G&)y, p")=(y, p~)P~P, ")
=8m g g2& '—'(2L+1)'"(2L'+1)'~2

even L,L' J

XC(L1J;OMM)C(L'1J; OMM)

(ab(GN )ab ba)— d' L(L+1)
ub —ba (1 Q ab ba- dr"" r'

Go+Get~ GN (6 1)
V2 (CR CN

7 fL,I XL,I

,If, MN', M (67)

The simple arguments which gave the statistical average
over the core contributions do not apply to the outer
terms. To properly treat the triplet states, we follow
the method described by Brueckner and Gammel. 4 We
present their method in some detail, instead of merely
quoting their result for the diagonal element of G~
because we need also the nondiagonal elements of G~
in order to obtain GN, see Eq. (3.20).

Consider the 3 states (S=1, M=O, ~1, T=O). We
replace the spin projection by 3E, since the interaction
can induce "local spin Aips. "3f and S3 coincide beyond
the "healing distance. " The free-particle wave func-
tions are

where
fL I~=2L(2L+1)'~2C(L1J; OMM) (6.8)

= —PPLi LIi NLir I'L' (6.9)

subject to

QL, I (C)=0 NL', I ~bL, L'$L as '~"~

In order to conveniently sum (6.4) over M=O, ~1,
we follow Brueckner and Gammel' by introducing radial
functions for the "entrance channel" description which
satisfy

d L'(L'+1)
7 (bLLJL NI, I )—

dr'

=~2(kpr) p (4m(2I+1)] ' z gLVL Xs-1"'r=p
even L

=(87r)'~'(kpr) ' g Pp (2L+1)'~
even I J

XC(L1J;OMM)gL~'gL, I~)X0'. (6.2)

The nuclear matter "reference" wave functions are

41.0"=( ~)'"(kp") ' 2 Z '( L+1)'"
even L J

fL', I NI",I =QL fL,I "L',I (6.10)

In terms of these new radial functions, the sum over M
takes on a rather simple form with the (L,J) channels

(Our notation and normalization differ from Brueckner
and Gammel. ) The primes in (6.9) have been placed so
that L refers to the dominant wave, or entrance channel,
while L'/L or L"/L denotes the subsidiary wave.
Now we multiply (6.9) by fL,I"and sum over I.. This
results in Eq. (6.7) when we make the identification

XC(L1J';OMM)NL, I~i'JJL I~)hp'. (6.3)
38 The appropriate matrix elements of the tensor operator SIq

are tabulated in J. Ashkin and Ta-You %u, Phys. Rev. 73, 973
There is a physical reason why the I's should depend on (1948).
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G~ —GR Correction

In order to calculate the correction tern~, we use
(3.6) in the form

and the integral in (6.18) divides naturally into two
regions, which we call the "Pauli" and "spectral" cor-
rections. Also in this case

1
gR QR

~R

8R N =2[T(k')+ U" N (k') —T(kp) —UN (kp) j. (6.22)
(6.15)

to simplify the expression, ~ see (3.19),

l
ir', M')= (4or)'/2 g iL(2L+1)'/2

The use of UN(kp) for 8R is explained in Secs. 3 and 7.
Then to find the statistical average of (6.16), it is suffi-

cient to average over the quantity Pq, z

Q ) /' 1 Q ) The singlet-odd state is quite straightforward. M'=0,
GN GR G tl lGN GRtl lG (6 16)

8R 8N J E8R 8N

Thus for a given (S,M, T, T2) state,

(~.. IG"-G"l~.. )
= (&8,2

~
l (1—&R) t(8N —Q8") (8"/8N) (1—QR)

l ps, r~)

(k', M'
l

(8N Q8R—) (8R/8N)
l
k', M')

k', M'

all L

Xj L(k'r)YL (k' r)X09o, (6.23)

(1 QR)
l y 0) f 0 —(8~)1/2(k r) 1 Q i L(2L+ 1)1/2

odd L

XxLVL (kp' r)xp h, p . (6.24)

(k', M'
l
(1—QR)

l $0,00)

l 8or(2L+1) j'/2ko ' gL(k r)

(
(1

nr pic~~ pa y nr)
(8R 8N

odd L

XXLrdrI'L (k kp) (6.25)

The familiar addition theorem for spherical harmonics

gives
From here on, we restrict the discussion to the case
where the center-of-mass momentum P is zero. Then

where

4n. '
&(k') &R.r (k') dk', (6.18) @0 po (k ) 2l

l
P (2L+ 1)

(27r// odd L

h(k') = (k', M'
l

(8N Q8R)8"—/8N
l
k')M')& (6.19)

00 —2

X ko
—' k'rj L(k'r) XLdr . (6.26)

rs, 2™(k')=—Q(22r) ' dok'
M'

Xk"l(k', M'l (1—0")lps, r~) l'. (6.20)

h(k') =8R, k'(kr
—(8N 8R)8R/8N k )k

(6.21)

The natural quantization axis to use for the inter-
mediate states is O'. These states are plane waves in
relative-coordinate space, so ML' ——0 and therefore
M'=M, '. These states must have the same (S,T,T2)
as the original p, thus in general one must consider all

2S+1 possible values for M'. It is only for the special
case where k'= & kp that M' is definite, when it is clear
that M'= ~M.

The intermediate states
l
k',S,M', T,T2) are not (and

need not be) antisymmetrized. They may be expanded
in terms of products of simple one-particle states. Each
of these one-particle states has an energy which de-

pends only on its total momentum magnitude, hence the
matrix element in (6.19) is independent of (S,M', T,T2).
Assuming P=0, it is also independent of k'. In this case

(1—&")l~ .. )=f,o = (8 )'"(k")-'

2 fL.J XL',J l JL',J,kp )&0 ~ (6 28)
even L,L' J

We have used (6.6), (6.10), and the obvious definition

XL', J' f/L, L'olL NL', J(L) (6.29)

Note the occurrence of the factor 2. This has come from
taking lp) to be antisymmetrized and lk') unsym-
metrized. The same result would be obtained by taking

lp) unsymmetrized, = lab), computing (ablG( )Glab)
for given (S,M, T,Tp), then finding the corresponding ex-

change term and subtracting.
For the triplet-even states we have

l
k', M') = (42r)'/2 Q Q iL (2L+1)'/2C(L1 1;OM'M')

all I J
XjL(k'r) l

'JJL, J, k ')&0' (6.27)

= (42r)'/2 p Q fL,J j'L(k'r)
I 'gL, J,k ')lio',

811 L J
and

~ In this section we use eN=e to clearly distinguish the correct
"nuclear" energies from the "reference" energies. The axes of quantization, kp and k', are shown explicitly
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for the total angular momentum eigenstates. Thus

(k', M'I (1—n~)
I y, ,,~)

Pf, 3z'f M

even L,L' J

XQJ z, z, a I'JJ z, z, i )

FL(k') = ko ' k'rj z, (k'r)&zdr, (6.35)

FL', .z '(k') = ko ' k'rj z (k'r)Xz. qt &dr. (6.36)

In view of the form of (6.26) and (6.34), it is convenient
to de6ne

Xko ' j z,.(k'r)Xz, z~z rdr. (6.30)

We may regard (6.31) as a deflnition of the S's, which
are called rotation matrices. Obviously one interpreta-
tion of the X)'s is that they describe the canonical trans-
formations of total angular momentum eigenstates
which arise from rotation of the coordinate system.
Although the matrix elements conserve L, the resulting
rotation matrices are L independent. "Now we use the
identity

d'k'(n&"'(ko ~ k')7"m&~' (ko ~ k')

=8„,sr S„,sz8g, g4or(2J+1) ' (6.32)
to write

(2rr)
—' d'k'k"I(k', M'I(1 —0 )Igr, o )I'

=2(4~/2~)' Z(2J+1) '
even L,L', L",L"' J

Xfz, ~, z fz;,z *fz,z *fz,z

X ko ' k'rj z (k'r)Xz, q& "&dr

0

X ko ' k'rj z (k'r)Xz, Jt 'dr . (6.33)
0

The sum over 3f and M' is now only a matter of apply-
ing the identity (6.12) twice.

P S't, o (k')

(2&) ' dsk' k" I(k',M'I (1—0")Igt, o~)ls
M, 3f'

P(2Jy1)
even L,L' J

OO ~2

X ko ' k'rjz (k'r)Xz, g& 'dr . (6.34)
0

4'This, and the identity (6.31) are discussed in reference 39,
Chap. 4 and Appendix II.

Note that

L', S', R' L,S,J,Rp

—fiz, z'fie, e'8 J,z&$J' ' (ko —+ k'). (6.31)

cT. l.t'5 1F(k )spin average =
~z &s,r~(k')

odd L

(S,M, T,T8)

(2I.+1)Fz,'(k')+3 Q (2I-+1)Fz'(k')
even L

+ Q g(2J+1)Fz~,J i ls(k )
even L,L' J

+3 Q p(2J+1)Fz J &z&'(k'). (6.37)
odd L,I' J

Note that the F's have the dimension Llength7s. Fo is
simply the Fourier sine transform of k0 x0. Continuity
of X0, and the fact that its 6rst derivative is discon-
tinuous, imply that J'0 k ' in the asymptotic region
of large k'. All other Ii's behave similarly because
k'rj z, (k'r) asymptotically approaches a sine wave.

The structure of (6.14a) and (6.37) is a reflection of
the fact that when the center-of-mass momentum, P,
is zero, J is a good quantum number. Thus each of these
quantities is a sum over separate terms for the scatter-
ing eigenstates belonging to each (S,T,J). Because of
this feature, it is also possible to introduce a
Moszkowski-Scott separation in any of these (S,T,J)
states without altering the formalism for the remaining
states.

Of course, formulas (6.18), (6.21), and (6.37) are only
valid when P=O. There are three effects to consider
when this is not true:

(1) The region of relative-momentum space ex-
cluded by the Q operator is no longer spherical. (Note
that the region is not a displaced sphere, but has a
"dumbbell" shape. ) In the G~—G~ calculation, the
various J's in each (S,T) state are coupled together. 4'

(2) e~ is, in general, a function of P, P ko, and
I' k', but e~ is unaffected.

(3) The volume of relative-momentum space ex-
cluded by the Q operator increases. The result is quali-
tatively the same as using a larger "effective kp" in
(6.21).

Note that calculations with G~ are unaGected.

7. REFERENCE SPECTRUM PARAMETERS

Our goal is to achieve a sort of self-consistency for
the reference spectrum. The choice of U should lead

~ See, for example, E. Werner, Nuclear Phys. 1P, 688 (1939).

Then the desired statistical average of Fs,T~ becomes
simply
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to a U which is well approximated by the original U~.
This only needs to be true for kb) kg, as shown in the
beginning of Sec. 3 where the reference spectrum is
introduced. It turns out that there is a large quadratic
term in U(b) for kb))ks, as shown in Sec. 4, so that U
indeed has approximately the form assumed in (3.2)
for U~. The quadratic term is easily combined with the
kinetic energy by defining an effective mass, m~
=M*/3L Then the reference spectrum may be written

U~ =A g+Bk'

T(k)+Bk'= T(k)/m*.
(7.1)

A g
—A i—= (k'kp'/Mm*)d, . (7 3)

Clearly the reference energy denominators e~ are de-
termined by the two parameters d and m*. Note the
distinction between our approach and that of previous
authors: Ke define m* by the behavior of U for kb))k&,
while the usual practice has been to do this for k &kp.

The approximate potential energy, U'(m), is obvi-
ously not equal to the actual potential energy, U(m),
for states in the Fermi sea because of our assumption
that 8 is the same for m states as for b states. However,
we believe that this assumption is a fair approximation
for several reasons: (1) Several previous works have
shown that U(m) is very nearly quadratic, and that
the corresponding m* is not too different from what we
find below for the b states. (2) We are mainly interested
in calculating U(b), and although the energies E(m)
for particles in the sea enter the calculation of U(b),
they are less important than the reference energy E~(b),
and, in addition, they enter only in an average manner.
It is, of course, easy to make U'(m) exactly equal to
U(m) for an "average" state, which we may symbolize
by m. Assuming only that U(m) is roughly quadratic
in k, an "average" state is one whose momentum is
given by k-'=0.6k+'. In this case we need only assume
that

A i= U(m) —0.6k''B, (7.4)

and the detailed form of U(m), i.e., the appropriate
value of no* for states in the Fermi sea, becomes unim-
portant for calculations of U(b). (3) When we actually
make the final and detailed calculation of U(m), i.e.,
the G matrix elements involved in it, we are free to use
the exact starting energy by substituting the correct
values in (2.5), in effect associating a different value of

This form for U~ is valid for a/l k, by definition of the
reference spectrum, but it approximates the actual
U(k) only for certain k&))k+, and in any case not for
k (k&. We now define, for simplicity, an approximate
(not reference) spectrum Eo for states in the Fermi sea,
and we assume that the same effective mass m* applies
to this as to the reference spectrum, thus

U'(nz) =Ai+Bk ' (7 2)

with the same B as in (7.1). The energy denominators
e~ contain U~(b) —U'(m) and hence

6 with each state m; therefore, we only need to use the
reference energies for intermediate states above the sea.
These three points are also the reasons why we have
chosen to determine no* from the behavior of U for
reasonably large k& rather than for k &k&.

For the purpose of this exposition, we use the further
two approximations

The first near equality amounts to neglecting the dif-
ference G~—G~, while the second consists of multiply-
ing an "average matrix element" by the number of
states in the Fermi sea. Since the G-matrix elements
have been multiplied by the volume, for convenience in
passing to the limit of infinite volume, the "number of
states" is replaced by the density, Eq. (4.20). To find
the "average matrix element" we will average over all
hole states, partly for simplicity and partly for the
reasons given in Sec. 4. Referring to Fig. 4, we have
seen that it is necessary to average over the states l
and ns, but to average over e is a new approximation.
Both of these approximations in (7.5) are reasonable
for k &)kp, but they would not be satisfactory for a
calculation of U(m). For a general orientation, however,
it is useful to also begin the discussion of U(m) with
these same approximations. In this section we do not
discuss Rajaraman's suggestion"; that is we ignore the
diagrams in Fig. 3.

To calculate U(m) and U(b), we must know y ' and
yb'. As discussed in Sec. 4, these parameters are defined
differently. The Goldstone diagram for the calculation
of (me~G~g~nzn) is shown in Fig. 9. (We have now
added the subscript 2 to indicate that two particle-
hole pairs are involved in the intermediate states. )
Assuming (7.1), (7.2), and (7.3), the energy denomina-
tor at the level of intermediate states a, b is

e~g ——E~(u)+E~(b) —E'(m) —E, (I)
= (m*) '(k i,

'—k '+26k'') (7 6)
= (m*)-'(~.g—i7 ),

where
k,b' ~ —V', y~'= 2~km' —ko') (7.7)

ke2=k „'=-,'(k„'+k„'—2k„.k„). (7.8)

For simplicity we average over k„; then the scalar
product vanishes and k ' —+0.6k''. This averaging is
somewhat justified because often the dominant terms
in U are quadratic functions of k, as seen, for example,
from a power-series expansion of (5.34), our expression
for (G~) due to the core. Thus we use

ks' ~a(k„'+0.6k''). (7 9)

To calculate the average potential energy U(tn) we
set k-'=0.6ki' so (ka'), =0.34'. We note also that

U(b) = P (b~
~

G~
~
bn —ssb)

p((bS ~
G

~

bs sb))s—pin average. (7 5)
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k,g' —+ —V',

~ 2 k 2 k 2 k 2+3+k P

and the initial relative momentum is

(7.11)

kp' ——kb„'~ —,'(kbo+0. 6kp'). (7.12)

Note that (7.12) is similar to (7.9), so kp is a continuous
function of the single-particle momentum.

Clearly, (7.11) depends strongly on k, which is given
by (4.7). Inserting this into (7.11),

k.bo kb„' —kg~' —,'kbo ——k—b (k—i+k. —-', k„)
+ki. ir —-'k.'. (7.13)

Averaging again over directions for 1, m, and rs, and
finally over the magnitude of k„, we get

ybo= 36kb'+4kbo —0.15kp'=3kp'+ (3d —0.6)kp'. (7.14)

This averaging is, of course, not really justified, espe-
cially if kb is close to kp. In this case the state e is more
likely to be outside the Fermi sea if kb (ki+k ) is
negative, thus increasing (7.13) to a value greater than
(7.14). Conversely, for large kb, the matrix element
(ab

~
G ( lzzz), which in Fig. 4 creates the state b, will be

larger if k, &kb. For "average" kb's, i.e, , those which
give the greatest contribution to Fig. 8, (7.14) should
be about right.

The first point to observe in (7.14) is the strong
quadratic dependence of p&' on k&. This leads, largely
through the core-volume term in (5.14), to a large quad-
ratic term in U(b), and, therefore, to the term 8kb' in
(7.1). Thus the term ookb' in (7.14) is the main reason
why no*/1 even for large k&. Secondly, we may com-
pare (7.14) for kb=kr+o with (7.7) and (7.9) for k
=kg —e to see that

'(k b+oF) y'(kr o) =—(1+2)k—r'. (7.15)

Therefore, y' makes a considerable jump at the Fermi
surface. This is due to the extra pair /, a which con-
tributes to p&'. Brueckner expresses this by saying that
G3 is "off the energy shell, " while by definition, G2 is
"on the energy shell. "This jump in p' in turn causes a
jump in U, and thus it contributes in some measure
to h. Since the jump (7.15) contains 6 as a major con-
tribution, 6 is to some extent self-generating. To be

(P'), =0.3k'' for pairs of particles in the sea, but in
this section we are consistently ignoring all P/0 cor-
rections since they may be considered as part of the
G~—G~ correction (Sec. 6).

The corresponding diagram for (brz~ GP
~
be), which

determines U(b), is shown in Fig. 4. At the level of
intermediate states c, d,

e~ p E~ (——a)+E~ (c)+ Ezz (d) Eo ()) Eo(zrz) Eo(„)
= (zzz*) '(k,,bo —ki '+k g' —kb '+3hkr') (7 10)
= (~*) '(Vb' —'7'),

where

sure that this is not a circular argument, we must in-
vestigate the other contributions to A.

The 6 defined in. (7.3) represents an "averaged"
feature of U(b). It is too much to expect that U(b) has
just the form assumed for U~(b) for all kb&kr. All we
can hope to achieve is to have U~ approximate U in
some range of kb. Before discussing 5, then, we must
first determine the range of kb for which it is most
important that U~= U.

The intermediate state energies are mainly needed
in order to calculate the lowest order diagram, Fig.
1(a), or in other words to calculate U(zzz). The criterion
for determining the "important region" of kb, then, is
to obtain the best accuracy for U(zzz), or more specifi-
cally to minimize the "Pauli" and "spectral" corrections
of Sec. 6. If the "Pauli" correction turns out to be
large, this may be held within bounds by means of an
MS separation, as is shown in greater detail in Sec. 10,
so that we should use the freedom of choice of U~(b)
to minimize the "spectral" correction to U(zrz).

Ke see then that according to Sec. 6, especially
Eq. (6.37), the "important" range is determined by
the statistical average of the square of (k' times the
Fourier transform of t) For a p.air of particles zrz, zz in
the Fermi sea, the relative momentum, kp

———,
'

~
k —k ~,

is rather small, therefore only the S-state component
of 1 „.is important. Thus, we are mainly interested in

Pp(k') =kp ' sink'rXp(r)dr. (7.16)

Inside the core, xp
——gp —No is large because No=0, and

kp is small enough so that xp/kp=r. Outside the core,
po decreases rapidly, becoming very small beyond the
healing distance of order p „', or beyond the MS
separation distance. Therefore, Xo has approximately a
triangular shape, peaking at r=c (see Fig. 13). We ex-
pect then that the maximum of (7.16) as a function
of k' occurs near that value of k' which makes the
crest of the sine function come at the same point as
the peak of the triangle, or

kb =k.b k= zr) 2c, —— (7.17)

because k' corresponds to the relative momentum of
the intermediate state in Fig. 9. Assuming c=0.4 F,
this gives kb=4 F '=2.6kl:. Further calculations, which
include the D-wave part of the 'Si (deuteron) state,
bear this out.

We thus try to choose Ao and 8 in (7.1) in such a
way as to approximate U(b) near kb 2 6kF, or in t——he.
range, say, of 2k' to 4kb. $U(b) is hound to deviate
from the reference spectrum form for kb&2k~, due to
the importance of second MBA terms, to the "Serber
effect, " as is explained below, and to the breakdown of
the approximations in (7.5).j These are rather large
momenta, and the main contribution to (brz~G~bzz)
comes from the core terms, (5.34). These core terms are
well represented by the quadratic form assumed for the
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reference spectrum, and this is an important reason for
our confidence in this method.

Now to return to the question posed above concern-
ing the various sources of h. One source is the core term
(5.34) which has a jump at kr because of the jump of

(7.15). This term which is due to "going oA' the
energy shell" has beeri found to contribute only about
20% of the total 6 so that there is no real problem from
the "positive feedback" of 6 onto itself. The major
part (80%) of 6 arises from the outer, mostly attractive,
potential and it is sufhcient, for an understanding of
3,, to treat this by the MBA expansion of Sec. 5. We
begin with the first MBA terms.

Let us consider a hypothetical case where z =
i (outer) only, i.e., @=0 for»(c, and where e is a central
Serber force (interaction in even states only) with, say,
a Yukawa shape with the range appropriate for the
exchange of two pions (TPEP). We may use (5.30) to
find the sum of the (conventional) first Born terms for
all L's.

(2L+1) Vp(p») 'e I'"j 'I(k )p»d»r
even L

(Pr) 'e "'P1+jp(2kpr))r'dr. (7.18)

Serber effect rapidly "saturates" to simply give a
factor of 1/2 for a Serber force as compared to an ordi-
nary nonexchange force. This "saturation" is essentially
complete for ko& 2.0k» (see Table I in Sec. 8). It might
seem that this is the major source of 6, but such is not
the case. In nuclear matter, the Serber effect is very
nearly compensated by the effect of the core on the
wave function, that is, the effect of replacing gz, by
gl.—Kz, in the modi6ed Born approximation. The
eft'ect of the hard core in the case of a weak outer
potential (first MBA) is to make the wave function
vanish at r=c, and to approach the free-particle wave
function roughly exponentially, with decay constant p.
Thus a small value of y greatly reduces the wave func-
tion in the region where the outer potential is strongest,
while, on the other hand, this effect vanishes as y —& .

We brieQy describe a method we have used to esti-
mate this eGect. The object is to replace HL( & by a
simple exponential with a suitable average inverse
range y chosen to be the same for all L's. As discussed
in Sec. 5, the WEB method gives

(d/dr) lnHr& ~(yr)= A/1 jL(L—+1)/(yr)')'&' (7 19)

Now we use (5.20) and (5.16) to define a suitable aver-
age value of L,

«(L+»)..=-:(k") . (7.20)
When both members of an interacting pair of particles
are in the Fermi sea, kp is small enough so that jp(2kpr)
is large within the range of the force. The interaction
occurs mostly through the 5 state, and the Serber
character of the potential is not very evident. But for
kb))kr, jo(2kor) =.0 and the first Born terms are con-
siderably decreased. For example, with the Gammel-
Thaler potential discussed in Sec. 8 the first Horn
terms in U would be roughly 2/3 as large for high k&'s

as for an average state in the Fermi sea. We may call
this decrease the "Serber effect." As ko increases, the

Inserting this in (7.19) we obtain

Note that the resulting p is independent of r. For any
particular L, increasing r decreases the effective yL.
However, increasing r shifts the weighted average of
L toward larger L's. Thus to take account of the core
wave function effect, we replace the factor of ipL1+jp)
in (7.18) by the kernel

Ei&+&(r)—= p (2L+1)(kpr) '(gl.—Xl)'= p (2L+1)fjI (kpr) —jl, (koc)(c/r) expL —y(r —c))}'
even L even L

=&L1+jo(2kor)) —(c/r) expt —y(r —c))(joLko(» —c))+joLko(r+c))}

+ip(c/r)' expL —2y(r —c))L1+jo(2koc)). (7.22)

By making a few fairly obvious approximations, one
may obtain analytic results for exponential and Yukawa
potentials. In this way we estimate that for the case
of the Gammel-Thaler potential, first MBA terms con-
tribute only about 10% of the t.otal value of 6, due to
a near cancellation between the "Serber" and the
"g—K" eBects.

This leaves, as the main contribution to d, the
second and higher MBA terms. These depend strongly
on the momentum. It is well known that in free-particle
scattering, the ratio of higher Born terms to 6rst Born
decreases with increasing ko. This decrease is stronger
within nuclear matter since the scattering is now o6 the

energy shell by a rapidly increasing amount, (kp'+y').
On the other hand, the second MBA is reduced even
for states within the sea by p and, in addition, the
second MBA term in 6 contains a factor m*'. One
factor of m* comes from the de6nition of 6, (7.3),
the other is contained in the second MBA, as we show

below. These two effects make the second MBA con-
tribution to U(rrt, ) only of order —20 MeV for a purely
central potential, such as assumed by Moszkowski and
Scott (Sec. 9). Even if the corresponding quantity for
U(b) is reduced by a large factor, the resulting con-
tribution to 6 would be quite small. On the other hand,
a tensor force leads to much larger second Horn terms.
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Indeed, the first-order eGect of the tensor force is
zero—the binding energy of the deuteron, for example,
arises mostly from the second (and higher) orders of
the tensor force. We conclude that the strong tensor
force in triplet-even states is one of the main sources
of A. This suggests that actual calculations with nuclear
matter should be quite sensitive to the relative amounts
of central and tensor force in the triplet-even states. ~

Having discussed the origin of 6, we now consider
the consequences of the fact that m*(1.An elementary
discussion of this was given in Sec. 4. In Secs. 5 and 6,
we only treated the case where no*=1. Actually, the
effective potential that enters everywhere in these
sections should be srs*v, as seen from Eq. (3.10). We
recall that we decided to leave the factor k'/M under-
stood in all energy quantities. Now the corresponding
factor is 5'/Msss*, or in terms of our original convention
we should make the replacement

(y~G(m*=1) )y)=(y~v~g(m*=1))
(srs*) '(y

~

m*v
~
P(sss*) ). (7.23)

The pure core wave function is not altered by vs*,
either inside or beyond the core (for a given p). The
quantity sss*nP, as defined in the core interior by the
differential equation (3.10), is similarly unaffected by
sss*. The result is that the entire core term (5.34) is
simply increased by the factor (srs*) ', as was also shown
in 'Sec. 4, Eq. (4.17). The differential equation, (3.10),
shows that the outer portion of lt deviates less strongly
from the pure core wave function when m*&1. In first
MBA, it is assumed that f is just the pure core wave
function. Then the no* factors in the right-hand side
of (7.23) cancel, and the first MBA is independent of
sir*. A glance at (5.38), which defines the MBA ex-
pansion, shows, however, that higher order MBA
terms contain increasing powers of m*. To summarize
then, the core term scales as (srs*) ', the first MBA
term is unchanged, while the second MBA scales as
m*, third MBA as m*', etc.

This has an interesting and important result. The
second )4BA term is attractive, while the core term is
repulsive. Both terms vary so as to make the G-matrix
element more repulsive as m* decreases. From the ele-
mentary discussion in Sec. 4, we see that 1—m* must
be roughly proportional to the density. As the density
increases beyond its equilibrium value, the binding
energy per particle must decrease and eventually be-
come negative. According to this simplified picture
(since only low-order diagrams are being considered)
the core repulsion increases rapidly and becomes in-
finite for a rather modest value of p. This comes about
entirely from the action of the core, although the de-
tailed mechanism is somewhat involved. It is a two-
stage process, where the core first leads to a large quad-
ratic term in U(b) because the appropriate matrix ele-

4~ This was found, for exam le, by S. A. Moszkowski and B.L.
Scott, Ann, Phys. (New York 14, 107 (1961).

ments are far o6 the energy shell, and secondly, the
resulting no* increases the repulsive core contribution
to U(srs) and therefore to the binding energy. This
demonstrates two things. It has often been stated that
the hard core is important in understanding saturation,
since obviously the classical picture of a box of nucleons
with the cores all touching would require infinite en-
ergy. 44 Numerical calculations with various core radii
have shown that larger cores do in fact lead to satura-
tion at a lower density. We have shown this by an ex-
plicit qualitative argument. Secondly, we have shown
that the use of proper single-particle energies for states
above the Fermi sea, or alternatively, the calculation
of certain higher order diagrams, is not merely an added
refinement but is quite necessary for an understanding
of the basic features of nuclear matter.

We conclude that saturation is due to a combination
of effects from the hard core, the Serber character of the
outer potential, and the strong tensor force in triplet-
even states. The core is ultimately responsible, but the
rapid weakening of the tensor contribution as density
increases (due to sss*) leads to saturation at a lower
density than would be obtained with purely central
forces. The Serber and tensor force effects lead to a
large 0 and thus they justify the reference spectrum
approach. Thanks to this large 6, the Pauli exclusion
operator, Q, is not needed to prevent real scattering, or
even to provide the small healing distance. The "Pauli
correction" due to Q is not negligible4' but it no longer
has any fundamental role in the process of saturation.
when the reference spectrum is used. A more careful
study of the saturation process is in preparation and will
be published separately.

8. ENERGY SPECTRUM FOR THE GAMMEL-
THALER POTENTIAL

As an illustration of our general method, we estimate
the "nuclear spectrum" and the associated "reference
spectrum" for the version of the Gamrnel-Thaler po-
tential used by Brueckner and Gammel. " This was
chosen both for its analytical simplicity and to obtain
a comparison with the IBM calculation of Brueckner
and Gammel. In a detailed nuclear matter calculation
the procedure would be to choose some values for 6
and sir*, calculate U(sis) and U(b), approximate these
by improved values of 0 and m*, and iterate to achieve
approximate self-consistency. The following estimates

44 Gomez, Walecka and. Weisskopf, reference 22. These authors
did not anticipate such a strong saturation eGect from the core,
because they were unable to show how no* varies with p.

4~The Pauli correction is large enough so that for accurate
calculations it must be included, and perhaps the modified
Moszkowski-Scott separation technique of Sec. 10 may be neces-
sary. However, it is small enough to be ignored in many qualita-
tive arguments.

46 Reference 4. See also the review articles by J.L. Gammel and
R. M. Thaler, in Progress in Elementary Particle and Cosmic Ray
Physics (North Holland Publishing Company, Amsterdam, 1960),
Vol. 5, p. 99; and J.S.Bell and E.J.Squires, in

Advances

i~ Physses,
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1961),
Vol. 10, p. 211, for comments on the validity of this potential.
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TAmz I. Parameters for the calculation of U(b), as explained in Sec. 8. R~&+)=1+88,—5E,.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

kpc

0.380
0.507
0.643
0.785
0.930
1.076
1.222
1.370
1.518

1.013
1.168
1.355
1.563
1.785
2.016
2.253
2.495
2.740

1.060
1.239
1.453
1.689
1.940
2.199
2.464
2.734
3.007

0.353
0.201
0.101
0.040
0.005—0.015—0.025—0.028—0.027

0.439
0.371
0.306
0.248
0.201
0.162
0.131
0.108
0.091

0.914
0.830
0.795
0.792
0.804
0.823
0.844
0.864
0.882

PTC

1.282
1.434
1.623
1.837
2.070
2.314
2.568
2.828
3.093

(~rc+'pr+c) '

0.346
0.291
0.240
0.197
0.161
0.134
0.112
0.095
0.081

Apart from (7.5), there are 3 approximations to
correct for in (8.6), namely, the neglect of higher MBA
terms, and the Serber and core-wave-function effects
at finite kg. The small term 'E +'E is ignored, and the
latter two corrections to 'E++'E+= —108.9 MeV are
given by the factor

E,&+& = K, ~+& (r) ('V,++'V,+)r'«

00

(' V,++'V,+)r'dr,
2 ~

in which Ei&+~(r) is approximated by (7.22). The re-
sulting R&(+) for a single Yukawa potential is roughly
linear in the inverse range, so for simplicity we replace
(' V,++' U,+) by a single Yukawa form with the

weighted average @=1.69F '. The Serber and core

corrections vary with k in opposite directions, with the
result that R&'+~ is nearly independent of k&. This is

shown in Table I. The notation there is Ei&+'= 1+SR,
—bR., where bE, comes from the jo term in the 6rst
square bracket of (7.22), i.e., the Serber correction with

core correction ignored, and bR, comes from the ex-

ponential terms in (7.22), the core correction including

the full Serber eRect. p is the average given by (7.21).
This parameter is used both for the core correction
and for the central force second MBA terms discussed

below. The small difference between y and y suggests
that this method of approximating the effect of BCI. is

probably quite accurate.
The same methods may be applied to the second MBA

terms. First we note that (8.5) and

(u+1)&Lsjl(I, s)s»lLs~)=0 (8.8)
J=(I S}

imply that in second MBA the effects of central,
tensor, and spin-orbit forces are uncoupled and may be
treated independently. We 6rst discuss the second
MBA expression for the singlet-even central force,

which is

'( 2" 3aMA), += ,'4m pMrr-c*h 'V +(r)dr 'V,+(r')dr'

even L
(2L+1)L8 ()—~ ()]

x g.(rl")l g.(")—~.(")],

k,—' P (2L+1)l Ar, (r) —Xl.(r)]81-(rlr )
even I~

XLgi, (r') —3Ci, (r')] ~ ,'rr'g„(r
l
r'), (8—.10)

by means of Eq. (5.30). In order to define the "average
Green's function, " g, , we return to (5.39) which ex-
presses gr, in terms of Hl. &+' (yr) and use a more careful
WEB estimate than the simple exponential assumed
for 3CI,) viz.

~

Hz, '+'(yr) =L1+L(L+1)/(yr)'] '"
Xexp(&yrL1+L(L+1)/(yr)']). (8.11)

Then the L, 's are averaged as before to obtain

(Hz, '+' (pr))»= (p/p) '~' exp(&yr), (8.12)

where 7 is given again by (7.21). The resulting ex-
pression for g, is the same as go, with y replaced
everywhere by p.

o..( I")
= (27) '{expL—y(r —c)] expL y(r' c)—]-

—expl y(r& —r&)]}. (8.13)

With (8.10) and (8.13) the double integral in (8.9)
becomes elementary. This procedure is easily modiied
for the other terms in the Gammel-Thaler potential.
For the triplet-even central force, (8.9) is directly
applicable. The singlet-odd central force requires a
statistical weight factor of 1/8 instead of 3/8, and the
triplet-odd central force requires 9/8 l see Kq. (6.14b)].

where Br, is the Green's function defined in (5.39).
The procedure is quite analogous to our treatment of
the first MBA. Considering the asymptotic limit of the
Serber eRect and neglecting the core correction, i.e. ,
the 3CL, terms, we make the replacement
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In the case of the triplet-even tensor force, the
quantity

which arises in the central force calculation, is re-
placed by

L+S

J [L—Sj
(»+1)L I

(LSJ
I
5»

I
LSJ) I'g~

+(1 ol.g)—I
(I.'=2J I, SJIS—rgILSJ)l'gr, ]

L+S
(»+1)L

I
(ISJ

I
S„ILSJ)

I

J=jL—St

+ (1—Big) I
(L'=2J—L, 5J

I
Srg

I
ISJ)I']g„,r

=24(2L+1) g.~, z (8.15)

The tensor force thus requires an additional factor of
8 compared to (8.9), this being the expectation value
of 5,22. LThe factor of 3 in (8.14) is included in (8.9)
in the statistical weight factor of 3/8.]Equation (8.15)
suggests that a different sort of averaged Green's
function, g, , z, is required for the tensor force. The
identity

(2J+1)
I
(LSJ

I 1ILSJ) I'cJ'r,
J=/ I—S)

=3(2I.+1)gr, , (8.14)

It is simpler to modify the above procedure to take
advantage of the fact that the 'VL. s+ and 'VL. s are not
too different in the Gammel-Thaler potential. (Actually
'Vz, a+= a 'Vz, .s .) Now we observe two features. The
first is that thanks to the very short range, (ii=3.7 F '
in both cases), even at the large values of ko important
in U(b) the spin-orbit interaction occurs mostly in the
I' states. At kb 2——.6k&, D states contribute roughly 10%
as much as P states, if the different statistical weights
of I' and D states are ignored by simply comparing
(2L+1)ji,'(kor). The second feature to note is that

—,'L(L+1)&&3 for P states is the same as aaL(L+1) for
D states, the result being 4 in both cases. Thus we

multiply (8.9) by 4, sum over all L's, and subtract the
S-state term explicitly. A weighted average strength of
97% of 'VL. s is used to allow for the small amount of
D-state interaction. This treats S, I', and D states
properly. Higher I's are underestimated, but they are
small and there is some evidence that a smaller 'Vz, .g

should be used in P states anyway.
Results for all except the spin-orbit force may be

expressed, for kg=2. 6k', as

(2"a MBA)c, r
= —m*l E2'+) ('15.1z++'3.7,++'2.5,+)

+82' )('1.6r +'0.6, +'0.1, )] Mev. (8.20)

2(ko)' 6
vr=v 1+-I —I+

3 i, p ) p2 (c+ l)2
(8.18)

Numerical values of y& are listed in Table I. It is easy
to see that these modifications are correct in the limit
ko —+ 0. Then the only term in the sum over I. and J is
the deuteron state. This contains a factor of 8 from the
square of the 5» matrix element, and I (L+1)=6 for
the relevant D-state Green's function.

For the spin-orbit forces, we use the identity

L+S

L+S
(2J+1)LI(LSJIS„ILSJ)lL(L+1)

J=JL—Sf

+(1 ~») I(L'=2J L, SJIS»IL—SJ)l L (L+1)]
=24(2L+1)LL (L+1)+6], (8.16)

together with (5.16), (5.20), and the identity in (8.15),
leads to

(L(L+1))a,c =6+-', (kor)'. (8.17)

We use c+p, ' for r, where y is the inverse range,
1.05 F ' for the triplet-even tensor force. The resulting

is formally the same as before, but with p re-
placed by

Each term is labeled, by standard notation, to show

the type of force from which it originates; the large
numbers giving the energy in MeV. The E2 factors are
the analogs of E», incorporating the core and Serber
corrections. Since all terms are much smaller than the
first MBA, it is reasonable, in addition to neglecting
higher MBA terms, to make further approximations in

calculating the E2's. The tensor terms are roughly 2.5
times as large as the central terms. To see how (8.20)
scales with k~, we lump all the terms together with
'Vy+. Then we notice that the mean value of r which

enters most prominently in the evaluation of R2(+) is
not very different from that for E&&+'. g, by itself
makes the second MBA wave function vanish at r=c,
and so one might expect r to be larger and hence the
core correction to be smaller than for the first &HA.
This is largely compensated by the fact that there are
now two factors of V(r) which reduce the weight of

large r's in the double integral of (8.9).It is a reasonable

approximation then to replace R2&+) by E~&+'. In addi-

tion, we find from the double integral that second MBA
terms scale as (y+p) ', when (8.10) is used. (Compare
this with the discussion of the second MBA in Sec. 5.)

J IL—SI
(2I+1)

I
(LSJ

I (& S)
I
LSJ)

I

'

= 2(2L+1)L(L+1). (8.19)

"R. A. Bryan, Nuovo Cimento 16, 895 (1960); T. Hamada,
Progr. Theoret. Phys. 24, 1033 (1960}; G. Breit (private
communication).
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TAnrz II. Contributions (in MeV) to U(b) U, and U& are the 6rst and second MBA terms. The spin-orbit contribution in second
MBA is listed separately as UsL s. U,«= U&+Uz' r+UsL s, and U= U,«+Uao«. Un, the best quadratic 6t to U, is given by (7.1),
(8.3), and (8.22) as Aq+L(m*) r —1)T(b), for A2= —5.5 MeV and m*=0.'77.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

—Uy

99.5
90.4
86.6
86.2
87.5
89.6
91.9
94.1
96.1

—U2C, T

30.5
23.3
18.4
15.0
12.5
10.6
9.1
7.9
6.9

ULs

3.9
6.1
8.3

10.0
10.7
10.9
10.7
10.1
9.1

—Uo.e

133.9
119.8
113.3
111.2
110.7
111.1
111.7
112.1
112.1

Ucore

117.5
136.7
162.4
194.2
231.8
274.9
323.3
376.6
434.5

—16.4
16.9
49.1
83.0

121.1
163.8
211.6
264.5
322.4

8.3
25.6
49.8
80.9

118.9
163.8
215.6
274.3
340.0

—24.7—8.7—0.7
2.1
2.2
0—4.0—98—17.6

A t——E—T/m*= —95.3 MeV, (8.23)

A = (m*M/h'k, s) (A, —A,)=0.743. (8.24)

Ke conclude that 6=0.75 leads to self-consistency
within the accuracy of our estimates.

400-

500-

200-

t00-

U2

0 I.O 2.0 5.0
kb/kF

4.0 . 5.0

FrG. 11. Contributions to the "nuclear" potential for inter-
mediate states U(b) U~, Us, U„and U a. re the Grst MBA, second
MBA, core, and total potentials, respectively. The difference be-
tween "nuclear" and "reference" potentials is also shown, where
U~ is determined by A2 —5.5 MeV, m*=0.77.

Finally then,

(2na MBA) c,r = —m*Rt &+& (ks)

vr (2.6AF)+'ijs+
X X23.6 MeV. (8.21)

— vr(4)+'I r+

Results are shown in Table II and Fig. 11.
Referring to (7.1) and (8.1), and using m*=0.77,

we find

A s
——A,/m*+ U,„~(ks ——2.6k') = —5.5 MeV, (8.22)

There are two rather unexpected cancellations illus-
trated in Table II and Fig. 11.First, the various terms
in U,„~ combine to give a result which is almost inde-
pendent of kb, and, second, the constant terms in U„„
and U,„& combine to give a very small A2, so that the
total U(b) can be qualitatively described by the effective
mass alone, i.e. , U(b) = (1/I* 1)T—(b).

The difference between U and U~ has been reduced
about as far as is practical. There is little to be gained
by allowing no* to include some of the small variation
in U,„t,. A further reduction in U—U~ would be possible
if the reference spectrum could contain a linear term,
but this would prevent easy solution of the differential
equation for Pn.

As mentioned at the beginning and end of Sec. 4,
Rajaraman has pointed out that the particle energies
for high k should be reduced due to the influence of the
remaining third-order diagrams shown in Fig. 3. He
finds that only the contribution of the even I. states
should be used, but with the full factor 1 rather than
the statistical factor 3/4 which we have used in (5.29)
and thereafter. Thus m*U„,.would be given by 4/3
of the curve "Even I only" in Fig. 10. Rajaraman's
result holds if the initial interaction /m —+ ab is central;
if it is a tensor force the potential in the intermediate
state b seems to be approximately half the sum of the
even and odd I. state contributions. In any case, 1—m*
at large )'s is reduced by a factor 1/2, and at the im-
portant values of kb, near 2.6k&, perhaps by an even
larger factor, as seen from Fig. 10. On the other hand,
there is at least at present no clear indication how A2
and d should be changed.

We therefore assume that 1—m* is reduced. to one-
half and 6 is not changed. For the Gammel-Thaler
potential this means m~=0. 88 and 6=0.75; these
values are used in the next section. We note, however,
that recent calculations on nuclear forces" favor a
larger core radius than 0.4 F, and this again decreases
m*. The above result of 0.77 for m* may be fairly
realistic for these newer potentials.

We wish to point out that our m* does not apply to

49 T. Hamada, Progr. Theoret. Phys. 24, 1033 (1960); 25, 247
(1960); T. Hamada and l. D. Johnston, Nucl. Phys. 34, 382
(1962); G. Breit (private communication).
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states inside the Fermi sea, i.e., to U(m). There is
some evidence4r that the effective mass for these states
is considerably smaller. We expect to obtain such a
result from the Serber and core-wave function effects
in the calculation of U,„,(m), as well as from U„„(m).
U„„(m) depends much more weakly on the single-
particle momentum than does U„„(b) but, on the
other hand, the core-wave function (KL) effect now
operates in the same direction as the Serber eBect.

9. APPROXIMATE WAVE FUNCTIONS, PAULI AND
SPECTRAL CORRECTIONS

The purpose of this section is (1) to discuss several
approximation methods we have used for solving the
wave equations, (2) to estimate some of the contribu-
tions to U(m) and thus to B.E./A, and (3) to estimate
the Pauli and spectral corrections. The MS separation
technique is not used, both for simplicity and to esti-
mate the accuracy obtainable without separation. For
the calculations in this section we have chosen the
parameters m~=0. 88, 6=0.75, and A2 ———10 MeV.
The spectral correction is estimated by using the value
of U(b) U~(b) fo—und in Sec. 8, without considering
the Rajaraman correction. Our reasons for this choice
are discussed at the end of the previous section. All
energies quoted in this section refer to contributions to
U(m), therefore each term must be divided by two to
obtain the corresponding contribution to B.E./A. We
use the approximation that U(m) equals the particle
density, p, times an "average matrix element, " as
defined in Sec. 7. Parameters for this average element
are kp= (03)'('kr=0. 822 F ' y=(1.2)'('kr ——1.643 F '
and P= (0.3)"'kp.

In accord with the usual notation of perturbation
theory, we define the zero-order wave function of the
MBA expansion to be

use the same potential to calculate both wave functions.
The Moszkowski-Scott potential is

VMs=+ ~, r(c,
= —260e s(~') MeV, r)c,

@=0.4 F, @=2.083 F '
(9.4)

which they obtained from effective-range theory. They
used an average over the 'So and 'S~ data at low energies,
together with a hard core having the Gamrnel-Thaler
radius. For this potential the 6rst and second MBA
terms may be found analytically. The resulting Np(o)
= &ip

—Kp and up&i) (for m*=0.88) are shown in Fig. 12,
together with the shape of the potential. We find, by
means of (6.14b), that 'Sp and 'Si each contribute
—52.1 MeV in first MBA, and —9.06 MeV in second
MBA. Higher MBA terms may be estimated as follows.
A glance at Fig. 12 shows that, within the range of the
potential, No(&) is roughly proportional to No(0), and,
therefore,

up(i)/uo(o) (9.3)

up= (1—e) up&p).

We wouM simply find that

(9.6)

(gp —Xp) t&updr = (1—e) ' (gp —3Cp)'t&dr. (9.7)

Some sort of weighted average e must be used in (9.7),
since e is actually a function of r. A reasonable average

is a slowly varying function of r. If they were strictly
proportional, that is, if e were a constant, it would
follow that all higher MBA corrections to uo(0) would
have the same shape, and therefore

uL(P) =gL —BCL

for the uncoupled states, and

uL', J(p) ~L,L'(8L 3CL)

(9 1)

(9.2)

I.O

for the coupled states. (This notation is explained in
Sec. 6.) The first-order corrections are labeled u(i&, etc. ;
these yield the second-order 5LBA for the energy. It is
also convenient to introduce

~2

OL NI +L(0) L XL) (9 3)

so that 8 is the distortion of a partial wave caused by
the outer potential. (The corresponding 0 for the
coupled states has BCL replaced by 8L,L KL.)

We use the potential of. Moszkowski and Scott' to
estimate the two S-state wave functions, namely the
'Sp and 'S, (deuteron state) radial functions which are

and upi&P' in our notation. (Our notation for the
deuteron state D wave is us&' &.) We believe that
No]( ) Np is a good approximation, as is explained in
connection with (9.11), therefore it is reasonable to

I

O C to 2.p
r, in fermis

3.p g.p

Pro. 12. Approximate S-state wave functions for an "average
pair" in the Fermi sea, ho= (0.3)'&'k&p=0. 822 F y~= (1.2)'& k&o

=1.643 F '. go is sin%or, o&o&o& is &io—Xo and uo&» is the 6rst
MBA correction to u0(0), calculated for m*=0.88 and the MS
potential, whose shape is given by the exponential. 80 is the dif-
ference between the complete wave function u0 and the core wave
function, N0(0), i.e., the change in the wave function caused by the
outer potential.
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is given by

)second MBA energy]/Lfirst MBA energy]=0. 199.

This leads to —65.0 JvIeV for the outer term of each of
the S states ('So and 'Si). This procedure should give a
reasonable energy estimate, but a rather poor wave
function. The method is easily improved by allowing &

to vary with r according to (9.5). The resulting wave
function obtained from (9.6) is plotted in Fig. 12, and
also the corresponding 80 ——uo —No(0). This is the
approximate No used in the remainder of this section.
Further insight into this wave function is given by
Fig. 13 which shows the difference Xo——go—uo, as well
as XO(0) $0 uo(0) ~

When No is used in the outer integral, we obtain
—65.48 )keV for each of the S states. The core term is
found to be 35.23 JVIeV for each S state, so for each
state the sum of core and outer contributions to U(m)
is estimated as —30.25 MeV. Inclusion of our Pauli
and spectral corrections changes this to —29.2 MeV.
This may be compared with the EIoszkowski-Scott'4
result of —39.5 MeV. The large difference arises from
the energy spectra used. Their U(b) is computed. "on
the energy shell, " and is, therefore, continuous with
U(nz) at k~. A "best-fit" reference spectrum for their
U(b) would have a larger m* and a smaller d than ours,
leading to considerably less core repulsion. Even though
their spectrum is continuous at kg, a "best fit" over the
range of k~=kp to 4k' would lead to a finite 6 and a
positive y'. A reasonable "healing distance" is, therefore,
assured without explicit use of the exclusion principle,
and the remaining Pauli correction, should be rather
small.

Of course, it is not necessary to use the Moszkowski-
Scott potential in the outer integral, once an approxi-
mate wave function has been obtained. Numerical
integration with the Gammel-Thaler singlet-even po-
tential gives —62.0 MeV for the 'So outer term, and
therefore —26.8 MeV for the sum of core and outer
terms. To estimate the 'Si (deuteron state) term for the
Gammel- Thaler potential, we need some approximation
for the D wave, N2~").

A simple general method for the uncoupled states is
obtained by subtracting (5.11) from (5.10), and using
(9 3).

deuteron-state D wave being

u~i(') = —m~2v2 'vv+u()i")

6
y'+ —+ms*('v, +—2 'v v+ —3 'vL. s+)—

r'

d
~~i(0)

(0) d'y2

.3

(9.10)

Unfortunately this method is not very accurate, since
the second derivative term is not a small perturbation-
the iterations become unstable at large radii where the
potential terms are small. This is why the method was
not used for No. On the other hand, its simplicity and
ability to handle any form of potential recommend this
method for qualitative studies of the higher angular
momentum states. The standard solution in terms of
the Green's function (5.39) may be used instead of
(9.9) to find the wave function at large radii.

Our result for N2~(" is shown in Fig. 13. This wave
function gives —70.3 MeV for the S~ outer term. Of
this, —29.3 MeV, is due to the tensor force, i.e., the
term in (6.14b) involving u2)(v). It should be noted
that this result is more accurate than a second MBA
because the denominator in (9.10) includes the inter-
action in the D state.

Fourier transforms of the functions Xo and X2~"'
= —N2~& ', shown in Fig. 13, are needed in order to
calculate the Pauli and spectral corrections. The corre-
sponding transforms Fo, F2i( ) )see Eq. (6.35) and
(6.36)j, are shown in Fig. 14, plotted in units of the
core radius squared. Figures 13 and 14 also show Xo(0)
and Fo(0) (the results for a pure hard-core interaction)
for comparison. The assumed similarity of the S-state
wave functions leads to Foi' '=F0, therefore (6.37)

(12 L (L+1)—'P Or, =pt vuJ. =tll' v(t)r, +ur, (p)), (9.8)

therefore

-2-

p c
I

I.O 2.0
r, in fermis

I

3,0 4,p

Fro. 13. Difference wave functions for the singlet and triplet
S states of an "average pair" in the Fermi sea, showing the dis-
tortion, due to the two-nucleon potential, of P from the form of a
plane wave. The D-wave part of the 'SI state, I~1('),has no counter-
part in the wave function of noninteracting particles; it is a pure
"distortion, " v~1( & = —y~I& ). The curve X0(0) is the distortion due
to a pure hard core; g0 is the distortion of the S wave due to the
combined attraction and repulsion; it is assumed the same for
triplet and singlet states. Note the rapid healing.

This is to be solved by iteration, by treating the second
derivative term as a perturbation. This method may
also be applied to the coupled states, the result for the

L(L+1) 1 d'
01,= —sl vuz, (p) p + +Ps 'v —— Br, . (9.9)—

r' HI dr2
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I

I.O
I

2.0
k /kF

I
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I

4.0 5.0

FIG. 14. Fourier transforms of the difference wave
functions shown in Fig. 13.

gives 5, =3(2Fs'+F»""). It is apparent that u21"'
is the major source of both the Pauli and spectral
terms, thanks to a rather fortuitous cancellation be-
tween the effects on Fp from the core and the outer
potential in the region k'=kp. A study of Fig. 13
shows that pp(p) is positive definite, and, therefore, Fp(p)
is also positive definite in the region of interest, k &4k'.
On the other hand, the outer potential causes Np to
"overshoot" ris, leading to a negative dip in ys at large
r. For small k', the Fourier transform weights this nega-
tive portion of xp more heavily than the positive peak
due to the core. As a result, Fp is negative for small k',
becoming positive for larger k'. There does not appear
to be any fundamental reason why the crossover should
occur just at k'= k p.

The total Pauli correction is 5.25 MeV, 2.81 MeV
being due to F»& ', and the spectral correction is —1.72
MeV, —1.44 MeV resulting from F2~(P). Correction
terms from higher angular momenta should be negli-
gible. The eliects due to PWO (a) enlarge the region of
integration for the Pauli term, and (b) introduce a
cross term involving Fpi("F~i"'. These corrections may
each be of order 1 MeV.

The various terms for each S state (core, outer,
Pauli, and spectral) are given in Table III. The
Moszkowski-Scott~ results for the Gammel-Thaler
potential are also shown for comparison. The MS
result for 3Sz should probably be corrected by minus
several MeV for terms of higher than the second order
in their expansion method which they did not include.

For 'Sp the difference between MS and. ourselves is
again due to the energy spectra used. In their work
with the Gammel-Thaler potential, Moszkowski and
Scott used the Brueckner-Gammel results for their
U(b). Considering the broad range of momenta that
occurs in our ys, (see Fs in Fig. 14), a "best-fit" refer-
ence spectrum for their U(b) would have an m* about
the same as ours, but a 6 roughly half of ours. This
explains why their 'Sp state is much more attractive,

(me) '(ys+ kss) gedr = (rl K)sudr —(9.11).
C C

This shows that the "x"method is much less accurate
than the "core+outer" method, essentially because

TABLE III.S-state contributions (in MeV) to U(m), calculated
from the Gammel-Thaler potential and the wavefunctions shown
in Figs. 12 and 13. The results of Moszkowski and Scott (refer-
ence 43), for the same potential, are shown for comparison.

Outer, Outer, Spec- MS
central tensor Pauli tral Core Total total

Sp —62.0 ~ ~ ~ 1.22
'Sx —41.0 —29.3 4.03

—0.14 +35.23 —25.7 —37.2—1.58 +35.23 —32.6 —29.4

viz. , because the core repulsion is reduced. The corn-
parison for the tensor force in 'S» is at present not
understood. Generally Table III should not be con-
sidered as a calculation of U(m) but merely as an
illustration of the order of magnitude of the various
contributions.

It is gratifying that both the Pauli and the spectral
corrections (G~—G~) are small (5 and 2 MeV, re-

spectively). These numbers should be compared with
the total potential energy which we found to be about
—8'/ MeV from Weisslmpf's argument (Sec. 8); thus
the Pauli correction is about 6%. If the higher correc-
tions to (G~—G~) are again around 6% of the first
order corrections, their effect would be less than 0.2
MeV for the binding energy. A better estimate, using
one of the more recent two-nucleon potentials, is de-
sirable to see whether the error would really be this
small.

This small result for (G~—Gn) has been achieved
without an BiIS separation, and thus illustrates the
power of the reference spectrum approximation. (See
Sec. 10 for a discussion with MS separation. ) Particu-
larly the small contribution of the spectral term is
remarkable. It shows that it is not at all necessary to
know the particle energies accurately in the range
kp(kt, (2k& where they would be difficult to calculate.
On the other hand, our results are sensitive to m* and
0, hence we must have an over-all knowledge of the
particle energies. In this connection we note again that
all calculations in this section contain some uncertainty
due to our crude treatment of the third-order diagrams
shown in Fig. 3. A more careful study is being made.

Formally, of course, it is not necessary to calculate
the core and outer terms separately. The total con-
tribution of each partial wave may be found directly
in terms of y by means of (5.2). But this procedure
would be less accurate, since the wave functions are
never known precisely even if they are obtained from
an electronic computer. By comparing (5.1) and (5.2)
with and without any outer potential, the form of the
outer term in the "x" method is found to be the left-
hand side of the identity
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N' —u~p~ is much smaller than u. For example, our use
of the same up for both 8 states would lead to the same
energies for these states, regardless of the details of v

and u2j."&, according to the "x" method. In fact, this
argument and our expectation that these states wouM
have roughly the same outer energy is the reason we
have assumed No~& ~=go. (Note that, because of the
core term, the fractional difference between the outer
terms is less than this difference for the total of core
plus outer. ) An extreme example of the difference be-
tween the expressions in (9.11) arises when one assumes

u=utp). The "y" method gives no outer term at all,
but "core+outer" gives the erst &BA which accounts
for 80% and 45% of the outer terms for 'So and 'S~,
respectively.

The Fourier transforms in Fig. 14 show that it is
important to know U(b) up to, say, k&

——3.5k&, therefore
scattering data have some relevance for nuclear matter
at laboratory energies as high as 450 MeV. This is a
much higher energy than previously supposed.

G+= G~+G"t ———~GN
Q~

sB ~N)
(10.1)

This is still an integral equation for G~. Solution by
iteration is practical if the first iteration is sufhcient,
i.e., if G~ can be substituted for G~ in the second term
which yields

(k(G"
~
ko)=(k~G~[ko)

+ (2~) ' d'k' (kI G~'I k')&k'I G"Iko)

1 Q(k')
x~ —

~, (».2)
Ee~(k') e~(k') l

10. RELATION BETWEEN NUCLEAR AND REFERENCE
MATRIX, MODIFIED MOSZKOW'SKI-SCOTT

METHOD

In the preceding sections we have calculated the G
matrix using the reference spectrum, i.e., G". We have
also considered the correction, G~—G~, which must be

applied to obtain the actual G matrix in nuclear matter
(Sec. 6). In Sec. 9 we gave numerical values for this
correction for a special potential. In this section we

shall consider the accuracy of the determination of
GN —G~ by an iterative procedure, and we shall find

that the method of Secs. 6 and 9 is probably satisfac-

tory. If still higher accuracy is desired the reference

spectrum may be combined with the idea of Moszkowski
and Scott (MS) of separating the potential into a short-

and a long-range part.
The exact relation between G~ and G~ is given by

(3.19),

or, using (3.18) and (3.9),

(k)G" iko)=(k)G iko)

8 (k') = (eg/e~) (e~—Qe R)
~

A. . (10.4)

Eq. (10.3) is a plight modification of (6.17). Just as
there, it is necessary to know the Fourier components
of the "wave function distortion" t In S.ecs. 6 and 9
we have discussed how these Fourier components may
be obtained.

Equation (10.4) may be considered as composed of
two effects,

(1—Q) e~+ (eg/e~) (e~ e~)Q. — (10.5)

The first term is the effect of the Pauli principle; con-
tributions come only from occupied states, and depend
only on the assumed reference spectrum e&, not on the
actual nuclear spectrum e~. Indeed, e~ in the states
forbidden by the Pauli principle is obviously irrelevant.
The second term depends on the difference between the
reference and the actual nuclear energy in states outside
the Fermi sea, and is minimized by choosing for e& a
good approximation to e~. However, as shown in Sec. 7,
this is only possible over a limited range of k', and for
k' near kp the difference e~—e~ tends to be negative,
because of the attractive potential. Thus the two terms
in (10.5), the Pauli and the spectral term, are of opposite
sign and tend to compensate.

It would be possible to choose ez in such a way that
this compensation (in the erst order correction term)
is exact for the diagonal term (ko

~

G
~
ko) for some aver-

age kp, let us say kp =0.3k''. However, this would still
not justify the approximation G~=G~ in the second
term of (10.1) which was made in deriving (10.3). For
this to be justified, it is necessary that also the important
nondiagomal matrix elements satisfy G~=G~. For these
elements, the Pauli and spectral term do not, in general,
compensate. It is probably necessary, and certainly
suKcient for the validity of (10.3) that the Pauli and
the spectral term each be small by itself.

We have shown in Sec. 9 that the Pauli correction is
about 6% of the total potential energy for the Gammel-
Thaler potential. It is reasonable to assume that the
higher order. corrections, which arise from the fact that
the last factor in (10.1) is G~ rather than G~, are again
about 6% of the second-order term (10.2): this would
make them about 0.4% of the total potential, giving a
contribution of about 0.2 MeV to the binding energy
per nucleon. This is a satisfactory accuracy for most
purposes; in fact, the fourth and higher order Goldstone
diagrams which cannot be calculated very readily,
probably give a larger correction. Nevertheless, there

+(2 ) ' d'k' h(k')(0(k')lf(»P))*

)&(y(k') i i (ko, P)), (10.3)

where h(k') is given by (6.19),
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may be cases where the higher order terms in GN —GR

are larger, especially this might happen if the potential
is very large just outside the core, and we, therefore,
consider. a method which is guaranteed to give GN —GR

with very great accuracy. For the sake of illustration
we only consider central forces beyond the repulsive
core. This makes our discussion directly comparable to
the work of Moszkowski and Scott."As shown in Sec. 9,
the bulk of both the Pauli and the spectral corrections
is due to the tensor force, so it is probable that also the
separation method does not lead to quite as high a
degree of accuracy for tensor forces as we find below for
central forces. Special methods have been developed to
deal with the tensor force."

Solution for Short-Range Potential

Ke follow the method of MS and separate the po-
tential into a short- and a long-range part, and we wish
to prove that (10.3) is very accurate for the short-
range potential alone. For this purpose we go back to
(10.1), of which we take the k, ko matrix element, and
then use (3.18), (3.17) to write

The bracket evidently does not depend on k, hence
G,N is simply proportional to G,R, for all k.52 YVe may
then set

&k
~
GP j ko) = (1—~)

—'&k
I G,"

~
ko). (10.12)

Inserting into (10.11) yields

~= (2x)—' d'k' ———&k'i GP i ko)
~B ~N

(10.13)

the Hermitean property" of G,~ (Appendix A). We
could not easily have deduced (10.10) from the form
(3.16) for G," because this involves the derivative x"
which appears to depend on k', but we have instead
used the expressions (3.17), (10.7) for 1—0 which in-
volve only the function y itself.

Inserting (10.10) in (10.1) we obtain

(ki GPi ko)= (ki G,~i ko&

2
1+(2m.) ' d'k' ———&k'~GP~ ko& . (10.11)

~R eN

&I lG, Ik'&=e (k)(kl(1 —n, )Ik'&, (1o.6) (2 ) s dsk'L-(1 ()) ()(,~,~)/, ~q

&kl (1—1)'') Ik') = ao(kr)xo. (k'r)«(10 7)
kk' p

(I ~G.n) k'&= &k[G,n[ ko&. (10.10)

For this conclusion it is important that e"(k) rather
than e"(k') occurs in (10.6), i.e. , we must make use of

"E.J. Irwin and M. Razavy (private communication).

In the last integral, we have replaced p and t, by their
1.=0 components, j o=Po/kr and xo./k'r. This should
be justified for the short-range potential if A.

" is not too
large. More generally, sums over I., 8, J come in as in
Sec. 6. Now xo, is to be calculated from (5.11) using the
short-range potential only,

xo8 —'y xo8= 'v~N'o~= —v8(oio —Xog) ) (10.8)

where e,=o for r) d. The xp, for all values of k' are to
be calculated with the same p, given by (3.8) in terms
of the (fixed) ko, because the starting energy must be
kept fixed for calculating the entire matrix &k~ G"

~

k'),
as shown in Appendix A.

Since v, is restricted to small r, the function xo,/k'
does not depend sensitively on k' as long as k' is moder-
ate. But only for small and moderate k' is the "pro-
pagator factor" in (10.1), (1/en —Q/ev), appreciable.
Therefore, as long as we consider the short-range
potential alone, it is a good approximation to set

&kI (1—1).')
I
k')= &kI (1—fI.') Iko&, (1o ~)

hence also

X&k'j(1—n, R)~ko&, (10.14)

where (3.18) has again been used. The bracket in
(10.14) has been written so as to separate Pauli and
spectral effects, and to put in evidence that the spectral
effect is negative.

Equation (10.12) is an "exact" solution of the inte-
gral equation (10.11) for G,~, provided (10.10) is valid.
We can also solve (10.1) "in second approximation, "by
replacing G,N in the last term by G,R, as we did. in ob-
taining (10.2). If we then again make the assumption
(10.10) we obtain (10.12) with (1—K)

' replaced by
1+s. Thus the relative error in this second approxima-
tion is about ~', as might be expected.

To estimate ~ we note that the bracket in (10.14) is
appreciable only for moderate k', not for large ones.
Therefore the matrix element of i—Q,R may be
approximated by

&k ~(1—n, )~ko&

=4irko ' go(kor)xo, (ko, r)dr=—Iz, (10.15)

5' There is, of course, the alternate form of {10.6),
(hlG. 'Ih')=(h'IG 'Ih&*=o"(k')(h'I(t —t~.a) Ih&*,

(It'I (1—Q,n) Ih) 47r(kk') f=go(k'r)xo, a(k,r)d»,
0

but this is not useful here.
5' This simple result breaks down when k becomes so large that

the matrix element (10.7) becomes small by the rapid oscillation
of go(kr). Then the small difference between xo(k', r) and xo(ko, r)
becomes important, and (10.9) ceases to hold. But then, by the
same argument, G~ and G-~ are both small.
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is nearly independent of k, while the element (10.6) of
G, a is proportional to es(k)."

I'&G. 15. 2 =schematic shape of the wave-function distortion
due to the short-range potential alone, d=separation distance in
modified Moszkowski-Scott method. 8="triangular" approxima-
tion to A, used in (10.16).

which is a constant, of the dimension of a volume,
characteristic of the deviation of the wave function
from a free-particle wave. It is similar to the constants
I~ and ID of MS. For a rough approximation we assume

which gives

gp (kpr)/kp ——r,

Xp,/kp ——r, r (c
=2c—r, c&r &2c

=0, r&2c

Ig=-4mc'.

(10.16)

(10.17)

Actually, the triangular shape for Xp, (10.16) should
be replaced by a more rounded shape, as in Fig. 15,
having zero slope at r =d but with d& 2c; this probably
gives about the same result as (10.17). The Pauli
effect in (10.14) can now be immediately evaluated and
gives, for I'=0, kp ——1.5 F ' and c=0.4F:

Kp = (2/3m') (krc)P =0.043 (10.18)

The spectral eGect requires the knowledge of the
spectrum ez but can then be evaluated by a simple
quadrature; we estimate that it is somewhat less than
~~ and of opposite sign. The resulting ~ is then less
than (10.18) and is further reduced by the fact that,
for kp)0, (10.16) is an overestimate. Therefore, we
estimate a &0.03; thus the "second approximation" to
GP, (10.2), should have an error of less than 0.1%.
This is more than suRRcient accuracy for the calculation
of G, , especially since this quantity is only about 15%
of the total G~ Lsee below, after Eq. (10.34)j.Thus for
the calculation of the diagonal elements of G,~, Eq.
(10.12) is unnecessary. It is necessary, however, for
the accurate calculation of the interference term be-
tween short- and long-range forces, the third term in
(10.25), as is shown below.

According to (10.12), (10.18), the reaction ma, trix
G,~ due to short-range forces is very well approximated
by the reference matrix G,~. The wave-function dis-
tortion is of course not the same in the nuclear spectrum
as in the reference spectrum,

1—n, &~1—n, &,

especially because of the Pauli principle. Thus G, is
the "simpler" matrix, in marked contrast to the be-
havior of the matrix elements in a giver spectrum as a
function of the filal state: The element (10.7) of 1—OP

Modi6ed Moszkowski-Scott Method

So far we have not specified the separation dis-
tance d of the MS method. We may now choose d
so as to justify Eq. (10.15), i.e., the statement that
(k'

~
(1—&n,) ~

hp) is nearly independent of k'. Clearly
this is best fulfilled if pp, /0 only for small r; then
gp(k'r)/k'=gp(kpr)/kp wherever Xp, /0. The best we

can do is to make pp, vanish entirely beyond d, so we

propose to determine d from the condition

This means
Xp, ~(kp, r) =0 for r)d~.

Np. "=gp —Xp. = gp for r) de,

(10.19)

(10.20)

i.e. , the wave function in the referemce spectrum goes
over into the unperturbed wave function beyond the
separation distance. This condition replaces that of

PALS,

viz. , that the wave function of two free nucleons inter-
acting by v, should go over into the unperturbed wave
function,

Np, ——gp for r)dr (MS). (10.20a)

We prefer our choice (10.19) because the reference G
matrix is much closer to the actual G than the free-
nucleon G matrix, and it is, therefore, reasonable to
make the reference G as good and as simple as possible.

Since X and X' are continuous, (10.19) requires that

X(d—e)=X'(d —e) =o. (10.21)

It can be shown that the separation distance d exists
for any attractive potential at reasonably small kp. It
is generally larger with our requirement (10.19) than
with the MS condition (10.20a). Just like MS, we have
the choice of either (a) letting d depend on kp, ol

(b) satisfying (10.18) for some kp, and keeping it
fixed. In the latter case, Xp is small but finite for r&d
if kp/kp, , and behaves as (3.11).Even with choice (a),
however, G, n remains Hermitean (Appendix A). We
refer to condition (10.19) as the modified Moszkowski-
Scott (MMS) method.

Ke must now obtain the complete reaction matrix
G~ from that for the short-range potential G,~. Ac-
cording to (A.16) in Appendix A,

G=G,+Q,tiiQ, (10.22)

G=G.+(1—G.&—
~v, 1 ——G),e) e

(10.23)

and neglect the very small third order term (estimated

~' Also, if we compare the matrix elements for the short-range
force in the reference spectrum with those for free nucleons, we
find that (1—0,) is about the same, while G, is very different.
(See Kohler, reference 15.}

where the superscript lV has been dropped. V'e rewrite
the last term,
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about 0.02 1VleV below),

G(3) =G,~—~)—G.
e e

(10.24)

sistently neglected the denominator 1—~ in the third
term should be omitted, but we shall see that it is better
retained.

In the second-order term vi(Q/e)G, we replace G by the
first-order approximation G,+vi and thus obtain

G= G +vi 2G t—vi —vi—vi.
e e

(10.25)

The third term is correct in this form only for diagonal
matrix elements. Now we use (10.12) and add and
subtract a convenient term:

G 8
Gx — +v

K

2
G Rf

1—~ e~

Q Q+ —G, i't ———vi —v(—v(. (10.26)
1—~ e~ eN eN

The third term here is, apart from the factor —2/(1 —~),

III=G iit v, (1 ft &)tv,
e~

(10.27)

whose diagonal element is

(kp
~

III
~

kp)

=4vrkp ' „7o(d'or)vt(r)Xo. "(ko,r)dr=0. (10.28)

GP= G,"+(1—~) 'G, a" ———G,~. (10.29)
eg eN

This has the further advantage that now the second
term of (10.29) can be combined with the fourth term
of (10.26) to give the final formula

The last equality follows from our definition (10.19)
which makes Xp,~=0 for r& d while v~=0 for r &d. The
vanishing of (10.28) is another great advantage of the
MMS method.

The first term in (10.26) is not as accurate as the
others. A more accurate result is obtained if (10.12) is
not used directly but is inserted into the second term
of (10.1), giving for the iirst term

Evaluation of Correction Terms
The most important correction term in (10.30) is the

third term which we now rewrite explicitly for the
diagonal matrix element, similar to (10.14), (10.15),
thus

Ia d'k'—
(1—Q) —Q

1—a (2v)' I

&& (k'
]
2v i+G, ] ko). (10.31)

The bracket has been split into a Pauli term 1—Q and
a spectral term. For simplicity, the factor Iz ——1—0,~
has been assumed to be independent of the intermediate
state, k'. It is evident that there is a double com-
pensation: the attractive potential v~ vs the repulsive
G,~, and the Pauli effect vs the spectral effect. The
attractive potential has mainly low Fourier compo-
nents, the repulsive short-range potential mainly high
ones. Ke have shown in Sec. 9, especially in Fig. 14,
that the Fourier transform of G"=vi+GP crosses zero
near t'or, that of 2v&+G," is zero at a slightly higher
momentum. Thus in the spectral eGect the contribu-
tions from v& and G, should compensate very effec-
tively, even more so than in Sec. 9.Therefore, the result
for the nuclear binding energy is ~cry insensitive to the
spectrum of particle energies just above the Fermi sea.
This result was already found empirically in the IBM
calculations of Brueckner and collaborators, but the
above argument clarifies the reason for the lack of
sensitivity. Probably the term most sensitive to the
particle energies is the second Born term, vi, (Q/e~)vi,
and this is only 0.8 MeV according to %IS.

It should not be concluded that the entire particle
energy spectrum is unimportant. The behavior of eN

at high k' has a substantial influence on G, as shown in
Sec. 7, and contributes significantly to saturation. But
this behavior is well approximated by the "effective
mass" form for eg, thus we have shown that this
approximation is very good.

The most important term in (10.31) is the Pauli
effect for the longrange potential, i e., the term
{1—Q)vi. Because of its simple structure, the integra-
tion over tt' can be carried out (for F=0 and S states):

G'v=G ~+v(+(1—~) '

1
XG,"t ———(2vi+G, R) —vi—v(. (10.30)

eg eN

Thus the second-order terms /the two last terms of
(10.30)$ have become very simple. Both of them are
small, the last term because Born approximation is
good for the long-range potential, the third term be-
cause 1/en is a good approximation to Q/e~ when used
in conjunction with G,~. If third-order terms are con-

Iii(2v.) '
Gg)= 4mr'dr 4mb"dk'

sink'r sink pr
X 2v, (r)

kpr

4Ig

v (1-K)

"dr—(sinker —her cosh')

sink pr
&& ()

kpr

{10.32)
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(notation: 8=Pauli, i=long range). Thus, this most
important second order term has been reduced to a
quadrature involving the long-range potential. Assum-

ing the 4&IS potential (9.4), estimating d=1.1 F, in-
serting (10.17) and (10.18), and setting ho=0 we get

Ggt = —30 ihleV-F', (10.33)

which may be compared with the corresponding (ho=0)
matrix element of v~,

4& ~y'dr= —1000 MeV-F', (10.34)

so tha, t the Pauli correction to v~, G p~, is about 3% of vt, .
In Sec. 9 without using separation we found a Pauli
correction of 6%, but this was largely due to the effect
of the tensor force. The point we wish to emphasize,
in comparison with Sec. 9, is that here we have also in-
cluded the main third-order term. Furthermore we can
show explicitly that this is small. It is not easy to esti-
mate third-order terms for the method in Sec. 9. The
largest third-order term here is represented by the
factor (1—a) '. It is, therefore, about 3% of G~, and the
remaining corrections should be even smaller.

Equation (10.32) only gives the contribution. of the
term with v~ to the Pauli part of (10.31).The contribu-
tion of G," to (M.31) is about ~G,a, as can be seen from
the dehnition (10.14); oG, a has a sign opposite to (10.33)
and is about 3% of G,a, which is by accident the same
percentage as (10.33) is of (10.34). Numerically, we
estimate from (10.6), (10.15), and (10.17) that for an
average value of ko in the Fermi sea

(l, ~G, &~1,)=140 tfev-F (1o.35)

or about 15% of (ko)G~
~
ko). Thus the G,a part of the

correction (10.31) is about 0.2 MeV per particle.
It is interesting that the long-range Pauli term,

Ia(1—Q)v~, increases the effect of the potential vl. This
is because it originates from a correction to the short-
range wave function, i.e., replacing Q,~ by Q,~; the
Pauli eAect removes the low-frequency components
from that wave function and hence reduces its "re-
pulsive" character. In the (attractive) second-order
Born term v~(Q/e)v~ the Pauli principle reduces the
attraction as expected.

The third-order terms are very small. The neglected
term (10.24) ca,n be transformed similarly to (10.26)—
(10.28), and the result is then related to the fourth
term of (10.26) in much the sa,me way as that term is
to v~, except that it does not contain the factor 2 present
in (10.26). We therefore estimate (10.24) to be about
4% of (10.31), and thus to contribute about 0.02 MeV
(attractive) to the binding energy per particle. The
third-order Born term, v&(Q/e)v&(Q/e)v&, is probably
about 1-',% of the second order term, v~(Q/e)vg, because
MS have shown that this second-order term is about
1o% of the first-order term v~, this makes the third-

—o ay(~ o zt )z,(~ oa)

Using the fllst. approximation G G +vi ln the last
terni, and neglecting the third-order term gives

(10.37)

The third term is again zero, by (10.27) and (10.28).
The last term may be compared with the last term in
(10.25), i.e. , with the usual second Born term. The
difference between the two,

1
Gl =~GL &L

~g eN
(1O.38)

is just the contribution of the long-range potential to
the second-order term in (10.1). Now the important
point is that the last term in (10.37) is apt to be
appreciably larger than the last term in (10.25) be-
cause the long-range potential v~ has mostly matrix
elements for smaQ momentum change, thus the Pauli
operator Q is very effective in making vt, (Q/e~) v& small.
Therefore, the last term in (10.37) corrects vt, by an
unnecessarily large amount; this correction must then
be removed by the further correction G~—G~. In other
words, G,a+v~ is a better approximation to the correct
reaction matrix G than is G . This is the main reason
why the MAIS separation method is more accurate
than the direct use of G~ as a first approximation.
Moreover, the last term of (10.37) contains strong low-
momentum components which have a complicated
dependence on k. Therefore, it is dificult to calculate
the third-order terms, or even to estimate their magni-
tude reliably, in contrast to the MMS method. On the
other hand, if our estimate in Sec. 9 is correct, the
third-order terms in the straightforward O~ method
without MS separation are only of order 0.2 MeV per
particle, and this is accurate enough for most purposes.
Moreover, in Sec. 9 tensor forces gave the main con-
tribution to the second order while in Sec. 10 these
forces were omitted. It is, therefore, not clear whether

order term about 0.01 AIeV in B.E./A. One third-order
term has been retained, viz. , the denominator 1—x in
(10.31). If the total (10.31) is about 1.3 MeV (attrac-
tive), and x=0.03, then this denominator contributes
0.04 AfeV to B.E./2 (attractive). It is, therefore, the
largest of the third-order terms so that its retention
seems justihed.

Thus, we have proved that our method, using the
reference spectrum and iGMS separation, gives a
highly accurate result in second order. It remains to
discuss the relation to the theory m&holt MS separation.
In this theory the reference G matrix is, using again
(A16),

a G a+Q a'tv QR
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the ~'Ii~IS method with tensor forces included is really
more accurate than the straightforward calculation of
Sec. 9, but we believe that its error can be more reli-

ably estimated.

Highly Excited States

All the foregoing discussion in this section applies
to the calculation of the nuclear binding energy, or of
the particle potential U(m) for states inside the Fermi
sea. For states of high k much less care is necessary.
First of all, their energy enters the nuclear binding
energy only through (10.3), or more specifically, the
second term in (10.5). We estimate that an error in

U(b) of 1 MeV (on the average over kq) causes at most
0.1 MeV error in the nuclear binding energy. Hence
much less accuracy is required in calculating U(b)
Second, the function P(ko, r) for large k~ is almost en-

tirely given by the pure-core function g —K and the
correction due to the attractive potential is small,
approximately as (y+p) ', see end of Sec. 5 and (8.21).
Hence the Fourier components of f', (k'~ (1—0)

~
ko),

are dominated by the behavior of f for small r, even if
k' is small. The arguinents in (10.6) to (10.14) which
were made for the short-range potential only, now

apply to the complete potential and wave function f
Therefore the %~IS separation is not needed in this case.

The wave function can be obtained directly from
(3.10), a,s is done in Secs. 7 to 9. In most cases the
second PlBA for the energy gives sufficient accuracy.
An exception may be the spin-orbit interaction because
this interaction is very large ()1 BeV) outside the
repulsive core, but integration of (3.10) without 1%IS

separation is still all right. Incidentally, the correction
a in (10.14) is smaller for large ko because the wave
function f falls more rapidly outside the repulsive core.

For states in the Fermi sea and I.&0, 3 l S separation
is also superQuous: For I= 1 the most important inter-
action (spin-orbit) is of very short range, therefore the
Pauli correction is small. It can be calculated for the
entire I = 1 interaction in the same simple way as it is
calculated for the short-range interaction in (10.14).
For I.& 2 the repulsive core and short-range interaction
generally are unimportant because gl, (kpc) is very small,
and it is, therefore, not worth while to separate them out.
In fact, for states with 1.&3 it may be sufficient to
neglect the core altogether and use ordinary first Born
approximation.

Cr. DISCUSSION

We have shown that the calculationof the Brueckner-
Goldstone reaction matrix G is greatly simplified by
first calculating a reference matrix. For this purpose,
the actual energies of nucleons in all intermediate states
of the nucleons are arbitrarily replaced by a "reference
spectrum"

L'Ii (k) =2+k'(2m',

m*= 1—(4'(3)c'p, (11.2)

if we take into account Rajaraman's factor" of —,
' (see

beginning of Sec. 4 and end of Sec. 8). In (11.2) p is
the density and c the radius of the repulsive core. This
is about m*=0.94 for the observed nuclear density
(ki ——1.5 F ') whereas the value to be used in the refer-
ence spectrum (11.1) (for the important region of k)
is about m*=0.88 or somewhat less (Sec. 8).

When the reference spectrum (11.1) is used it is
possible to obtain a simple differential equation in
space for the wave function P" which is defined as the
Fourier transform of the reference reaction matrix, G~.
This greatly simplifies the treatment of the repulsive
core. The differential equation differs from the Bethe-
Goldstone" diRerential equation by the absence of the
integral term which in that theory represents the effect
of the Pauli principle: The use of the reference spec-
trum makes it unnecessary to take the Pauli principle
in intermediate states into account when calculating G~.
The resulting simplification makes it possible to give
an explicit and simple solution for the reference wave
function for a pure repulsive core, and the case of core
plus attractive potential can then be treated by a simple
perturbation method (Sec. 5). The reference reaction
matrix G~ is immediately obtained from the wave
function P by Fourier transformation.

The actual reaction matrix, G'~ can be obtained from
the reference matrix by solving the integral equation

Giv gR+GRt G.v-
er ey

(11.3)

in which we take into account (a) the devia, tion of the
actual particle spectrum e~ from the reference spectrum
eg, and (b) the Pauli principle, i.e. , the operator Q.
It is shown (Sec. 9) that it is usually sufhcient to solve
(11.3) by one iteration, i.e. , by replacing G in the last
term by G~. This reduces the calculation of the diAer-
ence, G~—G~, to a quadrature. The two corrections,
for Pauli principle and for the spectrum difference,

i.e., by an effective mass formula. The constants A. and
m* can be chosen to fit the actual particle energy spec-
trum closely over the important range of momenta,
especially from k =2k+ to 4k@ (Fig. 11).The energy of
the initial state, occurring in an element of the re-
action matrix G, may be deduced from the actual
particle energies in nuclear matter.

The particle energies are defined more carefully than
in previous work, especially for states above the Fermi
sea. In accord with previous calculations, ' the G matrix
for these states must be calculated off the energy shell,
the more so the higher k. This fact, together with the
repulsive core, makes the potential energy positive,
large, and proportional to k' at high k, so that in this
limit the actual energy is given by a formula of type
(11.1) with m (1. Approximately, in the limit of
large k,
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eg —e~, tend to compensate. This method is amply
accurate for the calculation of the energies E~ of states
above the Fermi sea and for the L&0 interactions in
the Fermi sea. For the S states in the sea it is moder-
ately accurate.

Even higher accuracy is obtained if the method of
the reference spectrum is combined with the Moszkow-
ski-Scott separation method. It is possible and conveni-
ent to define a separation distance dg, somewhat larger
than that of 44S, such that the reference wave function
for r&d~ goes over exactly into the free particle
function, whereas MS put this requirement on the
wave function of two interacting nucleons outside of
nuclear matter. XVith this separation method, the re-
action matrix in nuclear matter, G"~, can be calculated
to an accuracy of better than 0.1 44JeV per nucleon,
using only quadratures after the solution of the first,
simple differential equation for the reference wave
function in the short-range potential. We note however
that this separation method may perhaps not be
capable of quite such high accuracy when tensor
forces are considered.

%hether MS separation is used or not, the nuclear
binding energy is insensitive to the particle energy
spectrum E(k), between k~ and 2k~. There is some
sensitivity to Z(k) between 2k' and 4k& but in this
region E(k) is rather easy to calculate. The insensitivity
to E(k) directly above the Fermi sea is partly due to a
compensation between the attractive long-range and
the repulsive short-range interaction.

A great advantage of the 1VlS method and of our
modification is that it should permit easy extension
of the theory to finite nuclei. The contribution of the
short-range forces depends essentially only on the
density of nuclear matter, and it should be permissible
to use the local density in finite nuclei, at least for
approximate calculations. The contribution of the long-
range forces can be calculated by Born approximation,
and this can be done just as readily for shell model
wave functions in a finite nucleus as for plane waves
in nuclear matter. Thus the potential to be used in
approximate shell model calculations is the long-range
part of the nucleon-nucleon interaction, i.e., just the
part which is best known from meson theory.

The MS separation is also useful to assess the sensi-
tivity of the nuclear binding energy to the (largely
unknown) behavior of the nucleon interaction at short
distances. In the MS method, the short-range forces
are mainly important for the determination of the
separation distance d. But we can determine d, for a
given relative momentum ko, also from the observed
phase shift of nucleon-nucleon scattering for momentum
ko, together with the well-known nuclear forces at
large distance which are given by one- and two-pion
exchange. Ke simply integrate the Schrodinger equa-
tion inwards from large r until we reach the point at
which the logarithmic derivative of the wave function
is equal to that for free, noninteracting nucleons; this

APPENDIX A. REACTION MATRIX IDENTITIES

Consider two problems 2 and 8, with different po-
tentials v~ and v~ and different propagators

Pg Q~/e~—— (A1)

and P~. Ke wish to obtain relations between the corre-
sponding reaction matrices G~ and G~. The Schrodinger.
equation and the definition of G become

Qg —1 EQGQ )

GA &r'iQA)

(A2)

(A3)

is then the MS separation distance for free nucleons, d~.
The correction from MS separation to our modified
separation distance d& can then be made by perturba-
tion theory, requiring only a rough knowledge of the
wave function N between the core radius c and d: but
this knowledge is provided, with nearly adequate
accuracy, by noting that u~= N"=0 at r= c and that
the logarithmic slopes of N" and N,~ are the same as for
the no-interaction wave function p at d& and dr„, re-
spectively. The result should be almost independent of
the details of the interaction between c and d. The
short-range reaction matrix, G„also requires mainly a
knowledge of the core radius c and the separation dis-
tance d.

An accurate method for calculating G is of course
not enough to determine the nuclear binding energy;
there are two other requirements. One is a quantitative
treatment of the higher ()fourth) order Goldstone
diagrams which may together contribute of the order
of 1 MeV per particle. The other is a detailed knowledge
of the nuclear force as discussed at the end of Sec. 1.
In particular, the exact radius of the repulsive core
seems very important for nuclear matter. Ke have
assumed for simplicity tha, t c is the same in all (spin,
isospin) states, but the evidence for this is rather poor.
We also expect the results to be rather sensitive to the
relative amounts of central and tensor force in triplet-
even states.
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&A=&a) I A=I&) (A7)

in which case we may drop the subscripts. Then we find

(A8)

and two simila, r equations with the subscript B. Be-
cause of (A2) and its Hermitian conjugate with sub-
script 8, the brackets in the following expression are
zero, and it is an identity:

GA =GA —GB'[&A+I'AGA —1j
+ [DBt+GBtPBt 1]GA—, (A4)

which simplifies to

GA GB GB flA+flB GA+GB (PB IA)GA (A3)

Using (A3) and its Hermitian conjugate we obtain

GA GB +~B (&A &B )Dil+GB (IB I A)GA (A6)

We 6rst consider (A6) for the case when problems 2
and 8 are identical, i.e., when

In the special case of the Moszkowski-Scott poten-
tial, a separation distance d is chosen which is a func-
tion of ko. If we wish to obtain the diagonal element
(kpIG, Ikp) for the short-range potential, we only need
to calculate the complete matrix (k'I G,

I k) for d= d(kp)
and H=HA of (A10). This matrix is Hermitian" [the
elements of the e matrix (k'I vI k) all being calculated
with d=d(kp), regardless of k and k'j and the single
element (kp I

G,
I kp) of this matrix is the required answer.

We have thus shown that it is easy to assure that G
be Hermitian; hence in (A6) we, „"may replace GBt by
G~. However, the wave operator 0 is not Hermitian;
in fact, an element of the Hermitian conjugate of
(A2) is (dropping the subscript 2)

(k'I fit
I
k) =1—(k'I G'I k»'(k)

=1—(k'IGI k)I (k),
(A11)

since I' is a diagonal matrix, while

(l'InIk)=1 —I (k')(I'IGIk)~(k'IntIk). (A12)

We now use G~~=G~ and assume

&'8) +A+IB

GA = GB+GB(I'B—&A)GA

8 A

=GB+GB — — ——GA,
e~ e~

(A9)Q
—Qt B—Bt

(Agb)
Then (A6) becomes

The potential is Hermitian, v= v~ for nearly all practical
cases. '4 The second condition I'=I't is more intricate.
Using (A1) we see that I'= Pt is ensured if

(A13)

(A14)

The first of these is clearly satisfied: The Pauli operator
Q is real and depends only on the "present, " state of the
two nucleons, hence it is Hermitian. The energy de-
nominator e, however, is the "present" nucleon energy
minus the "starting energy" H, as discussed in Sec. 3.
If we consider a nondiagonal element of Eq. (A6),
going from state kp to k, we might be tempted to set

IIA ——E(P+kp)+E(P —kp),
(A10)

HBt ——E(P+k)+I.'(P —k),

i.e., to put the starting energy equal to the actual
energy of the nucleons in the respective initial state.
In this case, II~~/II~, and therefore P~/I' so that G
is not HermAian. To ensure Hermiticity, it is necessary
and sufficient that the starting energy be chosen as a
co~sstant H, independent of the actual initial state. """

Thus the reaction matrix G is a function of the two
independent parameters P and II; there is a complete
matrix (kIGI kp) for each pair of parameters P, H We.
can then, if we wish, choose the matrix corresponding
to H=HA in (A10); the elements (kIGIkp) of the
resulting G matrix will then be "on the energy shell"
with respect to ko.

64 See below for the Moszkowski-Scott potential.
"This was recognized by Thouless (reference 31) and by

Brueckner and Gammel ireference 4l but, to our knowledge, it
has never been stated explicitly that H =const is required to
make G Hermitian.

a, relation we have used repeatedly in Secs. 3, 6, 9,
a,nd 10.

Next we assume

I A=I B, 'BA= pB+pc+'pB

For example, e& may be the short-range potential of
Moszkowski and Scott, and vq the long-range potential.
Then (A6) becomes

GA =GB+flB't o~lA. (A16)

(k'In, t.,nA
I k) = PB*(k',r)v, (rg A(k, r)d. . (A17)

That is, the matrix element of the long-range potential
is taken between the wave function in the "short-
range" potential 8 and that in the full potential 3,
quite analogous to an exact formula in Schrodinger
theory comparing two potentials.

It should be noted that (A16) involves QBt which is
not identical with Q~. Thus the matrix element be-
tween states k and k' involves the (complex conjugate

"As pointed out by KOhler, reference 15.

This relation has been derived by KOhler" a,nd has
been used in our Secs. 2, 5, and IO. It has a, very plau-
sible form; apart from the "short-range" reaction matrix
G~ we have the second term whose matrix element is
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an energy factor given by
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of t e wa
'

of the final state in potential eg,
(A17). I~(k' r) as indicated inV1Z. ) 'IPJI y )r

representation,

k'[Gg[k)=(k'iGgzf k)

+(2)r) '

(, k")(k"[Dgf k). (A18)
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Square brackets have been used to distinguish the
integrations and energy factors which belong to each
of the G's in Fig. 2(b), while the remaining integrations
and the factors in ordinary parentheses refer to the
energy denominators between the 6's. The main dif-
ference from (81) is that now the hole-bubble ladder
is on the energy shell. This is because t),+& is not re-
stricted from below by t), so that the integrand over
t&+& does not receive any factor from integrations over
preceding t,'s; the integrand is simply exp(ibE&+, t/h)
and the lower limit is —~. This explains the second
square bracket in (84). The two energy denominators
between the three ladders are the same as before, and
are equal to each other because

SF',=0.
k=X+1

(85)

Ia b)

'x s'

FIG. 17. A time ordering of Fig. 16 permitted by the less re-
strictive condition, Eq. {83).The heavy line at t„separates the
interactions which belong to the top and bottom 6 matrices of
Fig. 2(b). Time t„ forms the upper limit for both tq and t„ i.

ladder, we obtain the single G diagram of Fig. 2(b),
with the hole-bubble interaction taken on the energy
shell.

There is a further reason for the choice of time order-
ing given by (8.3), beyond the fact that it leads to this
useful result. It turns out that (83) generates all
possible diagrams which may be considered as inser-
tions in a hole line, such that the insertion part of the
diagram is of first order in the density. This is because
there is one hole state to be summed over in each of
these insertions, viz. , the hole e, in Figs. 16 and 17,
and the number of possible holes is proportional to
kp' p. Hugenholtz' has emphasized that the density
is an appropriate expansion parameter, supplementing
the expansion in powers of G.

Suppose now that the condition t„&3„+~were relaxed
to t, &.t„.Then it would be impossible to tell how many
of the o~+X—i interactions of the left-hand side of
Fig. 17 contributed to the upper G of Fig. 2(b), a,nd
how many to the lower. To form the G's we must sum
over all possible combinations of values of P, v —X, and
~—v, but we must consider each possibility only once.
Relaxing t„&t„+~ to t„(t„would lead to a double sum-
mation over the number of interactions in the upper

For the same reason, in the first bracket in (84) the
sum over k from X+1 to v may be omitted.

When we now sum Fig. 17 over all intermediate
states that can occur in each ladder, and then sum over
diagrams having all possible numbers of e's in each

a '~=a
&g. An iteration of the hole-bubble insertion of Fig. 2(b).

The U{m) defined by a single hole bubble also identically cancels
this diagram, provided that all hole bubbles are evaluated on the
energy shell.

left-hand ladder. Relaxing t), (t„would lead to the same
difhculty. If t„&t„were permitted, the problem of
overcounting would occur in a different form. It would
become impossible to tell which side of the diagram
represented an insertion into the other side. Upon
summing over all time orders, all intermediate states,
and all numbers of interactions in each of the original
ladders, each diagram of the form shown in Fig. 17
would be counted twice. (&lomentum conservation re-
quires that f„)ft, or the diagram would vanish. )

It is clear 1'rom the derivation that the result (84)
is quite general. Any hole-bubble interaction can be
put on the energy shell no matter how complicated the
rest of the diagram in which it occurs. The arguments
of the last paragraph may be generalized to show that
a restriction similar to (83) is quite reasonable for
many higher order diagrams. Overcounting would not
necessarily result from v diagrams which violated this
restriction, since in a more complicated diagram other
features might remain which would distinguish "in-
sertion" from "reduced" parts, but these extra diagrams
should be considered as parts of still higher order 6
diagrams, in order to retain this simplicity for the hole
energies. As an illustration, we mention how iterated
hole bubbles, such as Fig. 18, may be treated. Figure 19
shows a typical v diagram contained in Fig. 18. If we
take as the analog of (83) the restriction

it is easily seen that the hole interactions are both on
the energy shell and the energy denominators between
the G's are the same as before. It is interesting to note
that time orders with 3„+~&t,, are permitted, in which
case three holes are simultaneously present in state nz.

It is clear that the result (84) is also valid in time-
independent perturbation theory, since the time in-
tegration is merely a convenient way of combining the
contributions from graphs with different orderings. We
have derived (84) purely algebraically, using a proof
by induction, but this does not appear to be instructive.

Fro. 19. A v-interaction diagram contained in Fig. 18. The
interactions are shown in the standard Goldstone order. Gen-
eralizing the time ordering according to Eq. (8.7) leads to an
on-energy-shell evaluation of the hole huhh1es.
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Fro. 20. Lowest order ordinary Goldstone diagram Lexcluding
Fig. 2(b)] contained in an on-energy-shell evaluation of Fig.
2 (b).

One thing that this shows, however, is that (83) could
be replaced by

t& &~&+i &t~+ir (a7)

which is not immediately obvious from the time inte-
gration method. This statement corresponds to inter-
changing top and bottom in diagrams like Fig. 17.

We have discussed in Sec. 4 which types of conven-
tional Goldstone diagrams are taken into account when
we calculate Fig. 2(b) on the energy shell. A fairly
general example is shown in Fig. 7. The lowest order
conventional diagram Lapart from Fig. 2(b)] is shown
in Fig. 20. Now there is a rather similar diagram, Fig.
21, which is apparently related to the particle bubble
of Fig. 2(a) in the same way as Fig. 20 is to the hole
bubble. The question therefore arises as to whether a

Fro. 21. Another fourth-order Goldstone diagram. In contrast
to Fig. 20, this contains different v-matrix elements and an addi-
tional independent hole line q. It cannot be generated from I ig.
2(a) by altering the time order.

particle-bubble interaction can also be put on the
energy shell. To answer this question, we must examine
the v-interaction ladder diagrams which are contained
in the G-matrix dia, grams. Figures 2(b) and 20 contain
the same v-matrix elements, ' they differ only in the time
orders of the v's. On the other hand, it is easily seen
that Figs. 2(a) and 21 involve diferent s-matrix ele-
ments. LFig. 2(a) contains no matrix elements leading
to state q.j There are no other Goldstone diagrams
which contain the same v-matrix elements as Fig. 2(a,)
(or Fig. 4) but which have different energy denomina-
tors. Therefore, Fig. 2 (a) must be taken at its face value
and be evaluated off the energy shell. Figure 21 is a

Fxa. 22. Simplest generalization of Fig. 2(a) which contains the
same number of independent hole )ines.

different type of diagram, and is proportional to a
higher power of the density since it contains an addi-
tional hole line, q. The only generalizations of Fig. 2(a)
that are of the same order in the density are of the
form shown in Fig. 22. This is a "true" higher order
(in G) diagram, but the possibility remains of con-
sidering this approximately equivalent to an insertion,
following Rajaraman's argument. The crucial point
of this discussion is that the hole insertions, such as
Figs. 2(b), 16, 18, and 19, naturally conta, in "kink.s"
in the Fermion line, m, so that the time order may be
altered without changing the v-matrix elements. There
are no analogous "kinks" in Figs. 2(a) or 4.


