
J. B. KETTERSON

reciprocal mass tensors reveals that the Fermi surface is
disk shaped.

CONCLUSIONS

An ellipsoidal 6t has been made to the Fermi surface
of the new carriers. The fit is in all likelihood a distortion
of the true surface. Analysis beyond the data given in
Table I should await high-field dHvA measurements.
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The symmetry properties of a lattice are used to relate the second and third order force constants to the
elastic constants of the lattice and to ascertain the number of independent force constants. Explicit relations
are obtained for a face-centered cubic lattice with nearest neighbor interaction between atoms, and for a
body-centered cubic lattice with nearest and next-nearest neighbor interactions. Corresponding relations
are obtained for central forces in these two lattices.

I. INTRODUCTION

HE renewal of interest in the anharmonic
properties of solids during the last few years

draws attention to the problem of determining the
force constants which appear in the theory of lattice
dynamics. For the case of central forces, the inter-
atomic potential can be characterized by two parame-
ters, the well depth and the equilibrium interatomic
separation. These are determined by measurement of
the sublimation energy of the crystal and of its lattice
spacing, respectively. The force constants are then
obtained directly by differentiation of the interatomic
potential with respect to the atomic separation. How-

ever, it has been shown' that a potential, such as the
5&lie—Lennard-Jones (m, 6) potential, does not give very
good agreement with the experimental data available
for the inert gas solids for any of the values m= 10, 11,
12, 13, 14. The parameter m is a measure of the steep-
ness of the repulsive part of the potential well. It has
been suggested' that a third term might reasonably be
added to the Mie—Lennard-Jones potential. If this
term represents the dipole-quadrupole contribution to
the van der Waals energy, the interatomic potential
will have the form

$(r)=Ar +Br s+Cr '

where r is the interatomic separation. Since there are
now three parameters apart from m in the expression
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for P(r), it is necessary to have experimental data in
addition to that mentioned above in order to determine
the third parameter. Though difficult to obtain in the
case of the inert gas solids, the elastic constants are an
obvious choice for this purpose. Therefore, it seems
worthwhile to set forth here relations between the
elastic constants and the force constants. Furthermore,
in obtaining these relations we ascertain the number of
independent force constants which arise in the lattice
model under consideration. ' This information is im-
portant when one is considering the possibility of
extending a nearest neighbor, central force theory to
noncentral forces, and further neighbors. It must be
emphasized that the force constants are derivatives of
the potential energy evaluated at the minimum of the-

potential energy, and that in the relations which we

obtain, the elastic constants are also appropriate to
the configuration which corresponds to the minimum
of the potential energy. Since dynamic effects are
excluded, the relations which we obtain correspond to
elastic constants at the absolute zero of temperature in
the approximation for which there is no zero-point
motion. In order to determine these elastic constants
from the experimental data, the zero-point energy of
the lattice must be taken into account and the temper-
ature dependence of the elastic constants must be
determined. This problem will not be considered here.

2 The independent force constants for fcc and bcc lattices with
nearest neighbor interaction have also been obtained by G.
Leibfried and W. Ludwig in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press inc. , New York, 1961), Vol.
12.
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In Sec. II we summarize the work of Leibfried and
Ludwig' and express the elastic constants in terms of
combinations of the force constants which have the
appropriate symmetry properties. In Sec. III we con-
sider the case of a face-centered cubic lattice with
nearest neighbor interaction and in Sec. IV we obtain
the corresponding relations for the body-centered cubic
lattice with nearest and next-nearest neighbor inter-
action between atoms. The special case of central
forces in these two lattices is set forth in Sec. V.
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II. GENERAL SYMMETRY CONSIDERATIONS

In this section we summarize the work of Leibfried
and Ludwig' in which the restrictions imposed on the
force constants by the requirements of symmetry are
used to express the elastic constants in terms of appro-
priate combinations of force constants.

The energy density due to a homogeneous deforma-
tion v;k is given by

where C;;... ""=8"C/r)r, r)r; ..., the pth-order force
constant is evaluated at the mean positions, X, , of the
lattice points, V is the volume of the crystal and
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We can define quantities S;k,;&,... according to
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where V;k is defined by

2Vik r&ik+ ski+ Q&'=1 g&jig&jk&

and ~,k is defined by

rm X m+p. 3r& X m

r, is the ith coordinate of the lattice point m and Xp'
is its mean position. Invariance of the energy density
under rotation of the crystal is ensured since (V;k) is
zero for pure rotations. 4 The C;k, ;~,... are the elastic
constants and are symmetric with respect to interchange
of pairs of indices ik, jl, ~ . and with respect to inter-
change of the members of a pair i, k.

In terms of the g&;a, Eq. (1) becomes

gg=Q C;ag&;a+—Q $C'a&g+Ckg8';7g&;, ar&;g

21 &k&i

so that Eq. (3) becomes

gg= g Siag&ia+ —Q Sia&'ggiiagirg,
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1
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By comparing Eqs. (2) and (4), we can express the C;a,...
in terms of the 8;k,.... However, for a finite lattice the
contribution to S;k,... from points in the surface is of
the same order as that from the interior points, so
further constants C;;,... are introduced for which the
surface effects are negligible. These constants are
defined by

2C;&,ag=S a, g+S,g,
.
k

1=—g C;&m (Xkm —Xk )(Xg —Xg ), (5a)
V mn

2Cij, rs, kg= Sikjg, rs+Sig. &'k. rs

1=—g C" "p(X p —X )(Xk —Xg, )
U mny

X(Xg —Xg ). (5b)
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For an ideal lattice, translational symmetry requires
Xr&gals'gg&rs+ ' ' ' (2) that

When we expand the potential energy of the lattice
4(r', r', r, ) in terms of the derivatives of the
potential, we obtain

' G. Leibfried and W. Ludwig, Z. Physik 160, 80 (1960).
G. Leibfried, in Hpndbuch der I'hysik, edited by S. Fliigge

(Springer-Verlag, Berlin and Gottingen, Heidelberg, 1955), Vol.
VII/I, p. 238.

mn. ~ ~ +.. m+h n+h ~ ~C"Qs ~ ~ w 2,g ~ ~ ~

(6a)

where h is a lattice vector, in which case the C;;,...
depend on the relative separation of the lattice points.
This means that the sums in Eqs. (5) can be carried
out for an ideal lattice neglecting the contribution from
points in the surface. Then Eqs. (5) become

2C s, ag= —(1/V, ) Q C@'"Xa"Xg',
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2C,, „, i
———(1/U, ) P, C;;,"X, X Xk, (6b) TABLE II. Third-order force constants for fcc lattice.

where U, (=U/Ã) is the volume per particle of the
lattice.

Using Eqs. (2), (4), and (5) and the symmetry
properties of the elastic constants we obtain the
following relations:

C'k, si= (';, ,ki+('k;„i—(';k, , i —Cki&;;
—{,8 k;+(;i~, a, (7)
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of the third-order force constants, one must use the
symmetry properties of the 4;,... ".It is clear from
their definition in Eq. (3) that the C;;... "" possess
the following properties:

III. RELATIONS FOR THE FACE-CENTERED
CUBIC LATTICE VfITH NEAREST

NEIGHBOR INTERACTION

mn- ~ —$., nm ~
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First of all we need to 'know the independent force
constants for the lattice model under consideration,
namely, for a face-centered cubic lattice with nearest
neighbor interaction. '

The second-order force constants are of two types,
C 'j and 4 'j, where n is a nearest neighbor lattice point
to the origin Q. When the independent components of
4 ' have been obtained for one value of n, all other C

are obtained by the appropriate symmetry operations
which take n over all the nearest neighbor lattice points
in a fcc lattice. Since the vector 0 is invariant with
respect to interchange of &x, &y and ~s, the in-
dependent components of C,," are easily obtained.
The vector n=1= (1,1,0) is invariant with respect to
interchange of x and y and with respect to reAection in
the x-y plane. These considerations yield the independ-
ent components of C;,'".The results are given in Table I.
The nearest neighbor vectors are expressed in units of
imp/2, where ap is the lattice parameter.

The restriction to nearest neighbors means that there
are only three types of third-order force constant to
cons&der,

ooo 4, bloop and C . .A;o p

where n and p are nearest neighbors to the origin and
to each other. The points Q, n, p form an equilateral
triangle which is typical of the close-packed structure
therefore all other C,jl,' p are obtained by applying the
appropriate symmetry operations to the original tri-
angle. In order to obtain the independent components

@,,„pn p —{)

and the requirement that the expression

Q p C';;k"»"+C',aP "&,.+@;k"&;.

(10}

be symmetric in k, r, which is the condition for rota-
tional invariance of the crystal as a whole. 3 From Eq.
(10) we obtain

and
Pp C'p„"P= pp —yp+2(Pp —yp) =0)

Qp 4'212 p —~2 p2+2(pp t 3)

(12)

(13)

The symmetry requirement Eq. (11)yields the following
relations:

for i=k=j= 1, r=2:

[—ap+pp —2(~p+yp) jXp——2p„

for i =k= 1, j=r=3:

where v is the order of the force constant. Also, they
are invariant under translation by a lattice vector.
These properties and the considerations which applied
to the second-order force constants yield the independ-
ent components of C;,jA,

" and C, jA, "p. The results are
given in Table II. It is immediately obvious from
F,q. (9b) that C,"a"' is zero.

Ke can reduce the number of independent constants
still further by use of the relation which expresses
translational invariance of the crystal as a whole, viz. ,

TABLE I. Second-order force constants for fcc lattice.

@. .On

Lp,+2Pp+2yp+2| pjXp=skx —Pi,

for i =1, 0=2, j=r=3:
(15)
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t
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Thus there are seven independent third-order force
constants.
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Clll C 11,11,11 3Cllp

C112 ~11,22, 11—C12)

C128 2C12,88, 12 C11,88, 22+ C12)

C144= 2+12,23, 13 ~»223, 23 C12)

C166 C11,12,12 C12 2C66

C456 ~33,12,12 C66)

(17)

Using the Voigt notation, the elastic constants for a
lattice with cubic symmetry are c»l, c»2, c»3 c]44 c166,
and c456 which we can express according to Eqs. (7)
and (8) as follows:

TABLE III. Second-order force constants for bcc lattice.

(2,0,0}

Cs ..On

n5 ps p5
p5 ~5 p5
P8 P5 a5
n7 0 0
0 p, 0
0 0 p7

IV. RELATIONS FOR THE BODY-CENTERED CUBIC
LATTICE VfITH NEAREST AND NEXT-NEAREST

NEIGHBOR INTERACTIONS

Cll C11,11 Cl

C12 2C12, 12 Cll, 22+Cl|

C44= 022, 88 Cl.

From Eq. (6a) and Table I we find that

(18)

Since the body-centered cubic lattice is not e close-
packed structure, we shall take into account next-
nearest as well as nearest neighbor interactions between
atoms.

There are two types of second-order force constant
to consider,

C;;" and C;;",

V Cll, ll 4P1X0

V$11,22 2(nl+pl)X0 y

Vs~12, 12 2+lxp ~

(19)

—VS'll, ii, ii = —&(ns —2ns)Xo',

VsC11,22, 11 2(p2 4ps+273)Xp,

VsC12, 38,12 4(68+88)XO )

Vs~11,22, 88 2(4ps —2fs 72)Xo &

Vgll, 12,12 2(n2+2n8)X0 )

VE88, 12,12 2(rs 2f 3)X0 i

—Vz C12, 28, 18= —2 (62—273)Xp ~

(2o)

Thus, we can express the elastic constants in terms of
the nearest neighbor force constants using Eqs. (17)
to (20), and we obtain

4(ns 2ns)Xo 12plXo —3V,cl,

The C,;,„,5& are obtained from Eq. (6b) and Table II
and are as follows:

where I= (1,1,1) and 5= (2,0,0). The other C,l " are
obtained by the appropriate symmetry operations. The
invariance of 1 with respect to interchange of x, y, and
s yields the independent components of C,'j The in-
dependent components of C,;"are obtained by requiring
invariance with respect to interchange of &y and ~s.
These results are shown in Table III.

Similar considerations together with the symmetry
properties of the C,,... ""' given in Eq. (9) yield the
independent components of C,j&"' and C jA, . The only
other type of third-order force constant is C;jj, ".This
is invariant with respect to interchange of y and s.
Further restrictions on C,ji,'" are obtained by the
requirement of translational symmetry, e.g.,

@,,„015—@,.„—5 1—5 0 —D $@„.,olsj

where D, is the operator which changes x to —x.
These results are shown in Table IV.

The number of independent constants is further
reduced by use of the conditions given in Eqs. (10) and
(11).Thus, Eq. (10) gives

Qo C 121 74 p4 n8+p8 78 )8+2fs 01 (22)—V.elis = —2 (Ps—4P8+2ys) Xo'
—2(2y, —nl —pl)Xo'+ Vscl, (23)g 8 C 122 P6 76+478

TABLE IV. Third-order force constants for bcc lattice.
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0
0
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'g8

p4
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0
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0 P8
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p4 84 p4

0 0
0 p8 0
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0 us ns
P8 P8 t) 8

P8 ~8 +8

(0,0,0) (1,1,1.)
V-C166 —2 (ns+ 2ns)Xo

—2 (2yi+ni+Pi) Xo' Vcl., —
(0,0,0) (2,0,0)

Vac456 2(vs 2f 8)X0 2(nl+pl)X0 Vscl As—Bs
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(&,&, S} (2,0,0)
The elastic constant cl is zero for vanishing external

stresses,
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The symmetry requirement given in Eq. (11) yields the
following relations:

for n=1, i=j =4= 1, r=2:

V. CENTRAL FORCES

For the case of central force interaction between
atoms the number of independent force constants is
considerably reduced. Since

P4 Q4 3QS 78+268+218= 2PSXo

for n= 1, i =k=1, j=2, y=3:

(24)
C =

2 2- e(lr- —r I),

P4+~4 ns 78 2~8+'VS+2VS=PSXO ',' (23)

for n=5, i =r= 1, j=k=2:

~'4(lr —r I)
C;;~~~I'= —=0 If m/n/p.

BX Bx BXg1'

(30)

—276—4ns+ 478 ——(Q2—P2)Xp '. (26) Thus, in the fcc lattice we have

QS=PS=VS=&8= os=vs=t s=oThus, there are nine independent third-order force
constants. Using Eq. (6a), and Table III we obtain the

and in the bcc lattice,
following expressions for the C,, A, ~.

(31)

Vg+11,11 4(ns+Q7)XO &

—V.&11,22= 4(ns+Pv)Xo',

V8 12,12 4P5X0'

Q8 P8 78 ~8 58 'gs f8 (32)

The force constants which remain are of the form

—rA (yi —~ (yi 3-—8
The elastic constants c,, are then obtained from Eq. *'4" ' g' " ~,~ '"' ~~ ' )+,~ (")

~

(18). We find that

—V.c» =4 (ns+nv)XO'+ V.ci,
—V,ci2 ——4 (2P5—ns —P2)Xps —V,ci,

Vgc66 4(ns+P1)X0 +Vgcl.

(27)

+ (X'h&;5+Xgh&5,+Xsh&;;)

/1 1
&I -4 "(r)—4'(r) ~, (33)

Ers rS i'
The third order C,; „,,» are obtained from Eq. (6b),
and Table IV, and are given by

hz~11, 11,11

hz~11, 22, 11

hz~12, 33,12

Vgil, ss, 22

hz~11, 12,12

Vg ss, 12, 12

—4(Q4+2QS+268)XO,

4(P4+n—s 4P8+37—8+'98)x0',

—4(54+488)XOS,
(28)—4(P4+ns+378+qs —4f 8)XO,

—4(n4 —268)Xps,

—4(P4+ns —78—3gs)XO'

Then, using Eqs. (17), (27), and (28), the following
relations are obtained for the elastic constants G;jI,

—Vgc»1 ———4 (n4+ 2QS+ 268)Xo'
—12 (ns+Q2) Xp' —3V,ci,

—v,c»2= 4(P4+ns 4P—s+378+vs)—xo'
—4 (2PS—ns —P2) xps+ v.ci,

and

1 1 q 1
4; "=-X;"X;" -~"(r)—~'(r)

l

—S'(r)&' (34)
y2 rs ) r

where r is the length of the vector h and gag'(r), etc. are
derivatives of p(r) with respect to r

Using Eq. (31), the elastic constants for the face-
centered cubic lattice simplify to the following
expressions:

—V,ciii —— 4nsXp'—12P1X—p' —3V,ci,
—V.ciis= —2PSXo' —2 (271—ni —Pi)Xo'+ Vgci&

—Vgciss =272Xo'+ 2 (271 n i Pi)—Xp' —V,ci, —
Vgc144= 272XO 2(271 ni Pl)XO +Vgcii

Vgc166 2Q2X0 2(2V1+ni+P1)X0 Vgcii

—vgc456 = —272xp —2 (ni+Pi)xo' —vgci

vgciss —— 4(254+8—58 P4 Q8 378 98+408)x'0

+4 (2PS—ns —P2)Xp' —V,ci,

V C144 4(P4+ns+ 378+218 4f8)X0
—4(2PS—ns —P2)X02+ V,ci,

—Vgciss = —4(Q4 268)X0
—4(2P5+ns+Pv) Xp' —V.ci,

V C456 4(P4+Q8 78 3418)XO

4(no+Pi)Xo'—V*ci—

(29)

Also, from Eq. (16) we have

72XO Pl j

therefore, we find that

G123 G456 = G144.

Using Eqs. (33) and (34), the independent force
constants are expressed in terms of the derivatives of
p(r) evaluated at r= up/v2 as follows:
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1
7p= 0 "(r)—-4 '(r),

F2 r

1=—4'(r)
r

1( 1—
j
e"=j~)+-e'j~)),

r

1p 1
~.=—

j
s"()—s'())

2k r

Then substituting these expressions into Eqs. (35)
and putting —c)=p, the external pressure, we find
that the elastic constants are related to the force
constants of a fcc lattice with nearest neighbor central
force interaction between atoms by

p4—

vo=Po,

(P4 n—4)Xo= 2P p,

(84—P4)Xp=pp,
2—y pXo n——7 P—7

Then we have

&128 ~456 ~166'

C112 C144.

Using Eqs. (33) and (34) we obtain

— 1 2 1~"'()+ ~"()—~'()
i

3&3 rv3 r )
P4= t (1/3~3)4'"(r)3 = „

= ——:[~"( )+(2/ )~'( )j.=.„
P =-lL~"()-(1/)~'()3.=.„
e6= r

P = 5(1/ )~"( )—(1/")~'( )j.=...
n7= —Le"(r)j =,
P = —L(1/r)e'(r) j.='.,

(39)

(40)

(41)

.=—@"'()—~"( )—e'( ) 3p, —
V2 r r'

(37)

where r1 is the nearest neighbor separation and r2 is
the next-nearest neighbor separation. Finally, we ex-
press the elastic constants of the body-centered cubic
lattice in terms of derivatives of the central potential
as follows:

1 3 5s"'()—e"()—e'() -p,2' r r'
e'"(ri) — 4 "(r~)—

3v3 v3rg
4 (r)

rP&3

campo= (4/r ))2)@ (r) —p.

In the body-centered cubic lattice, use of Eqs. (32) in
Eqs. (29) yields

—V,c)7) ———4(n4+2np)Xp' —12(np+n7)Xo' —3V,cg,

—V,cup ———4P4Xp' —4(2P p
—np —P7)Xpo+ V,c),

—V,cgpp
———4 (254—P4)Xp'

+4(2Pp np P7)—Xp' —V,cg, —(38)
—V,c) 44 —— 4P4Xp' 4(2P p

—np P7)X—p'+ V,c)—, —
—V,c)pp

———4n4Xp' —4(2P p+np+P7)Xp' —V,cg,

—V c4po= 4P4Xp 4(np+P7)XO —V cl,

and Eqs. (22)—(26) reduce to the following:

6
+2~"'(")—~"(r )-»,

r2

~"'( )— ~"( )
KS %3r,

2
+ 4'(r~)+~'(rp)+P

rPV3 r22

4'"(ri) — 4 "(r~)
3%3 %3r,

2 2
4'(ri) —~'(rp) —P.

r1'v3 r2'

(42)


