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Temperature Dependence of the Dielectric Constant of Paraelectric Materials*
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An expression is obtained for the dielectric constant of a displacive ferroelectric in its unpolarized phase.
This has been derived with the use of a Hamiltonian treated by Szigeti in connection with the temperature-
dependent dielectric constant of the alkali halides. In the present work, however, it is assumed that the "soft
ferroelectric mode is unstable in the harmonic approximation, i.e., has an imaginary frequency associated
with it. The linear response can be obtained exactly for this Hamiltonian. It is shown that the lowest order
anharmonic interaction that can stabilize this mode is of fourth order. In the classical limit, the potential
energy terms and the term linear in the electronic moment lead to a Curie-%'eiss behavior of the dielectric
constant. The most signi6cant effect arising from the presence of terms of higher order than linear in the
electric moment is to make the Curie constant temperature dependent. It is suggested that an observed
temperature-independent contribution to the dielectric constant cannot be unambiguously attributed to
the electronic polarization or temperature-independent infrared active modes of the system.

INTRODUCTION systematically derive the thermal equilibrium properties
of a ferroelectric material in its unpolarized phase.

To illustrate this procedure, we will derive an ex-
pression for the temperature-dependent dielectric con-
stant of a paraelectric material. 6 A Hamiltonian such as
Szigeti treated in discussing the temperature depend-
ence of the dielectric constant of the alkali halides will
be considered. Therefore, not only will third- and fourth-
order anharmonic terms in the potential energy ex-
pansion be taken into account, but also electron cloud
deformation through the presence of a second- and
third-order electronic moment. The long-wavelength
transverse optical modes which become unstable causing
a transition to the ferroelectric state are, however, as-
signed imaginary frequencies. All such modes will be
collectively labelled with zero wave vector and treated
as a single mode in the fo1.lowing analysis, Thus, k=0
will mean that we consider a mode with wavelength
large compared with the lattice parameter but small
compared with the sample size. This procedure is pos-
sible since the total number of such wavelengths is
small compared with the total number of wavelengths
of the optical branch. ' Also, since the phase transition of
BaTi03 is relatively free of fluctuation e6ects, it appears
that at the transition very few of the lattice modes
become unstable. ' Indeed, as Anderson has pointed out,
the very basis of Devonshire's success in using the same
free energy function for both paraelectric and ferroelec-
tric phases of BaTi03 is due to the small number of
unstable modes at the transition.

The Hamiltonian that is treated in the following
section includes all lowest order effects of anharmonic
interactions and electron deformations on the dielectric
constant. It will be shown that the exact linear response

A SOVE the ferroelectric transition, the diel.ectric
constant of SaTi03 and related isomorphs is large

and exhibits a Curie-gneiss type temperature depend-
ence. It has been suggested that this behavior results
from a near cancellation of the short-range restoring
forces and the long-range driving forces on the ions. '
Anharmonic terms in the lattice potential energy are
heM responsible for the temperature dependence of the
dielectric constant. Since the Curie temperature is posi-
tive, the anharmonic interactions stabilize the system
above its transition temperature. Cochran' has sug-
gested that the Curie-Weiss behavior of the dielectric
constant results from the temperature dependence of a
long-wavelength transverse optical mode of the lattice.
The suggested temperature dependence of this mode has
been observed in SrTi03 by Barker and Tinkham' from
infrared reQectivity measurements and more recently by
Cowley4 from the inelastic scattering of slow neutrons.
At the transition temperature the frequency of this
mode should go to zero and the lattice displacements as-
sociated with this mode become unstable. A transition
is made to the ferroelectric state. If anharmonic inter-
actions do stabilize the system above the transition
temperature, the harmonic part of the frequency as-
sociated with this mode is an imaginary quantity. One
cannot systematically consider the dFects of anharmonic
interactions on the equilibrium properties of a paraelec-
tric material by expanding the free energy in powers of
the anharmonic coupling coefficients about the harmonic
state. Such an expansion would lead to divergences. To
avoid this difhculty, all quantities should be expanded
about their thermal averages. ' In this manner, one can
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can be obtained for this Hamiltonian. The fourth-order
anharmonic interaction with a positive coupling coeS.-
cient stabilizes the system at temperatures above the
transition temperature. Third-order anharmonic inter-
actions of either sign raise the instability temperature.
The largest e6ect due to the presence of the electronic
deformation terms is the contribution to an additive
constant term F, appearing in the dielectric constant at
temperatures high compared with the Curie temperature.

p —1=C/(T —Te)+F.
This indicates that one cannot unambiguously assign
the origin of such a term to the electronic polarization or
to the other "hard" optical modes of the lattice.

TEMPERATURE-DEPENDENT DIELECTMC
CONSTANT

The Hamiltonian of the system is

II Q Ikpk—(a "a +-')+p k kppk'(ak'*ak'+ ')+'-[(pp')' (pip—' qp')'] —nEV"'qp'

qp'
— h (q ')' qo"

+g F(k)+Ed(k) (ak'+a k'*)(a k'+ak'*)+p '(k)+E 8'(k)
gX - (PP k Pik )

k —(qp')'- qp'
X (a '+a k'*)(a k"+ak'*)+Q G (k)+E, 8'(k)

pik' k iV QiV
aI a I'* a I' a~'*

=Hi+Hp+ p[(pp')' (pip'qp')—'] aEX' q—p'+Hp+H4+Hp. (1)

The first two terms, Hi and Hp, in Eq. (1) are the
harmonic contributions to the energy from all modes
other than those that become unstable in the harmonic
approximation. The ~I,' and ~I,' are the frequencies of
the acoustical and optical modes having wave vector k,
respectively. The a~* and aI, are just the usual creation—
destruction operators for a mode of wave vector k which
satisfy the following commutation relations:

[aktak'] [ak )ak' ] 0 j [uk)uk' ] bkk'

The third term is the contribution to the energy from
the mode that becomes unstable at the transition. qp'

and pp' are the normal mode coordinate and conjugate
momentum, respectively, of this long-wavelength trans-
verse mode. The negative of (&pp')' is the square of the
imaginary harmonic frequency of this mode. The only
difference between the Hamiltonian of Eq. (1) and the
one treated by Szigetiv is due to the presence of this
term. This term will allow a lattice instability to develop
at a positive temperature. The fourth term in Eq. (1) is
due to the presence of a linear electric moment. n, A (k),
and B(k) describe the linear, second-order, and third-
order moment, respectively. The total electric moment
M, is written

iM =alV'"qp' —Q A(k) (ak +a k *)(a k'+ak'*)
(~ o~ p)i/p

qp' k qp' b
8'(k) (a '+a k'*)(a k'+ak") 2—& (k) (ak'+a k*)(a k-+ak'*-)

gV pp
o

This term then contributes —EM to the energy. E is the
macroscopic 6eld and E is the number of ion pairs. The
calculation is performed for two atoms per unit cell and
the transverse optical mode of this model is chosen as
the soft temperature-dependent ferroelectric mode. This
enables us to calculate the temperature dependence of
the dielectric constant from the soft mode. Contribu-
tions to the dielectric constant arising from other optical
vibrations appear just as additive constants in the hnal
result. The 6fth term in the Hamiltonian H3, arises
from the presence of a second-order moment and third-
order potential. F(k) describes the third-order anhar-
monic coupling. Since the creation-destruction operators
appear in the same way for the moment and potential
terms, they have been grouped together accordingly.
The last two terms in the Hamiltonian H4 and H~, are
contributions from a third-order moment and fourth-
order potential. G'(k) and G'(k) describe the fourth-

order anharmonic couplings for optical modes and
acoustic modes, respectively. Moment and potential
terms have again been grouped for convenience. This
Hamiltonian has been derived by the assumption of a
cubic structure with a center of symmetry for the
material under consideration. The ideal perovskite
structure fulfills these requirements.

The Hamiltonian [Eq. (1)] is transformed by a
unitary transformation

p &He'&= H-+ p[H, S] ,'[[H,S],—S]—+ . , (2)

with transformation operator S given by

gp'
s=p p~k'g(k)(ak +a k *)(a k' ak'*)—

k

gp

p ~k g(k)(ak' —a k")(a k'+ak'*). (3)
k
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This form has been chosen for 5 so that H3 can be
eliminated from the transformed Hamiltonian by
suitably choosing the g(k).

i[(H,+H2), 5]+H,=o.
Therefore,

since

[(Hi+ H2), 5]
iqo'h

g g(k)ai(al +a i'*)(a i'+ai'*), (6)
QS~

and where
g&V- qo'

— 1 ~~= [(~~')' («—')'].
g(k)= F(k)+EA(k), (S)

q
r) (~„0id,.~) «&g,.

'
Other commutation relations of use s.re:

[H,,S]=2i P F(k)+EA(k)
a

(aa'+a k' )(a—i'+aa—' )

go
2i—g F(k)+EA(k) (aa +a a")(a -a +aa *), (7)

(qo') qo' qo
[H4,5]= 4i g— G'(k)+E 8'(k) hg(k)(a i,'+ay")(ak +a i, *),

Ã giV QV
—

( o) i
q

0
q

0

[H&,5]=4i Q G (k)+E 8 (k) kg(k)(ai, +a ~ *)(a k"+ai,'*)-,
gX

[[(H,+H, ), 5], 5]= —2 Q F(k)+EA (k) (a„'+a p' )(a „'+ag'*)
+a ~k

~
0

+2 g F(k)+EA(k) (a +a '*)(a '+a *). (&0)
a,gQ &A: ~I

The following relations have been used to write the preceding results in the form shown:

G'(—k) =G'(k) 8'(—k) = 8'(k)
G (—k)=G (k) 8 ( k)=8 (k). —

With the use of these commutation relations, the transformed Hamiltonian II~ can be written

Hr=Z ~i (aa' ai'+s)+2 &~i'(aa'*a@'+z)+a[(po')' —(~0'qo') ] &E'V' 'qu'+2 '(k)+E 8'(k)

(qo')' qo'
(aa'+a-a'*) (a-a'+ax'*)+Z '(k)+E 8 (k) (a~'+a ~'*)(a ~ +a~'")

gcV Ng

go'
F(k)+EA (k)

a .Q.:V
q

0

(ai,'+a i")(a g'+a '*)+Q F(k)+EA(k)
4&a'&a

-( a)R

(al, '+a i~~)(a ~'+ai'~)+4 P G'(k)+E 8'(k) F(k)+PA(k)
X gX gX

(qo')' q
0 q, o

X (a x'+aI, '*)(ai.'+a i, '*) 4Q G'(k)+E —8'(k) F(k)+EA(k)
(~a~x ) Di I V QV QX

X (a a'+ax'*)(aa +a ~'*)—-'[[H" 5],5]+, (&&)
(~a &a ) +a

where H" is H (Hi+H2). Terms linear in —the third-order anharmonic coupling coefficient F(k) and second-order
moment coefficient A (k) have been eliminated from the Hamiltonian. Terms bilinear in both coefficients do, how-
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ever, appear. The preceding transformation has been performed since only the terms diagonal in the creation-
destruction operator that we have exhibited explicitly in the Hamiltonian [Eq. (11)j will contribute to the linear

response of the system. This will be shown in what follows. Let us group the diagonal terms and label them H~.
Since the state of thermal equilibrium will be considered, one can also set

(12)
Therefore,

4 fs 4
HD=Z kola'(aa *@a'+o)+2kola'(isa"*+a'+o)+ i (po—")'+ 2 &"(k)(oa" oa'+o)+ 2 '(k)

k k 2l (dk k

(«"*«"+-o) + 2—
,
F (k) I'

&k ~kk Mk Ak

4
X (oa'*oa'+ o) ——2 I

F (k) I' (ua *oa +-,') —(~o')' (q ')'

2I.-'qo' 2k, go.Eiy ~ &„—+ -p f3 (k) (e,-"*., +l)+ 2 & (k) (o' *o +-')
&a

4Eqo'--Q F(k)A( —k)
4J go

(~ *o''+ l)+ 2 F (k) ~ (—k)
Q.V a oia'&a

(oa'*isa +o)

The partition function of the system is

(«"."+-')+»' Z l.4 (k) I'
k +k ~k

(« *oa +&) (13)

Z=p. (nle '""ln,)-=p.{nle » —»-'ln); p=1/keT.
H' contains all terms nondiagonal in the creation-destruction operator and diagonal terms originating from
[[H",5],5j and higher order commutators.

Expand the partition sum in powers of H'

z=g{nle-»oIn}+P P (—1)-

dX„(nl cia' ei~DH'e&"a ""~~H' e ""'~~In)=z'+z'. (l5)

It will be shown that in the limit of in6nite normalization
volume, i.e, V —+ 00, Z' will not contribute to the linear
response. The free energy F can be written

F= —(1/P) lnZ,

and, hence, the polarization is given by

P= BF/BE= (1/PZ) (8—Z/BE).

To obtain the linear response it is therefore only neces-
sary to examine, at most, terms quadratic in the
electric 6eld.

Let us consider

zo p„(nle eanI„)-
The trace is evaluated in a representation for which the
ak*ak are diagonal. One can then write

zo —p {n„le P n(~i oou)uaI &&„)

with HD(na, qo") given by Eq. (13), hola ever with
ak *uk' and uk'*uk' replaced by nk and nk', respectively.

nk and nk' are just the phonon occupation numbers for
the kth acoustic and optical mode, respectively. Note
that one can consider the coeKcient in front of (qo')' as
the square of an eGective frequency 0 which is de-
pendent upon the occupation of all nonzero wave vector
phonon states.

4 k 4
0'(na) =—P G"(k)(na'+-', )+ PG (k—)

lV k OPk V k Glk

X (na'+-', )—2 IF(k) I' (na'+o)

4
+—2 IF(k) I' (na'+o) —(~o')' (2o)

cV k COk Ak

It v ill be shown that nk and nk' can be rigorously re-
placed by average values (na }and (na"} to be defined.
If 0'-'((na)) is positive at all temperatures, the material
will not make a transition to a ferroelectric state at any
temperature. If this quantity changes sign at a temper-
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ature for which the phonon occupation numbers can be
replaced by their classical values, then

II'- (&—&c), (21)

and above the transition the dielectric constant should
follow a Curie-gneiss law. This is observed for such ma-
terials as BaTi03, PbTi03, and KNb03. If the square
of this frequency changes sign at a temperature for
which the phonon occupation numbers deviate signi6-

cantly from the classical values, then deviations from a
Curie-gneiss behavior of the dielectric constant will be
observed before the material goes through a phase
transformation. "This is apparently observed in KTa03."

Since we are interested in the linear response, the
partition function is expanded to terms in E'. Terms
linear in E are dropped since they will vanish when the
average over the qo' coordinate is performed.

no exp{—P g k(do (no'+o) PZ—ko)o'(no'+o) 2P(Po'+f1'(n. )qo"3)
re, 'AIj;

2 2
X I+oP'E'qo" —-&"'+ 2 &'(k) (n '+ ')+ -Z &'(k) ( n'o+ ')-

QX o o)o' QX ooo'

Q F(k)A( —k) (n„'+ ', )+ -. P F(k)A (—k)
gQ o (oo'Ao QS o ~J'~k

(no +o)

+2()pep jA(2)~ (n'+ —')—2PO.

ex

j�A�(2)~
(n '+-', ) n ). (22)

Jc a ~a Is ~I ~I

(23)(n )—p n &
—jjkeeO(ee)2+1)/p & P& a( )e—pe+In)

In the limit of in6nite normalization volume, i.e., 3 —+ ~, the result of performing the sums over the n~ is to just
replace the no by their thermal average (no) in all terms except the 6rst two appearing in the exponential. (n&) is
given by

This statement can be proved as follows. Expand all. terms in the partition sum about the thermal average (no),
except the 6rst two appearing in the exponential. The 6rst term in the expansion is just Eq. (22), with all the no
replaced by (no) except the 6rst no and n&' in the exponential, i.e.,

(Z')= & (noI expI:—P &o k o'(no+oi) —P Zo k o'(no'+- ))Rio((»'))(»') go') eI
n')

np, nk

R is easily de6ned by comparing Eq. (24) with (22). It can be seen that all terms quadratic in the applied field are
proportional to the number of ion pairs in the normalization volume. In view of Eq. (17) the polarization is, there-
fore, proportional to the normalization volume as expected. "

The next term in the expansion is

BR(no,no",qo')
no expL —p p oooo (noo+ ,') pp -fu—ao'(no'+ ,')jQ-

np, nk, k Js'
(n, —(n, )) n,).

(ek P)

(25)

All such terms vanish identically with the use of Eq. (23). The only nonvanishing term in next order is

1 O'R(n„",no",qo')
n, eep( () X pn '(n +-')——

A Ep(n, +l)]n2 — (n, —(n, ))' n,). (26)
fig), tl Q ls k Bgjsp (nk 2)

Contributions from this term that are quadratic in the applied field vary as E' and are therefore neglected. Contri-
butions to the terms independent of the applied 6eld vanish as E ' when S—+ ~. In a similar fashion, it can be seen
that all higher order terms in such an expansion also vanish in the limit of infinite normalization volume. Therefore,
fluctuations about the thermal values (no) do not contribute to the linear response.

Similarly, one can show that contributions to the linear response from P
I Eq. (14)j also vanish in the limit of

in6nite normalization volume. For that part of B which is nondiagonal in the creation-destruction operators, there
are no linear terms of the form

' J. H. Barrett, Phys. Rev. 86, 118 (1952)."J.K. Hulm, B.T. Matthias, and E, A. Long, Phys. Rev. 79, 885 (1950).""Polarization" as de5ned here is the dipole moment per normalization voluIne.
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dy, (n
~

e&» e»—&H'e &»—&
~
n).

1lf 0

The 6rst nonvanishing contribution will come from a term of second order in H, namely,

dXo (nIe'"' @nDH'e'"o ""~DH'e "'~~I'") (28)

Contributions from this term that are quadratic in the applied held vary as X' and are, therefore, neglected.
Contributions to terms independent of the applied vanish as &7 ' as .V ~ ~. In a similar fashion, it can be seen
that all higher order terms in such an expansion do not contribute to the linear response. An examination of the
terms of II' that are diagonal in the creation-destruction operators will also show that they cannot contribute to the
linear response of the system, so we can write [using Eqs. (17) and (24)j

a(Zo)8=-
P(zo) 8E

(29)

Equation (29) is an exact expression for the linear response of the system described by the Hamiltonian given by
Eq. (1) in the limit of infinite normalization volume.

To evaluate (Z"), matrix elements between the zero wave vector states must be taken and then the sums per-
formed over all phonon occupation numbers. Since the 6nal result is independent of the number of k=0 phonons,
this procedure can be simplified by tres. ting po' and qo' as classical variables. One can, therefore, write

(z') = dpo' dqo' &((no'), (no'), qo")Q expL PQ—
Boffo (no +-', )—P g kooo'(no'+-,')j,

a a
(30)

which gives

2x
(Zo) =P expL —P g hioo'(no +-', ) PP ko—oo'(no'+-,')j—1+2PE' P ~

A (k) ~' ((no')+-,')
na a a pQ a ~a ~a

k PE'—2PE' 2 I A(k) I' (( ")+l)+
a 0)a Aa 20

((ni')+o)+ E F(k)A( —k) ((no')+o) (3~)
gcV o a ~a

Using Eqs. (29), (31), the definition of the dielectric constant e,

4n I'
(o—1)= — (s is the volume of the unit cell),

Xv E
(32)

and the average phonon occupation number LEq. (23)j.

one can write

(no) =
~Ates/

a1' (33)

8x k
e—1= — P ~

A (k)
~

'
a +a'~a

Acd a 87I Acta
coth — Q i

A (k) i' coth
2kT ~Vv a cuba Aa 2kT

h h, hcoa+ ——u V"'+ P 8'(k) coth + P 8 (k) coth.Ve Q' y&W & oig' 2kT g.V o ooo 2kT

Q F(k)A( —k)
g& o Ma Aa

Ac@a 2 Ei

coth +—Q F(k)A( —k)
2kT g&V o +a ~a

cath, (34)
2k''
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with

2 fi, 2 Ps AM I„-

O'= —Q G'(k) coth +—Q 6 (k) coth
X &co' 2kT X & o)I, 2kT

2 A AG7 2 Acoj,——P ~&'(&) ~' coth +—P ) &(&) ~' coth —(~0")'. (35)
V I cv&'h~ 2kT .V I &DID AIc 2kT

If the deformation t.erms are absent, we obtain

c—1=kr (a'/u)/0'.

In the classical limit of high temperature

n'- (T Tc), —

(36)

(37)

can, therefore, conclude that the largest eRect on the
dielectric constant arising from the treatment of the
deformation terms is to make the Curie constant vary
linearly with temperature. At temperatures high com-
pared with the Curie temperature, the dielectric con-
stant LEq. (39)j can be written

and the dielectric constant follows a Curie-%eiss law.

e—1=C/(T —Tc). (38)

If the system does not spontaneously polarize at any
positive temperature, it is then stabilized at T=O by
zero-point quantum-mechanical fluctuations. The dielec-
tric constant LEq. (36)] is independent of temperature
in the vicinity of absolute zero. Note, however, that at
intermediate temperatures the temperature dependence
of the dielectric constant is, in general, different from
the temperature dependence of Barrett's expression. "
This diRerence arises since Barrett's calculation is based
upon an Einstein model of the lattice and neglects the
variation of lattice frequencies with wave vector.

In the classical limit, the dielectric constant with
inclusion of the deformation terms LEq. (34)j can be
written as

e —1=A T+ [C/(T Tc)j)1+BT—+DRj (39)

3, 8, C, D are temperature-independent constants. The
term linear in temperature appears since the presence of
a second-order electronic moment makes it possible for
the field to drive modes other than the soft mode. This
term should contribute a very small amount to the total
dielectric constant. The presence of the higher order
e]ectronic moments also produces a temperature-de-
pendent Curie constant. The third-order moment and
the product of second-order moment with the third-
order potential contribute to the linear temperature
dependence of the Curie constant. The quadratic tem-
perature-dependent term involves the squares of the
coupling coeScients appearing in the linear term. One

e—1= ttC/(T Tc)]+—F. (40)

Therefore, if one fits the temperature dependence of the
dielectric constant with an expression of the form of
Eq. (40) over a wide range of temperature above the
Curie temperature, one cannot attribute the value
obtained for F solely to the presence of temperature-
independent infrared active modes. Electronic de-
formations may contribute to this term. '3

In the preceding discussion we have treated the
crystal as if it were clamped, i.e., we have neglected any
eGect due to thermal expansion. If one knows the pres-
sure dependence of the dielectric constant, compressi-
bility, and volume coefficient of thermal expansion, the
temperature dependence of the dielectric constant of the
material at fixed volume can be separated from the
temperature dependence due to thermal expansion. "To
obtain an accurate separation of the intrinsic tempera-
ture eRect from this volume eRect, these three quantities
must be known over the range of temperatures for which
the dielectric constant is measured. Such data are not
available at present and, therefore, preclude the possi-
bility of making an accurate comparison of our results
with experiment.

"There can, however, be one additional contribution to this
constant term. This arises from terms which are of the sixth order
in the potential energy and do not appear in the Szigeti Hamil-
tonian. This number can be of the same order of magnitude as the
contribution to this constant arising from the electronic de-
forrnations.
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Technical Report 167, Laboratory for Insulation Research, Massa-
chusetts Institute of Technology (unpublished).


