
P H YS I CAL R EV I EW VOLUME 129, NUM BER 5 1 MARCH 1963

Magnetoreflection in Bismuth
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Direct interband transitions have been observed in the infrared magnetore8ection of single-crystal bismuth
at low temperatures. They are manifested by oscillations which are almost periodic in 1fH. Analysis in terms
of a two-band model yields the energy gap, a~ =0.015&0.002 eV, and also the cyclotron masses at the bottom
of the conduction band for two orientations of the magnetic field with respect to the crystallographic axes.
Within the resolution of the instrument, the g factors of the conduction and valence bands are equal.

INTRODUCTION EXPERIMENTAL

The apparatus is shown in I'ig. i. The reflection
spectra were obtained by shining a monochromatic
infrared beam onto an electropolished surface of single-
crystal bismuth' at nearly normal incidence. A Perkin-
Elmer monochromator was employed with suitable
prisms to cover the photon energy range from 0.040 to
0.200 eV. The rejected beam was detected by a thermo-
couple. The sample was mounted on a copper block
which was in contact with liquid helium or liquid nitro-
gen. Because of this, the temperature of the sample
was probably a few degrees higher than that of the
liquid. The Dewar was placed in a 2-in. -bore solenoid
magnet. The focal length of the beam produced by the
monochromator was increased with the use of para-
boloids, in order to Gt the beam into the rather small
aperture presented by the magnet.

The samples were oriented by x-ray techniques, such
that the magnetic Geld was along either a binary or a
bisectrix axis. The Geld was normal to the surface from
which the infrared beam was reQected. The Geld was
swept continuously from zero to a maximum, and back
to zero, usually with a period of 12 min.

~~SCILLATIONS in the tnagnetoxe6ection of bis-
muth were Grst observed by Keyes et ul. ' Their

results indicated that the conduction band was non-
quadratic. Boyle and Rodgers' subsequently observed
oscillations in transmission, and found a band edge in
the vicinity of 20 p,. They interpreted this edge as the
onset of direct transitions to the conduction band from
a lower lying band. Lax~' proposed a model which
explained the nonquadratic behavior of the conduction
band in terms of interaction with this lower lying band.
This model has also been considered by VVolff. ' On
theoretical grounds, Cohen~ and Lax' later pointed out
the need for a modiGcation of the model, and Cohen
presented more detailed dispersion relations.

These developments suggested the possibility of ob-
serving direct transitions in a magnetic Geld between
Landau levels in the lower band and the conduction
band. These transitions were observed in preliminary
measurements' with the magnetic Geld parallel to the
surface of the sample. This paper reports more extensive
measurements with the magnetic Geld normal to the
surface of the sample. The measurements have been
extended to higher magnetic Gelds and longer wave-
lengths. New results include the observation of the
lowest interband transition, as well as the magneto-
plasma effect.
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FIG. 1. Apparatus. Magnet and Dewar are shown in cross section.

OThe samples were obtained from single-crystal bismuth of
x, 99.9999%purity, which was grown by S. Fischler of Lincoln Lab-

oratory by pulling from the melt,
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According to Eq. (4), a plot of reciprocal fields vs
integers should yield a straight line with a slope given

by Eq. (5), and an intercept, I=—$. Then Kq. (5)
tells us that a plot of reciprocal periods versus
should yield a straight line with slope

1 c egg)

4g,po* 4ek gg/Frc. 2. Energy bands in
a magnetic field showing
Landau levels and spin
splitting. From Eq. (6) we may obtain an expression for the

apparent mass of the n=0 line, deined by

The result is
m. (=eh/c)(H/g, )

m. =(mg'/gg)(g„— g,),

which indicates that a plot of m, vs e„should yield a
straight line with slope, mg%g.

Since a transition proceeds from an occupied to an
THEORETICAL unoccupied state, the transition will not occur, unless

the hnal state is above the Fermi level. The nth Landau
According to Lax's model the energy levels in a mag I I th d t b d th h th Feve in t e con uction an passes t roug t e ermi

level at a field determined by Kq. (1),where we set g= gr.

g= ——,'g W-'[g '+4gg(n+2+m)Po*H]"' (1)
g/ ———-', g y-'[g '+4(n+1)g P H]"' (10)

where the plus sign is taken for the conduction band,
and the minus sign for the valence band. Here
is the vertical energy gap between the two bands,
Pg*=eh/teg*c, and mg* is the cyclotron eBective mass
at the bottom of the conduction band. In the following
we assume that the spin splitting is equal to the Landau
spacing (m=+~g), according to Cohen and Blount. "
The energy bands and Landau levels are shown in
Fig. 2. The ordinary interband selection rules for the
conhguration of this experiment are En=0, km=&i,
where m is the total angular momentum quantum
number. Accordingly, the photon energy is

—1[g 2+4g (yg+1)P AHj1/g+ (g 2+4g gPggH)1/2 (2)

From Eq. (2) it follows that

If we insert this field value into Eq. (2), we obtain the
cutoff energy, below which the transition mill not be
observed.

ggmin 2(2gf+gg)
+Kggg+(pE/"+1)L(2gf+gg)g gg2jjl/2 (11)

ha = O.I20 eV

1 ggPg*

H (g„'—gg')

2- I/26g
2m+1+ 4e(I+1)+— (3)

If gg&g„ then, for e&1, Eq. (3) becomes

1/H=[g.Po*/("'-"')j4(n+l). (4)

Therefore, the transitions are almost periodic in 1/H,
with a period (b)

~=4gA'/(gg' —gg'). (5)

The m=0 transition does not obey Eq. (4), but from
Eq. (3) we find

ggpo* Po* eg1+—
Hg (gg —gg ) gg (gg —gg) gg

' M. H. Cohen and E. I. Blount, Phil. Mag. Sp 115 (1960}.

(6)
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I'ro. 3. Typical recorder traces with the magnetic field along a
binary axis and T=4.2'K. Part (a} is at a photon energy of 0.120
eV, and part (b) is at 0.066 eV.
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For large n, Eq. (11) reduces to

&p min 2oi+&1 &

while for @=0, we have

(12)

200&

I80-

l SOI-

&y min= &f+&g ~ (13)

From Eq. (1) we may also obtain the photon energies
of the intraband or cyclotron resonance transitions for
which the selection rules are hn = 1, hm =0,

o =-'[o '+4o (n+-'+m)P *Hj'"
—-'[o,'+4o (n '+m—)P-o*Hj"' (14)

oi(of+ oo) 1 oi(of+ oo)-&B&-
(n+1) o„Po* egg(1*

Near a plasma edge the cyclotron resonance will appear
shifted according to'

&n = 2 &»+ o (o»'+4&i i') "'&

where e» ss the plasma energy.
According to the tilted-ellipsoid model of Shoenberg"

the effective cyclotron mass, mo*, is given, in terms of
the component masses, as follows. "

Only one transition will be observed in a given range of
magnetic fields corresponding to the nth Landau level
below the Fermi level, and the (n+1)st above.

o& l20-
O
C»
O
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80

&;oI

40 r-I

x lO (eV)2
P

I'zo. 5. Reciprocal periods versus the square of the photon
energy with II along a binary axis.

H~~ binary:
(m»*)„=mo (m.m,,—mio)»-',

mi (m-bmo m4'—)-"
(mo*) b= (m„*)„=2m, &

fg]+3m2
H~~ bisectrix:

(»no )g= mo[(momo —m4 )&&ni/mo j
-mi(m. mb —m4')- '&'

(mo*)b= (mo*) =2mo
355$+852

(17)

Here axes 1, 2, and 3 refer to the binary, bisectrix, and
trigonal, respectively.
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FIG. 4. Reciprocal magnetic 6elds versus integers with H along
a binary axis. The photon energy is indicated on each line.

"D. Shoenberg, Proc. Roy. Soc. (London) A1?0, 341 (1939)."B.Lax, K. J. Button, H. J. Zeiger, and L. M. Roth, Phys.
Rev. 102, 715 (1956).

RESULTS

A. H[[ Binary

Figure 3 is a reproduction of two recorder traces with
the magnetic field along a binary axis. Part (a) of Fig. 3
was obtained at a photon energy of 0.120 eV, and
shows transitions n= 1 to n= 7. Part (b), obtained at a
photon energy of 0.066 eV, shows the n=0 transition
at B=46.2 kG, and the plasma line at higher fields. The
arrow indicates the field at which the peak of the n=0
transition would occur, if the transitions were strictly
periodic in 1/H. The field value corresponding to a
transition is read at the peak of the oscillation. "Figure 4
is a plot of reciprocal fields versus integers for several
photon energies. The period is obtained from the slope
of the straight line. Reciprocal periods are plotted in
Fig. 5 vs the square of the photon energy. From the
slope of this line we evaluate mo~/o„according to
Eqs. (5) and (7). Figure 6 is a plot of the apparent mass
of the n=0 line vs the photon energy, which, accord-
ing to Eq. (9), yields an additional value of the param-
eter, mo~/o, . Figure 7 is a plot of photon energy versus
magnetic fieM, where the data are represented by circles,
and the curves are obtained from Eq. (2). We have

'3 M. S. Dresselhaus and G. Dresselhaus, Phys. Rev. 125, 499
(1962).
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TABLE I. Values of the parameters of the theoretical model.
The energy gap, 6„ is quoted in eV. The uncertainty in mp is
+40%

(ep/esp*) mp

Figs. 5 Figs. 6 Figs. 7
and 10 and 11 and 12 tp mp*/nSp

o 6—

O
E

H~ binary
H I bisectrix
(a) light mass
(b) heavy mass

6.6
2.9

7.3 7.1
3.3

5.6 6.1 6.1

0.015
0.015

0.00212
0.00455

0.015 0.00246

0.02 o.o4 o.o6
(eV)

t

0.08 O.IO

FIG. 6. Apparent mass of the w =0 line, defined by Eq. {8),
versus the photon energy, with H along a binary axis.

inserted into Eq. (2) the values of ma~/t, and e, which
gave the best 6t. They are listed in Table I.

0.20

3. H~~ Bisectrix

Figures 8—12 show the same type of analysis as above,
but with the Geld along a bisectrix axis. Here we see
two sets of transitions, one set weaker than the other.
The weaker sets corresponds to the heavier mass
associated with two of the ellipsoids.

DISCUSSION

We believe that the simplicity of the spectrum which
we have observed implies that the g factors of the con-
duction and valence bands are essentially equal. This
can be seen by referring to Fig. 2. Here some of the
orbital degeneracy of the levels is shown removed by the
large g factor, "so that each level is split into two levels.
Now there are two transitions of the type de=0,
b,m=+1 for each n, namely, 6m=+1 and b,vs= —1,
as shown by the arrows for n= 1.Clearly, if the g factors
were signi6cantly diBerent, these two transitions would
occur at difkrent photon energies for the same magnetic
6eld, or at diBerent 6elds for the same energy, and the
spectrum would not be simply periodic.

Further evidence in support of this claim is given by
the intercept in Figs. 4 and 9. Aside from scatter in the
data, the value appears to be st= —-', in agreement with
Eq. (4). We cannot easily generalize Eq. (2), in order to
show the implication of this intercept, but if we write
the photon energy as follows:

e~= eg+(n+2&h, )PjE+(I+ts&6„)P„H, (18)

where c and e refer to the conduction and valence
bands, respectively, we 6nd

(~+-') (P.+P.)+ (~A ~.P.)
(19)

H &a

cL O.I2

O.Q e

SMA

0.04
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I'ro. 7. Photon energies versus magnetic field and H along a
binary. Solid curves are obtained from Eq. (2).
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Fro. 8. A typical recorder trace with H along a bisectrix axis.
The photon energy is 0.120 eV and T=4.2'K.

'4 G. E. Smith, J. K. Gait, and F. R. Merritt, Phys. Rev.
Letters 4, 276 (1960}.
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FEG. 10. Reciprocal periods vs the square of the photon energy
with H along a bisectrix.

200 The ratio,

H„(1—esP/ess) e„e„P
1+—1—

( .I .—) . :) (24)

FIG. 9. Reciprocal fields versus integers with II along a bisectrix.

Now an intercept near n= —
2 implies

hP.—A,P.=O,

which may be written

(20)

(21)

since hefI. =-',g, (ejs/2srsoo). From the resolution of the
instrument, we estimate ~g.—g.

~

&12.
The result of 6tting Lax's model to the data is a set

of values of the energy gap and the cyclotron mass at
the bottom of the band. The actual analysis yields the
ratio of the gap to the mass, eo/mo*, and the gap, s„
from which the mass is deduced. It will be noted that
the analysis of the higher transitions, n&0, diGers from
the analysis of the n= 0 transition. The former does not
yield a reliable value of ~„since the magnetic energy is
large compared to the gap. This is not the case, however,
for the m =0 transition, where it is found that the curves
of e„versus H are sensitive to the gap, so that a reliable
value is obtained. by curve 6tting. This value is
&~=0.015~0.002 eV. In addition, the separation of the
m=0 transition from the plasma line is found to be
sensitive to the gap. In fact, the ratio of the magnetic
fieMs depends only on the gap, but not the mass. If we
solve Eq. (2), with os =0, for the magnetic 6eld, we obtain

f}o Ho=, ( —,). (22)

Similarly, from Eqs. (14) and (16), with n=0, sss=+-', ,
we have

o
6

0

E

O KEYES et cll. (l956)
o PRESENT WORK

0.02 QO4 Q06

E& (0V}

I I I

Q08 O,IO

FrG. 11.Apparent mass of n =0 line vs photon energy, for
the light mass with H along a bisectrix.

is seen to be independent of mo*, and is, therefore,

isotropic. %'e find that, if we insert our experimental
values of ~„, Bo, and H„, and the plasma energy,
e„&=0.0226 eV (55 fr) of Boyle ef (sl. ,

rs we obtain

e,=0.016+0.001 eV, in excellent agreement with the
value obtained by curve 6tting. Ke have included the
plasma line on Fig. 7. Plasma lines were also observed
with H~~ bisectrix, but the data were too scanty to
analyze.

The values of the component masses at the Fermi
surface, as deduced by various authors, " indicate that
m2 is at least a factor of ten larger than any other com-

esP esP "W. S. Boyle, A. D. Brailsford, and J. K. Gait, Phys. Rev.
eoPo*H„= en 1—

e& 1— + eo . 23 109, 1396 {1938}.
e„s ess "Benjamin Lax, Rev. Mod. Phys. 30, 122 {1958).
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0.20

O.I 6

~p

CL. O. l 2
ppp

0.08

0.04

LlGHT MASS

~= pp&p%r(pf+ pp) (30)

With the magnetic Geld in the bisectrix direction, we

obtain for the large period,

6= 7.1X1.16X10 '/0. 025(0.025+0.015)
=8.2X10 '6 '. (31)

This is to be compared with Shoenberg's"

would then be

;„(pp=0)= pg+pp ——0.040 eV, (28)

pp; (pp))1)=2pq+p, =0 06.5 eV. (29)

Equation (29) also represents the absorption edge in
zero field, and corresponds to a wavelength of 19 p, , in

good agreement with the results of Boyle and Rodgers. '
Using these results, we can calculate the de Haas-

van Alphen period,

~=80X&0 'G ' (32)

20
I t t

40 60
H ( k i log au sl }

I

80

ponent. In this case, Eqs. (17) reduce to

H(( binary:

(mp*), = mp(mpm p) "',
(mp*) p ——(m *) = (2/v3) m (m m )"'

FlG. 12. Photon energies vs magnetic 6eld vnth B along a
bisectrix. Solid curves are obtained from Eq. (2).

Keiner" has extended Shoenberg's measurements in
bismuth to Bi-Te alloys, and he has compared his results
with Cohen's. ' By making the assumption that, upon
alloying with Te, only the Fermi energy changes, he
obtains «, =0.046 eV, «~

——0.022 eV. These values are
consistent with the transmission edge of Hoyle and
Rodgers, ' only if it is an indirect edge occurring at

fur= pi+ pp=0. 068 eV (18p). (33)

However, our results indicate a direct edge occurring at

fuv = 2 f+pp0. 065 eV (19p), (34)

and possibly an indirect edge at
(25)H ~~ bisectrix:

has= pi+ pp
——0.040 eV (31 p). (35)

(mp~)o= mp(mgmp)"',

(mp ) p =2mp(mmmm p)

There are three small masses, in the ratios 2/v3:2:1,
and one relatively large mass. (We have failed to ob-
serve this large mass, presumably because the ampli-
tude of the oscillation is reduced by the mass factor. )
Reference to Table I shows that our mass ratios are
consistent with those of Eq. (25).

From the expression for the cyclotron mass at the
Fermi surface (see Appendix),

(26)m*= mp*(1+2pf/pp),

we may calculate «f, by inserting our values of «, and
@so*, and the value of m* as measured by Gait et al."
With H along a biscctrix axis, we obtain

pf = p P(pp/mp*) m~ —p p] = —,'(7.1X0.0091—0.015)
=0.025&0.005 eV. (27)

The cutoB energies according to Eqs. (12) and (13)

We find that our results are not inconsistent with
Keiner's measured values. Furthermore, we may, by
varying his values within his quoted uncertainties,
calculate our value of «, by his method. Since the two
values diRer by a factor of three, we believe this shows
the inaccuracy of his method.

Let us compare our results with the far infrared
cyclotron resonance of Hoyle and Brailsford. " At a
wavelength of 87 p they obtain a field of 12.8 kG with
H along a binary axis. Inserting this Geld into Eq. (15),
we Gnd n= 1, which we then insert into Eq. (14) with
m=& to obtain «„=0.0j.2 eV, as compared with
0.014 eV (87 p).

We believe that the oscillations seen in transmission
by Boyle and Rodgers' correspond to the transitions
that we have seen in reaction. If this is the case, it is
easy to understand why they saw no oscillations at a
fixed field as a function of frequency. Their frequency
range was severely limited on both ends; on the high end
by the transmission edge (which moved to lower fre-

'7 J. K. Gait, W. A. Yager, F. R. Merritt, B. Cetlin, and A. D.
Brailsford, Phys. Rev. 114, 1396 (1959); J. E. Aubrey, J. Phys.
Chem. Sohds 19, 321 (1961).

' D. %'einer, Phys. Rev. 125, 1226 (1962)."%.S.Boyle and A. D. Brailsford, Phys. Rev. 120, 1943 (1960).
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quencies with increasing leld), and on the low end by
the cutoff energies, given by Eq. (11).The motion of the
edge with field is also explained by Eq. (11), which
indicates that in a magnetic Geld transitions having
energies smaller than 2«f+«, are allowed. Furthermore,
a plot of their oscillatory data similar to our Fig. 4 yields
a period, d =6.8&10 ' G ', and an intercept close to
I=—1/2. We have included this point on Fig. 5, which
shows the agreement with our results.

After having analyzed the present data, it is easy to
understand how our previous results' led to an incorrect
value of the energy gap. The value quoted was «,=0.047
eV. This was obtained by straight line extrapolation to
H=O of a plot of «„ versus H. %e can now show this
method to be incorrect. A glance at Fig. 7 may sufEce,
but it may also be shown that, in the range of observa-
tion, the magnetic energy is large compared to the gap,
for all transitions except the x=0 transition, which
was not observed previously. On the other hand, it is
only when the magnetic energy is small compared to
the gap that straight-line extrapolation is valid. Let us
choose a point from line A in Fig. 2 of reference 8;
«„=0.088 eV, H =30 kG. This line represents the transi-
tions (OJ,O&) and (1$1$), for which the energy is

«„=(« '+4«gP« H)"' (36)

If we divide by «„ square both sides and insert the
values of «~ and «„

4P«'H ~„q' (0.088 '
=34.S,

«g «g) E0.015

we see that the magnetic energy is 33.5 times larger
than the gap. Furthermore, our previous discussion
shows that a reliable value of the gap cannot be obtained
without the observation of the n=0 transition.

on the symmetry of the point in the zone. Our experi-
ment is insensitive to the heavy-mass direction. As far
as displaced band edges are concerned, the energy levels
involved would be essentially the same, but one would
expect di6erent selection rules. '0 It is therefore sug-
gested that this experiment provides evidence for the
view that the valence band lies directly beneath the
conduction band.

Ke have found that the energy gap is substantially
smaller than the values previously inferred, and we
have obtained some of the cyclotron masses at the
bottom of the conduction band. %e have further shown
that the parameter values for the electrons are con-
sistent with the results of cyclotron resonance, de Haas-
van Alphen effect, and infrared transmission experi-
ments. In addition, our results indicate that the param-
eters of the valence band are essentially equal to the
electron parameters.
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APPENDIX

In the coordinate system of the principal axes of the
energy surface, the cross-sectional area of the Fermi
surface normal to the 2 axis is given by' "

A («I) = 2«r(ggg)«gag) "'«(1+«/«g) ~, ,, (A1)

The cyclotron mass is obtained from this by
diBerentiation "

Our analysis shows that the Lax model yields a
reasonably good Gt to the data. Cohen's model is more
complex, and allows for (1) a more accurate treatment
for the heavy-mass direction, and (2) the possibility of
a displacement in k space of the band edges, depending

1 dA ( ezq
vs*(«f) =— = (myel«)"'~ 1+2—~. (A2)

2gr d« ~ gy k «gl

~ L. M. Roth (private communication)."H. J. Zeiger (private communication).
~ L. Onsager, Phil. Nag. 43, 1006 (1952).


