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tie Haas —van Alphen Effect in a Zinc Alloy Exhibiting a Resistance Mini~urn

F. T. HEDGCOCK AND W. B. MUIR)

The Franklin Institlte Laboratories, PhiladelPkie, Pennsylvania

(Received 9 October 1962)

The de Haas —van Alphen eBect has been measured using a torque method at magnetic fields up to 8 kOe
and temperatures between 4.2 and 1.6'K for both pure zinc and a z inc manganese alloy exhibiting a resistance
minimum. Experimentally, it is shown that there is no change in the period of the oscillations although the
field and temperature dependence of the amplitude of the oscillations is found to be anomalous. A considera-
tion of the influence of the conduction electron relaxation time on the de Haas —van Alphen effect shows
that the observed behavior may be explained if the relaxation time is allowed to approach zero in a small

energy interval, 5, about the Fermi energy. Using the phenomenological theory of the resistance minimum,
due to Korringa and Gerritsen, and the value of b, obtained from the de Haas —van Alphen effect experiments
the resistance as a function of temperature was calculated and found to agree within experimental error
with the measured values.

INTRODUCTION

' 'N normal metals and alloys the electrical resistance
~ ~ decreases with decreasing temperature and eventu-
ally becomes constant at temperatures su%ciently low
that the scattering of the conduction electrons is chiefly
due to crystal imperfections and impurities. In 1930
Meissner and Voigt' observed that in certain metals the
electrical resistivity fell to a small value with decreasing
temperature and then rose by a few percent as the tem-
perature was further lowered. This effect was studied
more closely by de Haas el cl.' who found that the tem-
peratures at which the minimum occurred increased
with increasing residual resistance ratio. This estab-
lished that the minimum in electrical resistance was
due to the presence of crystal imperfections and/or im-
purities. MacDonald and Pearson' have shown that
along with the resistance minimum there also occurs an
anomalous thermo-emf. Large negative values of the
thermo-emf are observed at temperatures somewhat
higher than the temperature at which the resistance
minimum occurs in these alloys. The experimental
position as of 1960 is summarized by van den Berg, 4 who
points out that the anomalies in the transport properties
are now believed to be due to the presence of certain
transition element impurities and in fact the ability to
produce a resistive anomaly seems to depend on the
existence of a localized magnetic moment introduced by
the impurity.

Recent extensions of the Schmitt' theory of the
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sponsored by the Aeronautical Systems Division, Wright-Patter-
son Air Force Base, Ohio.
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resistance minimum by Kasuya, ' Bailyn, ' and de
Vroomen' to explain "giant" thermoelectric powers in
dilute alloys at low temperatures predict an effective
relaxation time which is sharply energy dependent near
the Fermi energy. ' Domenicali" in an extension of some
early v ork of Korringa and Gerritsen" has shown that
such a relaxation time will explain the resistance and
thermoelectric power of these alloys over a wide tem-
perature range.

Since the amplitude of the de Haas —van Alphen effect
is related to the relaxation time of the conduction elec-
trons, a study of this effect in a zinc manganese alloy„
which exhibited a resistance minimum, was made in
order to determine whether an energy-depend. ent relaxa-
tion time would account for any anomaly which might
be found in the de Haas —van Alphen oscillations.

The experimental study was made on zinc since it was
known to exhibit a resistance minimum" and a large-
amplitude de Haas —van Alphen effect."

Discussion of the Theory of the de Haas —van
Alphen Effect for Zinc

The present experiments on the de Haas —van Alphen
effect consists of measurements on the field dependence
of the torque exerted on a single-crystal sample in a
homogeneous magnetic field. The torque C about an axis
can be derived from the free energy Ii of the electron
system since C= —BF/BP, (&)

where P is an angle specifying rotation in a plane normal
to the prescribed axis. LSee Fig. 1(a).j The large ampli-

' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 22, 227 (1959).
7 M. Bailyn (unpublished).
8 A. R. de Vroomen and M. L. Potters, Physica 27, 1083 (1961).' For a discussion of these eHects and the present situation the

reader is referred to D. K. C. MacDonald, Thermoelectricity, and
Introduction to PrinciPles (John Wiley 8z Sons, Inc. , New York,
1962) and also to D. K. C. MacDonald and A. M. Guenault, Phil.
Nag. 6, 1201 (1961)."C. A. Dominicali, Phys. Rev. 117, 984 (1960)."J.Korringa and A. N. Gerritsen, Physica 19, 457 (1953)."Y.Muto, Y. Tawara, Y. Shibuya, and T. Fukuroi, J. Phys.
Soc. Japan 14, 380 {1959)."B.I. Verkin and I. M. Dmitrenko, Izv. Akad, Nauk SSSR,
Ser. Fiz. 19, 409 {1955).
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tude long-period de Haas —van Alphen oscillations ob-
served in zinc arise from pieces of Fermi surface which
are ellipsoidal in shape" "and are situated as shown in
Fig. 1(b). Since the surfaces are ellipsoidal, it is possible

to use the expression for the free energy of the conduc-
tion electrons derived by Dingle. "He showed that the
part of the free energy that depends periodically on the
magnetic field is given by

~periodic =
2s (2m*)3"kTV(P~H)"'- „(—1)' cos(2wpEO/P*H —s/4)

p+2 sinh2m'pk T/P~H
cosp~(m'/m) exp( —pk/rP*H), (2)

sin(2m Eo/P'H —gr/4)c=@II»2r 2~~kxlP~H — (3)
sinh (2gr'k T/P~H)

and

E,pkV eh '"Bnz*
8=

s' c 8$

z= a/xkr.

(4)

The quantity x has the dimensions of temperature and
is called the collision or Dingle temperature.

„SUSPENSION
fl00] DIRECTION

where I3*=e/m*c is an effective double Bohr magneton,
V is the volume of the crystal, T is the absolute tem-
perature Ep is the Fermi energy measured from the
bottom of the ellipsoid, 7. is the electron relaxation time,
and m~ is the cyclotron effective mass.

This expression can be simplihed for zinc since it has
been shown experimentally" that harmonics are small ~

Also, the effective mass is of the order of 0.01 of the free
electron mass and hence cos(n.m*/m) is unity. Combin-
ing Eqs. (1.) and (2) and noting that E /P0*H»1, the
torque on the sample is given by

From Eq. (3) it can be seen that the period P of the
oscillations can be written

P=p*/Eo= p/Eo(m*/m),

where P= e/mc is a double Bohr magneton.
The effective mass of the electrons can be determined

from the ratio of the amplitude
I
Cq

I
of the oscillations

at temperature Tr to the amplitude, I C~ I, at tempera-
ture T2.

Assuming that the temperature is low enough that
the relaxation time is constant then the ratio of the
amplitudes, from Eq. (3), is given by

I CgI T, sinhL(2s'kTp/P) (m*/mH) j
=W, (6)

I
C,

I
T, sinhI (2s'kT, /P) (m*/mH)]

where m"/m is the only unknown quantity. Equation
(6) can be solved by graphical methods for m*/m. From
the value of m*/m and the corresponding period the
value of the Fermi energy Ep can be calculated from
Eq. (3).

Once the e6ective mass has been determined the
collision temperature x can be evaluated from the field
dependence of the amplitude of the oscillations. Exclud-
ing the periodic term, Eq. (3) may be written:

of=)—xH ',
where

(a)

)i, C AXls

FEG. 1. (a) The orientation of
the zinc crystals. (b) The Fermi
surface of zinc t after E. Faw-
cett, J. Phys. Chem. Solids 18,
320 (1961)j. The surfaces
marked I' are associated with
the long-period de Haas-van
Alphen effect.

p ln((ICI/H"'T) sinhI (2x'kT/PH)(m*/m)j)
(7)

2w'k (m*/m)

2n'k(m*/m)

whence if n is plotted as a function of II ' a straight line
should result whose slope is —x. The relaxation time,
r, can then be obtained from Eq. (4).

'4 W. A. Harrison, Phys. Rev. 118, 1190 (1960)."R. B.Dingle, Proc. Roy. Soc. (London) A211, 500 (1952).
'~ J. S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc.

(London) A248, 1 (1955).

Sample Preparation

The alloys were prepared by melting 99.999/o pure
zinc, (obtained from the New Jersey Zinc Company)
together with 99.97% pure powdered manganese, (ob-
tained from A. D. 3 facKay, Inc.) in a quartz tube under
an inert atmosphere. The maganese was powdered in an
agate mortar to avoid the possibility of ferromagnetic
contamination. The melt was maintained at a tempera-
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Pro. 2. The electrical resistance and
thermo-emf as a function of tempera-
ture, Insets u, b, and c are referred to in
the text.
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ture of 700'C for a period of 2 h, during which time it
was agitated vigorously every 15 min. The melt was
then quenched in ice water. The concentration of
manganese in the alloys was determined from a graph
of residual resistance ratio E4, $/(Re7e R4.e) as a func-
tion of nominal concentration obtained from the
weights of the components of the alloy. A line giving the
best fit was drawn and the concentration of each alloy
determined from the graph using the measured re-
sistance ratio.

The resistance and thermo-emf samples were wires of
rectangular cross section ~~ in. wide made from cold-
rolled strips about 0.005 in. thick. After fabrication
these samples were etched in a 50% hydrochloric acid
solution and given a strain relieving anneal under
vacuum at 400'C for 24h and then quenched in ice
water.

The —,6-in. -diameter spherical single crystals required
for the de Haas —van Alphen e8ect measurements were

grown by Tamman's method in a graphite mold by
cooling the sample from 10'C above the melting point
to 10'C below the melting point at the rate of about
5'C/h. The crystals were etched in a, 50% hydrochloric
acid solution which clearly showed any grain boundaries
which might be present. The basal plane was determined

by cleaving the crystals under liquid nitrogen and the
L100) direction found by x-ray diffraction in a Bragg-

type spectrometer. The piece removed from the crystal
was rolled into a strip and its resistance ratio, and hence
its maganese concentration determined. Table I gives
the resistance ratio, resistivity, and nominal manganese
concentration for all the samples studied.

TABLE I. The resistance ratio, composition, and resistivity
of the various samples measured.

Sample

Resistance

Thermo-emf

de Haas-van Alphen
crystal

Resistance ratio
P4../(~~3 —A.g) jX10 Conc.

Mn
End 1 End 2 {wt. /0)

1.2 Pure Zn
14.7 0.006

171 0.06
362 0.13
396 0.14
692 0.24

1190 0.42
40.6 42.8 0.015

174 1.81 0.063
334 300 0.11
676 583 0.22

1060 1060 0.37
23.8 0.008

Resistivity
(10 g

0 cm)

5.5
5.0
5.7
6.7
6.9
8.1

12.0

' A. C. Rose-Innes and R. F. Broom, J. Sci. Instr. 33, 31 (1956).' F. T. Hedgcock, %.B. Muir, and E. E. Wallingford, Can. J.
Phys. 38, 376 (1960).

Experimental Methods and Results

The cryostat and experimental procedure used in
making the electrical resistance measurements have
been described previously. ""The results of the re-
sistance measurements are shown in Fig. 2. Inset (c)
of Fig. 2 shows the resistance of the zinc manganese
single crystal used in the de Haas —van Alphen experi-
ments. Inset (a) shows the low-temperature resistance
of the most concentrated alloy containing 0.42%
manganese. The resistance of this alloy is constant
between 1.8 and 5'K and no evidence of a resistance



F. T. HEDGCOCK AND W. B. MUIR

I5 )

10 mS

5 oj

—I.O I-Ol

.5
K

I
0.5

(c)
—-IQ

0 ~ Q

gl

FIG. 3. The experimental results of
the de Haas-van Alphen efI'ect meas-
urements. (a) pure zinc T=4.2'K,
&=34.5'; (b) pure zinc T=1.75'K,
P =34.5'; (c) 0.008 wt. j& zinc manga-
nese alloy T=4.2'K, /=34.0'; (d)
0.008 wt. jq zinc manganese alloy
T= 1.65'K, P =34.0'. The vertical
asymmetry of the oscillations is prob-
ably due to the influence of the ani-
sotropic crystalline environment of the
manganese ions and is presently under-
going further investigation.
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maximum was found. The temperature at which the
minimum occurs and the depth of the minimum D,
defined by D= (R2.0—R „)/R „„, are plotted as a
function of manganese concentration and sho~n in inset
(b) of Fig. 2. These results are similar to those for other
alloys showing a resistance minimum. ""

The thermo-emf measurements were made in a
cryostat similar to that used by 4&acDonald and
Pearson. "The emf of a zinc-zinc manganese therrno-
couple, having its cold junction at 4.2'K and its hot
junction at temperatures varying between 5 and 100'K,
was measured using a galvanometer amplifier. " To
reduce the eRects of stray thermo-emf's in the leads a
superconducting reversing switch~ was used which
allowed the potential from the thermocouple to be
reversed inside the cryostat. The results of these
measurements are also shown in Fig. 2. They agree
qualitatively at least with other thermo-emf measure-
ments on alloys showing a resistance minimum. '-'

The de Haas —van Alphen eRect was measured using
a servo torsion balance similar in design to that of
Croft, Donahoe, and Love," the only diRerence being
the dc ampliler which, in this case, is identical to one
used by the authors in a low-temperature susceptibility
servo balance. '4 Arrangements were made for pumping
on the liquid-helium Dewar and measurements were

"A. N. Gerritsen, Physica 25, 489 (1959).
'0 D. K. C. MacDonald and %. B. Pearson, Proc. Roy. Soc.

(London) A219, 373 {1953)."D. K. C. MacDonald, J. Sci. Instr. 24, 232 (1947)."I.M. Templeton, J. Sci. Instr. 32, 172 {1955).~ G. T. Croft, F. J. Donahoe, and %'. F. Love, Rev. Sci. Instr.
26, 360 (195$}.

~F. T. Hedgcock and %. B. Muir, Rev. Sci. Instr. 31, 390
(1960).

made both at 4.2 and about 1.1'K. The temperature
was determined by measuring the vapor pressure above
the liquid helium. The crystals were oriented in the field
as shown in Fig. 1(a). The Typical results obtained for
the torque as a function of field are shown in Fig. 3 for
both pure zinc and a 0.008 wt. % zinc manganese alloy.
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Fro. 4. The values of H ' at extreme values of the torque as a
function of half-integers for the 0.008 wt. % zinc manganese alloy.
~ indicate data obtained at 4.2'K; v indicate data obtained at
1.7 K.

Analysis of the de Haas —van Alphen
EBect Measurements

The period of the oscillations is given by the slope of
the line obtained by plotting the values of B ' at the
extreme values of the torque against half-integers as
shown in Fig. 4. As can be seen in Fig. 5, the square of
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to that of the electrons in pure zinc. This is probably a
reasonable assumption considering the extreme dilution
(0.01 at. %) of the alloy 2'

The collision temperature was determined from the
slope of the line obtained by plotting n as a function of
H ' Lsee Eq. (7)j as shown in Fig. 7 for pure

rinc

an in
Fig. 8 for the zinc manganese alloy. As has been noted
previously~ the curves are linear only for low fields. "
The collision temperature was deduced from the linear
portion of these curves and is found to be independent of
orientation and temperature for pure zinc and has a
value of 1.3'K."The collision parameter is apparently a
function of both temperature and orientation for the
zinc manganese alloy. This dependence will be analyzed
further in the next section. All the experimental results
obtained from the de Haas —van Alphen efI'ect measure-
ments are summarized in Table II.

Fro. 5. P' as a function of cosg. ~ indicate data for pure zinc;
~ indicate data for pure rinc obtained by Verkin and Dmitrenko;
x indicate data for the 0.008 wt. /0 zinc manganese alloy; the

dotted lines indicate the experimental error; the inset shows
m*jm as a function of orientation for pure zinc; g indicates the
value obtained by Dhillon and Shoenberg.

the period P is a linear function of cosQ which is to be
expected for an ellipsoidal Fermi surface. "Included in
Fig. 5 are the data obtained by Vcrkin and Dmitrenko"
for pure zinc. The results are seen to be identical within
the indicated 1.5% experimental error.

The effective mass of the electrons is determined by
plotting ll'" Lsee Eq. (6)j as a function of m*/mH for
various values of Tq as shown in Fig. 6(a)" using the
experimental values of

~
C&

~ / ~
C2

~
and T~ corresponding

values of nP/mH are read from the graph and m*/m
calculated. The values obtained for the effective mass
of pure zinc are plotted as a function of orientation
in the inset of Fig. 5. As indicated in the 6gure, our
value is slightly greater than that obtained by Dhillon
and Shoenberg, "' but agree with those of Joseph and
Gordon. "The value of the Fermi energy of pure zinc,
measured from the bottom of the ellipsoid was calcu-
lated using Eq. 5 and found to be (3.8+0.2) )&10 "erg.

Since the zinc alloy exhibits a low-temperature
resistance anomaly, it was anticipated that the relaxa-
tion time would not be constant in the temperature
range of the de Haas —van Alphen effect measurements.
This means that the e6'ective mass of the electrons in
the alloy cannot be determined by the above method.
In order to carry out the analysis for the collision
temperature for the alloy it was assumed that the
effective mass of the electrons in the alloy was identical

~' D. Shoenberg, Progress in I.om TemperuINre Physics (Inter-
science Publishers, Inc. , New York, 1959), Vol. II."T~ remains 6xed at 4.2'K.

"A.S. Joseph and %. L. Gordon, Phys. Rev. 126, 489 (1962).
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FIG. 6. (a) Calculated values of W as a function of {m*/mH);
(b) the function I(Tg/T) as a function of {Tg/T).

"It is shown later that this assumption is consistent with the
experimental results.

~ F. J. Donahoe and F. C. Nix, Phys. Rev. 95, 1395 (1954).~ This is probably due to "magnetic breakdown" between the
ellipsoids and the arms of the second zone surface. R. W. Stark,
Phys. Rev. Letters 9, 482 (1962}.

"This value agrees with the value obtained by Joseph and
Gordon {reference 2'j).

DISCUSSION OF RESULTS

Field and Temperature Dependence
of the Amplitude

Allowing for a temperature-dependent relaxation
time, which might be expected in these alloys, Eq. (7)
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TAmz II. The experimental results obtained from the de Haas-van Alphen eGect measurements.

Period X10~ (Oe ')

Pure Zn Zn-Mn

5.90
5.22

4.80
3.68

2.82

(deg)

14,5 6.10
21
34
34.5 5.26
41
54
54.5 3.72
64
64.5 2.74
~o= (3.8~0.2) X 10-&4 erg

Pure Zn

9.3

12.8

18.3

EGective mass (~*/~) X103

Zn-Mn

Assumed to be the same as the
values for pure zinc

Collision temperature ('K)

Apparent value,
Zn-Mn

1.3

5.1
5.0

5.9
5.8

1.3

1.3

5.2 5.7 6.1
4.7 5.6

4.3

Pure zinc

4.2+1.7'K 4.2'K 2.6'K 1.7'K

shows that the slope of the lines in Fig. 8 may vary with
temperature but their intercept at infinite field should
be independent of temperature. The experimental re-
sults do not agree with theory and, in fact, a large varia-
tion of the intercept with temperature is observed. In
order to determine whether or not this anomaly was
another manifestation of an energy-dependent relaxa-
tion time, the free energy, and hence the amplitude of
the de Haas —van Alphen effect, was determined for the
case of a simple energy-dependent relaxation time.

Dingle" has calculated the free energy of the conduc-
tion electrons in a metal in a magnetic 6eld when the
relaxation time is independent of energy. He has shown
that the part of the free energy giving rise to the
de Haas —van Alphen effect can be written

Eqs. (9) and (11), that the eifect of the postulated
energy-dependent relaxation time is to add a term to the
free energy which is given by combining the second part
of Q in Eq. (11) with Eq. (9). This term has been
evaluated in Appendix I, and results in an expression for
the torque on a single crystal of material exhibiting a
resistance minimum, due to the postulated energy-
dependent relaxation time, given by

sin (22TEp/P*H —pr/4)c=aII / r ~
—2x Icsp/P H

sinh(22r2k T/P"H)

kT sinh(22rpkT/p*H) )l Tq
X 1+ I( —,(12)

P*H ) T'

22r(2222*)pipkTV p*H "
~periodic 8

—s~/4

h' 2

where

4.R

4. I

5.6

4.4
—4.5
—4.R
—4.I

—4.0
—5.9
—5.8

e 'p«(T( (E'(p'H) ln/1+e(Ep E""Tjdg, (10)

Q E
—2pppl pl E(2pppEl()pH ln(1+E(Ep E)lkTjdg—

and ((= k/TPPH. If it is assumed that the relaxation time
varies with energy such that v = ro everywhere except in
the narrow energy range (Ep—6) &E~& (Fp+6) where
T= 0 The integral Q. can then be written

CI

0
co 5. I

5.0
—R.9
+ R.S

2.7
R.6
R.5—
2.4—
R.5—

~O CI
+~ —3.6

cn—5.5

f~~ —5.4
1W) a~

Sp5

—2.5
—2.R
—R. I

~p I a,~'~- R.O
—I.9
—Ipe

Eip~pElppH lnp+E(Ep E)l)pT j(fE (11)—
since the integral is zero when T= 0. The first part of Q
when combined with Eq. (9) gives Dingle's expression
for the free energy (see Eq. (2)j. It is thus seen, from

R.R— —I.T
iiiiliiiiliiiiliiiiliiiiliiiiliiiiliiiiliiiili pppliip ~ Ip ~ ~ ~' 0 0.5 I.O IS RO Rp5 3.0 54 4.0 4.5 LO 5.5 6.0

H x I (OERSTEb )

FIG. 7. Field dependence of the amplitude of the oscillations for
pure zinc. ~ indicates data obtained at 4.2'K; ~ indicates data
obtained at 1.7'K.



DE HAAS —vAN ALPHEN EFFECT 205i

4.0

KO

Ci

CO~ 2,5
LLI
Q
E5
LLI
Cl

l.5

l.o

0.5

2

H 'x lo {OERSTEO )

4

2,5

O
lal

2A) ce
L4
Q
C9
4L
O

l.5 sn
Q

0

I.O

0.5
5

that the volume of the samples is the same in both
cases, it is seen that n —p, for the alloy, and n, for pure
zinc, should be equal when they are extrapolated to
infinite field for any given orientation. As can be seen
from Figs. 7 and 9 the values of the intercepts agree to
within about 10% thus confirming the correctness of the
assumption.

While it is well known that the relaxation time which
is measured using the de Haas —van Alphen e6ect is quite
diferent from that which is measured by electrical
resistance it would seem that for alloys exhibiting a
resistance minimum the energy range over which the
relaxation time was assumed to be zero should be the
same in both cases. On this basis the resistance of a
sample having a zero relaxation time in the energy range
Eo—0.75k to Eo+0.75k has been computed using the
empirical formula given by Korringa and Gerritsen. "
The result of doing this is shown by the solid line in
inset (c) of Fig. 2. As can be seen from the figure agree-
ment within the experimental error of the resistance
measurements has been obtained.

CONCLUSIONS

The period of the de Haas —van Alphen oscillations in
pure zinc and in the 0.008 wt. % zinc manganese alloy
were found to be the same within the 1.5% experimental

Fro. 8. Field dependence of the amplitude of the oscillations for
the O.QQS wt. % zinc manganese alloy. g indicates data obtained
at 4.2'K; g indicates data obtained at 2.6'K; ~ indicates data
obtained at f.7'K.

where kTq= 6 and xo= k//n kro. The function I(Tq/T) is
shown in Fig. 6(b). The held. dependence of the ampli-
tude of the de Haas —van Alphen oscillations will now
be given by

where
n —il=$ —xoH ', (13)

kTsinh(2~ikT/P"a) T,~
il=pln 1+ I

T)
2m k(os*/es).

3'Noticeable misfit could be detected for a change in Tg of
+Q.2'K.

Figure 9 shows the results obtained by plotting n —p as
a function of B ' for Tq=0.75'K. The value of 0.75'K
for T~ was found by a process of trial and error to give
the best fit of Eq. (13) to the experimental data. "As
would be expected, from equation (13),a —q is seen to be
a linear function of H ' having a slope —xo and an
intercept $ at infinite field, both of which are inde-
pendent of temperature. The collision temperature is
now seen to be independent of orientation and has a
value of 5.9'K.

In the foregoing analysis it has been assumed that
the efI'ective mass of the electrons in the alloy was
identical to that of the electrons in pure zinc. If this is
the case, then from Eqs. (13), (7), and (4) and the fact
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FIG. 9. Field dependence of the amplitude of the oscillations in
the Q.QQ8 wt. % zinc manganese alloy allowing for the postulated
energy-dependent relaxation time. p indicates data obtained at
4.2'K; g indicates data obtained at 2.6'K; ~ indicates data
obtained at 1.7'K.
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error. However, the variation of the amplitude of the
oscillations with 6eld and temperature was found to be
anomalous in the alloy. In order to explain this anomaly,
the effect of an energy-dependent relaxation time on the
de Haas-van Alphen oscillations was investigated. A

relaxation time that was assumed to be zero in the

energy range (E0—kT()) &~E&~ (E0+kT/, ) and constant
elsewhere was found to 6t the experimental results when

T~=0.75'K. The electrical resistance was calculated
from the expression given by Korringa and Gerntsen"
when the relaxation time has the above behavior. Using
a value of T~ of 0.75'K the calculated and measured

resistance were found to agree within experimental
el101.

It is planned to extend these measurements to other
suitable alloy systems in which an energy-dependent
relaxation time might be expected to occur.

APPENDIX I

The part of the free energy of the conduction electrons
which varies periodically with inverse magnetic 6eld has

been shown by Dingle" to be

P~».s(,= —2~(2i)i+)'/'k TV(P*H/2)'/'

where

X 2 (p) '"(—1)'Q, (A1)
p~—(e,Qo

Q e
—i+/4 e

—2~(a) p) —i pl/pea)

Xln{1+e&s' s)'" )dE, (A2)

)9*=e/m*(: an effective double Bohr magneton,
a= k/rff~H, and r is the conduction electron relaxation
time. For alloys having a low-temperature resistance
and thermopower anomalies it has been pointed out
that the relaxation time might be expected to be sharply
energy dependent.

The simplest energy-dependent relaxation time is that
assumed by Korringa and Gerritsen" in which T=70 R

constant, except for (I':o—5) ~&E& (ED+5) when r=0
Under this condition the integral Q LEq. (A2)] becomes

Q &
—(2~vol p)+(~/4) r(2ry///s 'H in{l +s(EoE)ikT) dE- si vPE/s R in{i +s(EO—E)/kr)dE —

Q +Q (A3)

since the integral Q is zero when r= 0. A value of r/r0 0 2is su——ffic.iently small to make Q ~ 0. Combining Qi with

Eq. (A1) gives an expression for the free energy identical to that obtained by Dingle" which is

2~(2t/i~)3/ kTV(p~H)' ~ ~ (—1)"cos(2mpE(//p*H ~/4)
I'periodic = e

—h P/r0PeH (A4)
hV2 ) -) p'" sinh(2)r'pkT/p*H)

It is thus seen that the effect of an energy-dependent relaxation time is to add a term to the free energy which is
determined by combining Q2 with Eq. (A1).

To evaluate Qm, consider the two cases (i) Eo»h, (ii) Eo&I).

Case (i)

If Ep»6& then e'-"~x/&' can be put equal to e'~ "s"&'~ and putting (E—ED)/kT=x with h=kT&, Q2 may be
written

where
Qz kTe—P~oot(l ((2~)soi/)'// ~/&))—I(T&/T')/) (A5)

I(Tg/T) = ln (1+e-*)dx. (A6)

(A7)

~periodic =

—T/l, /T

Equation (A6) was integrated by numerical methods and the results are shown in Fig. 6(b). On combining
Eq. (A5) with Eq. (Ai), the term, f, which must be added to the free energy to account for the energy-dependent
relaxation time, is calculated to be

2)r(2m')3/'kTV(P'H)"' kT
f p p ' '(—1)" cos(2 pEs/p*H0m/4)e )'"/"s'~—.

)(l*H

On adding Eq. (A7) to Eq. (A4) the periodic part of the free energy of the conduction electrons, in a metal having
a resistance minimum due to the postulated energy-dependent relaxation time, is given by

2~(2m')~/2kT V(P*H)'/'

(—1)"cos(2s pEO/tl*H —)r/4) pkT sinh(2 pkT)r/p*H)
e-pk/rpP~H g+ I(T/)/T) . (A8)

ps/' sinh(2m'pk T/p~H) *II
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In the present experiments the torque on a single crystal was measured. The torque C will be given by

C= (—]F/4]lP,

2053

where (f/ is an angle denoting rotation in a plane normal to the axis of suspension of the crystal. In the differentiation
of (AS), to obtain the torque, the main contribution comes from the cosine term since Eo/P'H»1. Thus the torque
on the crystal is given by

BF 8 (1/P*) 82/2*gp

(]][ 8(1/ti*) 82/2~ (]]P

/'E]24~
4/2 EokTV 82/or -(—1)' sin(22rPEo/PrH —or/4)

Hl/2
], c j or]242 4]y p-i p "s[nh(22r'pkT/p*H)

(A9)

PkT sinh(22roPkT/P*H)
X~

—Ph/P+ rpH f+ I(T//T), (A10)

which reduces to Eq. (12) of the main part of the paper by using the arguments following Eq. (2) in the main part
of the paper.

Case (ii)

If Eo& 5, then e" pE/s'E cannot be put equal to ee pE»[]" in the expression for Q2. Instead, put (E—E,)/k T= z
and the expression for Q2 becomes

Q2
— kTE [2roo]p] i(or—pEo//lrE -r/4]]—Ei [orp (OTr/Sr E]] ln (1+E

—r)gz (A11)

Since it is desired mainly to know the qualitative eGect of the energy-dependent relaxation time on the period of
the oscillations, Eq. (A11) can be simplified at the cost of accuracy in the value of Q2 by putting

(1+e *)=2,
whence

/[4/k T

Q kT }n2&
—[2roo]p] i(2 pEo/-/P rE 4/4)]— gs2a-plsTz/P» JIgg

2Ep

—/l4/kT

&-or(ao]p])(2&4[or p(Eo/4)/// E r-/4] 2&4—[orp(Eo+/4)/// E r/4])— (A12)

Taking the real part of Eq. (A12), Qo becomes

P~H ln2
Q2 —— e-2r'4] p] cos(22rpEo/p*H or/4) sin(22rp41/p*—H).

2
(A13)

Combin]ng Eq. (A13) with Eq. (A1) and adding it to Eq. (A4), the periodic part of the free energy of the condition
electrons in a metal exhibiting a resistance minimum due to the postulated energy-dependent relaxation time is

FPC110d1C

22r(2222~)o/2kT V(]8*H)'/2 (—1)"cos(2s PEo/P*H or/4)—
hv2 Po/2 sinh (2E'PkT/P*H)

2 sinh(22ropkT/]/]rH)
yZ-ph/~OP a ]+ sin(22rPA/P*H) . (A14)

It is thus seen that the eHect of v being equal to zero, in
an energy range 6 about the Fermi energy, is to add a
periodic term to the free energy whose amplitude is
sinusoidally modulated. The period of the modulation,I',g, is given by

F ~=P*/p~

The ratio of the period of the modulation to the period
of the oscillations is

o/4/+ (8 /p~) (pEo/ff ) Eol/~

For the zinc 0.008 wt. % zinc manganese alloy which has
been measured, Eo and 6 are, respectively, 3.8)&IO—"
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FIc. 10. (a) The density of populated states as a function of
energy for the pure metal. (b) The eRective density of states as a
function of energy for an alloy having the postulated energy
dependent relaxation time. (c) A schematic representation of the
magnetic energy levels which give rise to the de Haas —van Alphen
eRect. Populated levels are indicated by heavy lines.

remains unchanged on alloying, ~ then the Fermi energy
of the alloy must increase by an amount 6 in order to
accomodate all the electrons" $cf. Figs. 10(a) and (b)].
This increase in the Fermi energy leads to a decrease
in the period which is given by

&.ii.,= (P"/Eo) (1 &/—Eo)=I',...(1 &/—&0),

where Eo is the Fermi energy of the solvent. In the
present case 5/Eo 1/400 and hence a decrease in the
period of 0.25% would be expected. This is well within
the present experimental accuracy of 1.5%.

The efI'ect of the gap in the density of states on the
de Haas-van Alphen oscillations can be seen from Fig.
10(c).As the field increases the magnetic levels move to
the right. At energy Eo—6 they depopulate rapidly
giving rise to oscillations of period P /(Eo 6) —At.
energy ED+6 they repopulate and give rise to a second
set of oscillations having period P~/(ED+6). Since this
pair of oscillations have nearly the same period, they
will beat and give rise to a set of modulated oscillations
having period P*/Eo and a modulation period of P*/A.
Pcf. Kq. (A14)] From Fig. 10(b) it is seen that another
consequence of the gap in the density of states is that
the transition from populated to unpopulated states is
more abrupt than would normally be expected. This
results in an increase in the amplitude of the oscillations
in manner which is analogous to a reduction in tempera-
ture. As can be seen from Eq. (A20), this is the expected
behavior.

erg and 2.0X20 " erg. Whence P,q/P 400 and the
effect of the modulation will be unnoticeable.

The above theory suggests the following physical
model. Any state existing in the energy interval in
which 7 =0 must, by the uncertainty principle, be very
broad. As a consequence the transition probability be-
tween this state and any other unoccupied state will be
large and thus the net effect of the energy-dependent
relaxation time will be to induce a gap in the effective
density of states" LFig. 10(b)].If a rigid band model is
assumed for the alloy and the electron-to-atom ratio

~ Equation (2.3) in Dingle's (reference 15) paper also leads to
this conclusion. It should be pointed out that in either case the
concept of a "density of states" may not be permissible for states
which have such a poorly de6ned energy.
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~ In the present case zinc and manganese are both assumed to
have valence 2.

'«This eRect was not predicted by the detailed analysis given
earlier because, for mathematical simplicity, the analysis was
carried out under the assumption that E0 was constant.


