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LAppendix (a)j it has been demonstrated that these
terms are essentially equivalent to the inclusion of
higher order multipole interactions, and that it is
plausible to infer that their inQuence is most marked
for the long-wavelength acoustic modes, whose fre-
quencies depend only on the elastic constants. It follows

that both frequency distributions and dispersion curves

should be almost unaffected, except in the low-frequency

regions, and it would be interesting to test these
assertions experimentally.
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Ke discuss the interaction between paramagnetic atoms and elastic waves at microwave frequencies by
means of a total Hamiltonian comprising sound 6eld, interaction, and spins. From this Hamiltonian and
the Heisenberg commutation rules we obtain a set of coupled equations of motion. The condition of com-
patability leads in the usual way to a secular determinant, the solution of which is a dispersion relation
exhibiting the familiar anomalous change in velocity and absorption of waves near resonance.

I. INTRODUCTION

ITH the advent of methods for generating and
detecting ultrasonic waves at microwave fre-

quencies, it has become possible to study the interaction
between lattice vibrations and electron spin systems
directly. Such studies have been carried out by ob-
serving the efI'ects of ultrasonic waves on paramagnetic
resonance" and, conversely, by noting the e6ects of
paramagnetic ions on the propagation of ultrasonic
waves. '—' It is the purpose of this paper to discuss the
latter phenomenon, and, in particular, to develop a
theory of elastic wave propagation in a solid containing
resonant spins.

II. DISPERSION OF SOUND BY RESONANT
SPIN SYSTEMS

The experimentally observed change in the velocity
of sound propagation6 when the ultrasonic frequency
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approaches the resonant frequency of al1owed spin
transitions closely parallels the behavior of electro-
magnetic waves propagating in a medium containing
resonant atoms. The latter phenomenon of electro-
magnetic dispersion is well known and easily described
by Maxwell's equations for the electromagnetic field
and the dynamical equations for the atomic system.
When the atomic system is represented by a harmonic
oscillator, the problem is particularly simple and readily
formulated in terms of Maxwell's equations and
Newton's equations of motion for the oscijlator, these
same ideas being extendable to purely quantum-me-
chanical systems by means of time-dependent per-
turbation theory. To treat the dispersion of sound, we
employ a model analogous to that of the harmonic
oscillator used in elementary treatments of electro-
magnetic dispersion and derive a set of equations of
motion for the composite sound 6eld and spin system,
a simultaneous solution of which yields a dispersion
relation. We expect the scheme to be extendable to spin
systems obeying purely quantum laws of motion by
the use of quantum theory. As we shall see, such a
program can be carried out subject to the assumption
that the spins are uniformly distributed and that there
are many spins per sonic wavelength. The system of
spin 5= 1/2 is the counterpart of the harmonic osciiiator
in the optical case.
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Semiclassical Treatment of 8= 1/2

Ke start with the Hamiltonian of the complete
system (sound+interaction+spin) and derive from it
a set of coupled linear equations of motion, the simul-
taneous solution of which yields a dispersion relation
between wave velocity and frequency. For simplicity
we consider compressional sound waves propagating
along the x direction. We take the Hamiltonian to be

K
+—(U-—U-+i)'

n m 2

+he(U +g Ug)—$,'"'+gpHS. '"', (1)

where we assume one atom of mass m and spin 1/2 per
unit cell. U„ is the displacement and I'„ is the mo-
mentum of atom e along x. K is the restoring force
between nearest neighbors and H is the dc magnetic
field along the s direction. 5 '"' and S,'"' are, respec-
tively, the x and 2' components of the spin for the
unpaired electron on atom n, and e is the coupling
constant between the strain at position n and the spin
components S ~"~. The spin-lattice coupling is chosen
so that a component in U~~ —U„~ at the resonance
frequency of the spin is able to induce spin transitions.
V'e do not inquire into the origin of this coupling, except
to point out that by Kramers' theorem, ~ vanishes with
H. The simplest assumption is that the lattice oscil-
lations modulate the xs components of the g tensors,
in which case e varies linearly with II. From the corn-
mutators we obtain the Heisenberg equations of motion
for the operators I'„, U„, and S&"&, which are
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where (S "',S„'"')=iS,'"', etc., P=ek//2rnc so that S„
S„,5, do not contain h. %e assume for the moment that
the spin-spin relaxation time (to be designated by r) is
in6nite, a constraint which is removed when discussing
attenuation.

The preceding equations can be rearranged to give

+AU„=E(U +g+U g 2U—)
+Ite($ (n+u S {n—1)) (2)

d'S.'"'/dt'=eeoc(U. +) U—. g)$.'"' ~0'S '"' (3)

They would be linear were it not for the term
(U~&—U„~)$,'"'. Noting that the sonic wavelength
is long compared with the atomic spacing "a" and that
the rate of change of S, with time is of order e', a
reasonable physical approximation is to replace S, by
its average value per unit volume. A solution is now
readily found by assuming that both U„and S,&") vary
as e'("' ~" & where "nu" is the position along x of the
nth atom. k and co are then related by a typical dis-
persion relation,

(mco' —Ek'a') (aP—(oo')+4e'4) ($.)k'a'=0 (4)

where we have taken the long wave limit and replaced
sinks by ka and set gPH=kcoo. With the definition
vo' ——Eu2/m, the square of the phase velocity in zero
magnetic held, we obtain 6nally the relation for the
sonic index of refraction as a function of frequency,
where (S,) is the mean value of S, per unit volume.

vo
' 4e'gPH(S, )/E

1+
'V p~

4e'g PH($, )/A.=1—
(a(P+4e'gPH($, )/E co'—

It is interesting to compare the above equation with
that obtained in the case of optical dispersion near a
single resonant frequency cop,

'

(
c ' 4s.iVe'/ns
— =1+
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Both equations take the same form when (S.) is nega-
tive, i.e., when we have a normal population. The small
difference between the two expressions results from the
fact that in our model the spins are coupled to the
elastic strain rather than to the @aptitude of the atomic
displacement. A plot of (v~/s)' appears in Fig. 1(a) for
negative values of (S.). A positive value of (S,) corre-
sponds to an inverted population, and we shall return
to a consideration of this point presently. Finally, we
would emphasize that since we are dealing with coupled
systems [Eq. (2)j, the disturbance which propagates
is a mixture of sound and transverse spin waves (i.e.,
waves in S, and S„, but not S,). For small coupling e,
most of the wave energy is contained in the elastic
strain field and so propagates as a nearly pure sound
wave. As e increases, and particularly near resonance,

' W. K. H. Panofsky and M. Phillips, Classica/ E/ectricity end
iVcgnetism (Addison-%'esley Publishing Company, Inc. , Reading,
Massachusetts, 1955), Chap. 21.
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(b)

Fjo. &.{a}Sonic index of refraction {v0je}as a function of elastic
wave frequency co, where e0 is the phase velocity in the absence of
spins, e is the phase velocity with spins, coo is the spin resonance
frequency, and (S,)&0 {normal population). 5»=4m»f, PP(S+)jE;
see text. {b}Dispersion relation between elastic wave frequency
co and wave vector k=2m j) . 6=$4e'gPII(S )jEj"» is a stop band
near the spin resonance frequency ao0, see text. (S,)&0 {normal
population). In the case of a ferromagnetic spin system, the ex-
change coupling between spins makes possible the propagation of
spin waves entirely apart from the phonon Geld. Hence, the straight
line at co0 is replaced by a parabolic dispersion law, discussed by
Kittel. '

more energy is propagated in the companion spin wave
with the result that the disturbance is no longer purely
sonic and is propagated at a modified velocity. (Similar
ideas apply to phonon-magnon dispersion in a ferro-
magnet. ) An alternative description of a dispersive
medium is via the relation co= f(k), which can be
obtained from the secular equation (4), a plot of which
appears in Fig. 1(b). These relations show that the
group velocity 8(0/872 changes radically as ru approaches
the resonant frequency co(). For negative (5,) (thermal
equilibrium case) a wave packet slows down in the
neighborhood of ~0, as reported earlier. s Moreover, a
stop band exists, between coo and

(o(&
—L42'gpB I (S,) ~

/E5'"

as indicated on the graph. Within the stop band, k is
imaginary so that normal wave propagation is not
possible. Thus, such a wave impinging on the boundary
of a medium containing resonant spins would be re-
Qected as light is reQected in the case of "frustrated
internal reQection" or as x rays are reQected when the
Bragg law is satis6ed. As I ~ Do, the reQection at
surface X() approaches 100%. This behavior is outlined
in Fig. 2. Thus, insofar as we may neglect losses and
nonhnear e8ects in the derivation of (4), we expect a

' C. Kittel, Phys. Rev. 110, 836 {&958}.

Xo xo+

Fxo. 2. Behavior of ultrasonic oscillations within a resonant
medium, of inGnite Q, when the wave frequency falls within the
stop band. The exponential decay e ~~ within the medium for
&p~&&~&&0+I signifies reflection of the incident wave at X0,
which becomes total reflection as I.—+ ~.

slowing down and distortion of a wave packet of ultra-
sonic energy as it travels through a resonant medium.
When the sound frequency approaches auo, the dis-

persion becomes severe, and 6nally, the wave is highly
reflected when co falls within the stop band h. k is then
purely imaginary within the resonant medium. Al-

though our resonant spin system is not periodic, it has
much in common with systems which are, such as
electrical delay lines and crystals. Because of the slow

propagation of sound these e6ects are readily observed
in ultrasonic pulse experiments, as reported earlier, and
are manifestations of dispersion, a common property
of periodic and resonant systems. In nature any reso-
nant system will have a 6nite Q factor, or linewidth,
which implies a 6nite loss for wave propagation in the
resonant medium. In our model of 5=1/2 it is con-
venient to treat this linewidth phenomenologically in
terms of a relaxation time v. We can do so by adding
the quantities 5,/r and 5„/r to the left side of the
Bloch equations for S, and S„.By so doing we interpret
w as the spin-spin or transverse relaxation time. How-
ever, even in the absence of this interaction, a 6nite
linewidth would still exist, in which case v vrould

represent the eGect of spontaneous emission to the
phonon 6eld. In practice we should expect r to represent
both of these level-broadening eGects although in our
discussion here we attribute 7- entirely to spin-spin
interaction since we assume a fairly concentrated spin
system. The equations of motion are then

mL' =E(U. )+U+)—2U )
+$2(5 (n+)& 5 (n—)))

(6)8 (.)+5 (-)/,

8 (")+5„(")/r= —2(U„+)—U„))5,+(d()5,(")

which contract to the coupled wave equations (7).

mU =E(U )+U„i)—2U )+52(5,("+'&—S,'" '&),

(n)+ 25 (n)/r+. (1/&2+~ 2)5 (n)

= «a(5.)(U~2—U. )).

Again assuming traveling wave solutions of the form
e'("' ~"') for U„and S (") we arrive at the more general
dispersion relation (8).
Ek2a2 ( 2&()

'

tPlld E 'V

422g pH(5.)/E
(8)

(co()2+1/r2+422gPH(5, )/K5 co2+2ico/r—
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FIG. 3. (a}The real part (dis-
persion) and (b) the imaginary
part (absorption} as a function
of elastic wave frequency ~;
(5,))0 (normal population)
solid line, (5,)&0 {inverted
population) dashed line. See
text.

(a)

0-

X(Qp
—p/ —2p////'F

(9)
(QpP p/P)P+ (2p//T)P)

where Qp'—= (p/p'+1/r'+4p'gPH(S. )/E). The real and
imaginary parts are plotted against p/ in Figs. 3(a) and
3(b). As before when /d~Qp the sound wave experi-
ences anomalous dispersion in the vicinity of resonance,
but with now a concomitant rise in attenuation. '
Moreover, with 6nite value of v a stop band no longer
exists; wave propagation at frequencies within the
resonance bandwidth is still possible although the
physical meaning of group velocity is not clear if the
dispersion is pronounced. However, an energy velocity
can always be de6ned. The problem of wave propagation
at frequencies within the region of anomalous dispersion,
particularly as it applies to the propagation of pulses,
is an interesting and delicate matter which we do not
take up here, but which is dealt with at some length by
Brillouin. '0 %e point out, however, that a pulse of
sound incident on the surface Xo in Fig. 2 will be dis-
torted for three reasons. First, net absorption of energy
may occur, leading to changes in (S,). Secondly, the
various side bands will be difkrentially rejected at Xo
since the mechanical impedance of the resonant

9 By attenuation we mean dissipation of energy from the ultra-
sonic wave unless otherwise stated.' L. Brillouin, Weve I'ropogution and Grol p I'eloc~ty (Academic
Press Inc., New York, 1960).

For convenience, let us assume
~
(4p'gpH(S, )r/

2/dX ~((1 and rewrite (8) in terms of real and imaginary
parts. Then

(
2p'gPH(s. )—= (o-&P)=1-

E

medium will be frequency dependent, as seen from Fig.
3(a). Thirdly, the frequency components within the
linewidth will each have diferent phase velocities as
well as suBering varying degrees of attenuation. The
relative dispersion and attenuation will depend, of
course, upon the magnitudes of coupling constant e and
loss factor 1/r.

The case of an inverted population, (S,))0, merits
further comment. First, our analysis has assumed that
(S,) is constant in space and time, and this is now

unlikely to be correct except possibly for very short
time intervals. Nonetheless, a literal interpretation of
Eq. (9) for positive (S.) suggests that as /p~Qp the
measured velocity of pulses will increase because of the
resulting inverted dispersion LFig. 3(a)]. However, the
analysis of Sommerfeld" and Brillouin" indicate that,
to the contrary, it is not possible to propagate signals
at velocities greater than wp(p/-+ pp). Thus for an
elastic continuum, where vo is independent of frequency,
we mould not expect to observe an increase in the pulse
velocity with an inverted population. In contrast to
the behavior of dispersion (in so far as the velocity of
pulses is concerned), the absorption is directly related
to the sign and magnitude of (S,), as given by Eq. (8)
and portrayed in Fig. 3(b). In this case the sign and
magnitude of (S.) represents the potential for amplifying
or attenuating the sonic wave train. Thus an inverted
spin system, (S.))0, predicts negative absorption
(ampli6cation) by stimulated emission.

An experiment to demonstrate the ampli6cation of
sound pulses by stimulated emission from an inverted
population in ruby was suggested by one us (E.H.J.)
to Tucker and successfully carried out by the l.atter,
in accordance with the behavior implied by Eq. (9).' "
It is to be noted that the ampli6cation must not be too
large (i.e., p'(S,) must not be too large) in pulse experi-
ments if distortion caused by large dispersion is to be
avoided. On the other hand, for cw narrow band ampli-
fLcation (Fig. 4), the product p'(S, ) can be increased
accordingly. However, some means is needed in this
case to prevent reflected waves within the resonant
medium so as to avoid the buildup of self-sustaining
standing waves, i.e., feed back must be eliminated in
order to suppress self-sustained oscillations, as with
any ampliher. In contrast to ampli6cation, the pro-
duction of self-sustained oscillation, if desired, shouM

NNIT = \/vN/ /g/I/I/I ////l/l/ = NlTPN

FIG. 4. Amplification of elastic wave by inverted spin system
within the resonant medium Xp& x~&Xp+L.

"A. Sommerfeld, Ann. Physik 44, 177 (1914); we are also in-
debted to ¹ S. Shiren for discussion of this point.

"See also the discussion on phonon masers by C. H, Townes
and N. Bloembergen, in Quentin& Electronics, edited by C. H.
Townes (Columbia University Press, New York, 1960), p. 405—9;
C. Kittel, Phys. Rev. Letters 6, 449 {1961).
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be easily realizable from an inverted spin system under

proper conditions of reaction or feedback. Such an
oscBlator, at microwave sound frequencies, would
involve essentially the same features encountered in
the optical maser since the wavelengths are comparable.
In particular, we would expect to observe a series of
modes excited within the natural spin-resonance line-

width, the spacing of which depends upon the ratio of
sonic wavelength of crystal length. Further develop-
ment of quantum methods of sonic ampli6cation will

doubtless continue and may aBord the opportunity for
detailed exploration of ultrasonic phenomena at fre-
quencies well beyond the present microwave range.

Our model of 5= 1/2 coupled to a longitudinal wave
through the x-z component on the g tensor is somewhat
idealized and, though illustrative in all the essential
ideas of dispersion and attenuation, is not a common
example of what we 6nd in nature. A typical spin
system involves a more complicated Hamiltonian
containing terms arising from the action of the crystal
6eld on the spin through the spin-orbit interaction. As
it turns out, these terms are usually much more sensitive
to lattice distortion than are the components of the

g tensor and so provide the main coupling between
sound 6eld and spins. An example of such a system is
Fe++ in MgO which is described by an effective S= 1,
and we now address ourselves to the mathematical
treatment of this more general problem.

Semiclassical Treatment of 8 = 1

We start by considering the total Hamiltonian for
S=1, in a cubic crystalline 6eld, with a compressional
sound wave propagating along the [100jdirection:

I'„' E
X=+ +—(U.—U. ))'+gpH S&")

2' 2
SA

+ [(S &"))'—xj(U„+)—U„)) .
2

As in the previous example of S= 1/2, we assume linear
restoring forces between nearest neighbors only, and
that each atom has a spin. However, in contrast with
S=1/2 we here introduce coupling to the lattice via
the Q term instead of through a component of the g
tensor. Moreover, we may expect that for a general spin
Hamiltonian a quantum-mechanical treatment will be
required similar to that used in describing optical
dispersion in a real atomic system, in contrast to the
harmonic oscillator model. To this end we describe
presently a quantum-mechanical approach which is
applicable to a general spin system. We describe 6rst,
however, a method analogous to choosing normal modes
in a many-body linear system obeying classical laws.
This method was pointed out to one of us (E.H.J.) in
some detail by M. H. L. Pryce of the University of
Bristol for the case of 5=1 and IId, perpendicular to

yZ

/$45

~x

Fzo. 5. Rotation of x,
g axes relative to cubic
axes. Hd, parallel to 2'

axis. Comp ressional
elastic wave propa-
gating along $100j, see
text.

the direction of sound propagation. We have found that
this method can be applied to a more complicated spin
Hamiltonian with 5= 1, although extension to systems
with 5&1 is rather dificult owing to, apparently, the
algebraic properties of the spin operators for such
systems.

In describing this essentially "classical" method we

are concerned with deriving and linearizing equations
of motion for operators like U„, S,', S„', SQ„+S„S„
etc. For convenience let us take the case pertaining to
Fe++ in MgO with Hq, 45' to [100) and with atomic
displacements along [100] only. The Hamiltonian is

then

P2 K
K=Q +—(U —U ))'-

n 2852
V2

+ gP+(S[ool] +S[100] )
2

SA
+ [(S[»o]'"')'—oh(U +)—U -)) (11)

2

E
+—(U.—U ))'+gPHS '"'

n 2m 2

SA
+ [(S (n))2+ (S (n))2+S (n}S (n)

+S.'"'S.'"' —
o J(U-+}—U=)), (13)

where U still denotes the displacement of the eth atom
from its equilibrium position along the [100) direction.

The algebra is simpli6ed if we take a new set of axes
with z parallel to Hg„as shown in Fig. 5, and transform
the spin operators Stiool and S~ooil into the new x, z

frame. Since these operators transform as components
of a pseudovector, we have that

S[]oo]= (+/2) (S~+S&)i S[oo&] (~/2) (S* S*)i

S[)oo] =o(S*+S +SD*+SS )& (12)
so that
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As before, using the commutation rules for the time
dependence of an operator, we derive a set of simul-
taneous equations of the motion. The equation for U„
becomes

p)pU =E(U +)+U ) 2U—)

=+i x)A
+ 2 (52+5*'+SD*+54*—s)'"'

r-n —i
X(k, .-~'..) («)

S 'S„+S„S' reduce simply to S„.To carry the analysis
further it is necessary at this point to linearize the
above equations by dropping out all second-order terms
such as U+„'") and by assuming that S,(") is in a
de6nite state S„constant in space and time when it
appears on the right-hand side of Eqs. (15). These
equations taken together with that for U„yield the
following set of linear simultaneous equations:

—p)pU„+It (U„+,+U„,—2U„)

Equations (13) and (14) suggest that we may need
equations of motion for products of operators like S ',
Sgcc+$„$, SsS,+S,S„etc. Some experimentation
shows that the following set of equations are suf6cient
and lead to the correct dispersion relation, which can
be derived by an alternate method.

d (5,& "&)'/dh = —cps(SQ„+$„$.)(")
—-', S(U +)—U &)5„'"',

d (5„'"')'/dh =cps(SQ„+5+, ) '"',

d($ &"&)s/dh=-'$(U )—U ))5 "
d (SD,+5pS,) & "&/dh= 2('p(25.'+5,'—2)&"'

(»)—
p &(U~)—U -))

X($ ( )+5 ( ))

d(S„S.+S,S„)'"&/dh= ppp(SP, +5,5,) "(
—

p &(U-+)—U.-))
X (5,( ) 5 (.))

d (M', +$,$,) & "&/dh = —
cps (SpS,+5,$„)&"&.

The derivation of these equations makes explicit use of
the algebra for the spin operators associated with S= 1.
For example, products of the form 5,25„+S„SP and

X)A»+i
+ E {5'+($.)'+M*+$6.—s }'"'

X (hi. ),p —c).+),.) =0,

X}—(5 '"')'—~p($,)(U +)—U„))
dP 4

+2pp 'L2(5 &"&)'+(5 )P—23=0
2

(5 5 SQ ) (m) +cp 2 (5 5 +5+ ){p)

JI
S

+—cpp($, )(U.~&
—U„))=0.

4

(16)

By a slight change in the quantity {5'+S.s+$,$,
+SQ.—-', } to read {5'+—'5' —1+5,$,+SQ,} and
assuming traveling wave solutions of the form e'("' ~»')

where "Nc" measures the position of the eth atom
along the L100) direction and "cs" is the atomic spacing,
we easily arrive at the following secular equation, where
we have already taken the long-wavelength limit by
replacing finite differences with derivatives.

(K{h'ks s)pp)"-)/k —ik(Sa/4) ik(Sa/4)
ik(Su/4) (4(pps —cp')/cpp(5, ) 0
ik (x)a/4) 0 (~p' —cps)/~p($, )

This secular determinant yields the following dispersion
relation" .

k'i'E /vp '

neo' k v

the plot of which appears in Fig. 8. The above equations
and graphs show a variety of dispersion phenomena
having to do with the interaction of sound waves with
resonant systems, and similar in almost all detail to

S))' AH($. ) 1 1=1+ —
I

+
4 ) E M p

—GP 40)p —GP)

A plot of Eq. (18) in Fig. 6 shows the familiar anomalous
dispersion near cup and 2~p corresponding to transitions
between the spin levels —1, 0, 1 in Fig. 7 for 5=1.
Equation (18) can be inverted and solved for cp vs k

l.0

fs1O P f(P p

"The constant (D/4)'g8H(S, )/K appearing in Eq. (18) can be
made to agree with the corresponding constant in Shiren s dis-
persion relation (see reference 6) by making the following sub-
stitutions in Eq. (13): I et (Deb/4) (spins} (U„+1—U» 1)/e=g(spans) (U„+1—U„1)/a from wjuch D/4= g/hg.

Fro. 6. Sonic index of refraction (e0/e) vs elastic wave frequency
a for S=1 system. Two resonances appear, one for transitions
between S,=o and +1. or —1, and the other between S, +1
and S, —1, for a compressional elastic wave propagating along
the L100$ cubic axis (see Fi{h. sl.
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(sz)+ 0

(Sz) &-I

FIG. 7. Spin resonance energy
levels for S=1 system.

Hamiltonian [Eq. (13)j for S=1, we are concerned
with the following spin functions:

S.= exp( i3Cot/h)S, exp(i3CDt/tl) =5„
S,=exp( —i3Cpt/5)S exp(i3Cot/ft)

= —',(S exp(icuot)+S+ exp —icoot},
where

that encountered in the optical spectrum of electro-
magnetic radiation. Because of the comparative slow-
ness of sound and the ease of changing level popu-
lations at microwave frequencies, it is possible to study
experimentally the dispersion surfaces in rather great
detail. The above relations were derived with the
assumption of no loss or level broadening. We know
from our earlier study of 5= 1/2 system that the general
behavior is not greatly modi6ed when a loss term or
relaxation time is introduced, the main effect being to
eliminate the stop bands and provide either absorption
or amplification for waves propagating near the resonant
frequencies, instead of causing complete refiection at a
boundary as depicted in I'ig. 2.

Treatment of General Spin System via
Contact Transformation

As remarked earlier the dispersion relation for S=i
was derived by a semiclassical approach which is
dificult to carry out for general spin systems. Thus,
for these cases we turn 6nally to a purely quantum
mechanical method.

The scheme is to use a contact transformation to
transform the original total Hamiltonian [Eq. (16)j
into a new function which does not contain the spin
Hamiltonian but which is time dependent, involving
the resonance frequencies in the form e'"»'. VVe carry
out this transformation by means of an operator
T= exp(i3Cpt/It) which is used to define new variables
5;=TS;T~, etc. , and a new Hamiltonian

3C' =X+i It T*itT/Bt.

S~= (S.wi 5„),

3C=gP&5.= tl4&oS..

So that BC' becomes

P' K
3C' =Q +—(U —U &)'

2' 2

SA
+ (U U )(5 2+2[5 2ei2capi

4

+S+'e """+55++5+5 +2(5 5,+S,S )e'"0&

+2(5+S,+S,S+)e '""j—-'}'"' . (19)

For convenience we henceforth clrop the tiMe, and
proceed to get equations of motion for the operators
U„, S+', and S+S,+S~.

mU. =K(U.+&+U & 2U )—
sh ~g

+ Q (4$ 2+5 2eimraoi

r n—1

+5+'e "~"+2(SWg+SgS )e'""

+2 (5+S.+Sgs+)e '"0&+5M+

+5+5 }'"&(5, &, ~—b,+&, ),
d—

(S~&
"&)'=wi—(U„+&—U &)($,)e+" "

dt 4
+terms in ($~&"&),

The new Hamiltonian K' is no longer the energy, but
still gives the equations of motion. "Thus for the total ($~5,+5,5+)("&=~i—(U„+,—U„,)($,)e '"0'

2QO

k FIG. 8. Dispersion re-
lation between elastic
wave frequency co and
wave vector k = 23'-/A, .
(S,) (0 (normal popu-
lation). Anomalous dis-
persion and stop bands
occur in the neighbor-
hood of the resonant fre-
quencies coo and duo for
comp ressional elastic
wave propagation along
$100j cubic axis (see
Fig. 5).

+terms in (S~'"'),

where the spin operators on the right-hand side have
been replaced by constants, such as (S.). This implies
that the integration to follow is correct only for small
time intervals. We integrate the last two equations by
assuming U e'&"' ~"' to yield

U e+'2"P

(S~& "&)'=W—(Sg) s&nka +const,
2 i(coa2(up)

"P. A. M. Dirac, The Principles of Quantum Mechanics
(Clarendon Press, Oxford, 1947), 3rd ed. , Chap. 5, Sec. 44; W.
Heitler, The Quantum Theory of Radiation (Oxford University
Press, New York, 1957), 3rd ed.

S U„e+'""
(SQ.+5.$~)'"&=W—(5.) sinka +const,

i(cow(up)

and substitute these results in the equation for U„
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3C'=K(lattice)+p &r&c(U +&
—U„&)(a&2 " e'""'

+a 4 (n) t»
—iea13t+a (n) faico13t+ a * —ica13t

+a„{n)~i(u23t+ a +(n) ~
—i&a23t+. . .

+products of a&"&'s}, (20)

where the a'"'s are functions of the spin operators 5,("),
5„("&,5,(").If we specify that all spins are initially in a
definite state "P', we deduce a general dispersion law
of the form

A-s2

(21)

where 2,;=(/la;, '"&,a;,*&"&If) and where the operation
(a,;&"&,a;,*&"&) yields a quantity independent of position
such as, for example, (5,) in the case of S=1/2. The
foregoing discussion has omitted level-broadening
effects which could be included in the Hamiltonian or
added phenomenologically to the equations of motion
as was done in the example for S=1/2; in either case
the result would produce a more general dispersion law
of the form

2 A;; ——1—= 1+2 . , (22)
'i. &d,p+ (1/r;, )' M' (2&&d/r—;;)—

where 7-;; is a relaxation time associated with the i ~ j
transition, and the dynamical behavior would follow
closely that already encountered in the 5= 1/2 system.
The foregoing ideas apply equally well to a three-
dimensional sound 6eld interacting with a general, but
not too dilute, spin system, in which case we can expect
a variety of sonic phenomena such as Raman scattering,
parametric effects, and rotary polarization in addition
to dispersion, loss, and amplification.

III. DISCUSSION

In our analysis we have, essentially, assumed that at
some de6nite time, to, the spins are in known states and

which then gives the dispersion relations, Eq. (18),
derived earlier. In the method just outlined the "terms
in (5+&"&)" are dropped on the assumption that they
vanish at the starting time for the integration. The
range of integration must be such that no appreciable
change in population occur.

The above procedure can be applied to a general and
more complicated example to yield a general result.
Suppose

3&'. =K(lattice)+&r&e(U. +&
—U. &)f(5'"',5,'"',5""')

+BCO(spin),

and that the eigenfrequencies Aa&,,=E;—E; of Ko (spin)
are known. If now the contact transformation is applied
to BC such that 3C'=X+iAT*BT/'8f, the new Hamil-
tonian function K' will take the form

that a lattice wave is being propagated. Ke have then
solved the equations on the assumption that the spins
do not change their states significantly. We 6nd that
near the resonance frequencies of the spins it is not
realistic to think in terms of purely lattice oscill.ations,
for each such disturbance is accompanied by a wave
motion in the transverse components of the spin
moments. The coupling of the lattice and spin dis-
turbances, which in the uncoupled system would have
different velocities, results in their being a change in
the apparent velocity of sound. There is an associated
attenuation, by which we mean that the amplitude of
the disturbance decays with distance due to irreversible
degradation of energy. With an infinite spin-spin
relaxation time there is no energy dissipation within
the resonant medium. With a finite spin-spin relaxation
time energy dissipation occurs, and one may ask where
this energy goes to. Unfortunately, it has not proved
feasible to treat the dipolar interaction between the
spins completely, and we have been forced to use the
phenomenological description given by 7, the spin-spin
relaxation time. There is, however, good experimental
evidence to support this phenomenological description.
If, then, it is accepted that the introduction of the
concept of spin-spin relaxation is a valid one, the energy
dissipation occurs because to propagate a wave near
resonance a wave motion must be set up in the trans-
verse spin moments. Energy is required to do this.
Furthermore, the spin-spin relaxation is constantly
trying to destroy such coherences and we must suppose
that a continual supply of energy is necessary to main-
tain the spin wave. It is possible for the destruction of
spin coherence to take place by mutual spin Qips, so
that PS, does not change. That is, no work is done on
or by the external field, H. However, this does not mean
that the energy of the spin is unaltered, for the dipolar
energy may be changed. Thus the energy loss we are
considering is a process whereby energy in a sound wave
near resonance is transferred to the mutual dipolar
energies of the spins, where it is electively randomized
in the sense that if a quantum htdo is taken from a
lattice oscillator it is broken down into many smaller
units and given to the dipolar interactions. Quite what
happens to it then is not entirely clear, but it seems
plausible that as every lattice mode is slightly coupled
to the spins the energy may be fed back to all the lattice
modes through various higher order interactions to
establish a lattice temperature. The above process must
clearly be distinguished from direct absorption of sound,
resulting in there being changes in +„5,& "&. Both
processes may occur simultaneously, and it would be
necessary to distinguish them in any typical pulse echo
experiment.

Finally, a remark seems appropriate on the oft-
alluded-to phonon bottleneck. In the theory of the
direct process in spin-lattice relaxation the spins ex-
change energy with lattice modes "on speaking terms, "
that is, with lattice modes having frequencies close to
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coo. Orbach" has used thermodynamic arguments to
show that heating of phonon modes near ~0 via the
direct process and under typical conditions will proba-
bly be small. %e suggest that the dissipative effect of
spin-spin interaction will diminish still further the
heating of these modes and so correspondingly reduce
the likelihood of a phonon bottleneck.

IV. CONCLUSIONS

%e have developed a theory of ultrasonic dispersion
resulting from the interaction between transverse spin
moments and elastic strain fields oscillating at micro-
wave frequencies. Neglecting nonlinear effects, the
theory predicts a reduction in the group velocity and
and increase or decrease in the absorption of elastic
waves near the spin resonance frequency for normal and
inverted spin populations, respectively. The eBect of
damping is treated phenomenologically in terms of the
spin-spin interaction time 7-. The change in elastic wave
propagation near the spin resonance frequency is known
as anomalous dispersion and is the manifestation of two
coupled wave 6eMs, one an elastic wave, the other a
spin wave in the transverse components of spin, which
propagate with the same phase velocity. Finally, we

~~ R. Qrbach, Proc. Roy. So@. (I.ondon) A264, 481 (1961}.

suggest that the dipolar spin-spin interaction may act
in a dissipative manner to extract energy irreversibly
from the phonon modes near the spin resonance fre-
quency and thereby reduce the likelihood of a phonon
bottleneck under typical conditions of magnetic
resonance.
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