
PHYSICAL REVIEW VOLUME 229, NUMBER 5 1 MARCH 1963

Sum Rule for Lattice Vibrations; Application to Forces in Diamond Structures
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It is shown that in a crystal of any number e atoms per unit cell many interatomic forces—to wit, all
forces which are electrostatic in nature {Coulomb, dipole, ~ ~, multipole), and all forces which act only
between unlike atoms —contribute only constant terms to the trace of the dynamical matrix. Therefore,
the sum Z;co; {q) over the 3e squared frequencies when the wave vector is q is, in fact, independent of q in
crystals in which all forces fall into one of these classes; conversely, if experiment shows that sum to actually
be a function of q, then forces which fall into neither class—to wit, forces, not electrostatic in nature, between
like atoms —must be present. Analysis of data for germanium and diamond suggests that such forces are
present in the latter, but, within experimental uncertainty, absent in the former.

~HE sum rule for lattice vibrations

P, coal(q) = const,

where ~;(q) is the frequency in the ith branch when the
wave vector is q, has been derived by Brout. 2 The rule
was said to be valid for diatomic ionic crystals whose
constituent ions interact only by two forces—Coulomb
forces between all ions and repulsive interaction between
nearest neighbors alon- and to be useful as a check
on numerical computation. The purpose of this note is
to point out that (1) can (with simple modifications in
some cases and no modifications at all in other cases)
also be applied to more general force models and to
non-ionic crystals, and may also be useful for extracting
information about forces acting in. a crystal from
experimental measurements of the frequencies. As an
example, data for the diamond structure are analyzed.

The significant fact about the sum rule (1) is that its
right-hand side is independent of q. The way in which
the sum rule is obtained can be qualitatively sum-
marized as follows. The sum of the eigenvalues of any
matrix is equal to the trace of that matrix, and the sum
of the squared frequencies of a vibrating lattice is,
therefore, equal to the trace of the dynamical matrix.
The 36 elements of the dynamical matrix of a (3-
dimensional) diatomic lattice with two atoms per unit
cell can be labeled D p'~, where a, P= 1, 2, 3 denote the
three Cartesian directions and i, j=1, 2 the two atoms
in a cell. The q-dependent part of any interaction
between two unlike atoms appears' in elements D p22

or D s2i, and the diagonal elements D "and DP (and,
hence, the trace) therefore contain no q-dependent
terms referring to interaction between unlike atoms and
thus, in particular, no q-dependent terms referring to
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on SoM State Physics at the University of Ghent, Belgium,
summer 1962. It is a pleasure to thank the North Atlantic Treaty
Organization for financial support, Professor W. Dekeyser and his
staB for their hospitality, and Dr. H. Bilz, Professor S. D. Smith,
and Dr. C. C. Klick for stimulating conversations.' R. Brout, Phys. Rev. 113,43 (1959).The value of the constant
is given in this paper, but is not of interest to us here.' M. Born and K. Huang, Dylamkal Theory of Crystal LaNk es
{Oxford University Press, New York, 1954), p. 68. By "like"
{"unlike"'} atoms we mean atoms located at equivalent (non-
equivalent) sites of the unit cell.

interaction between nearest neighbors (which are
necessarily unlike atoms). As to Coulomb forces,
q-dependent terms due to them do appear in the
diagonal terms, but their sum vanishes when the trace
is formed. To see this, consider the contributions to
D " from one particular atom of kind i. It is the
restoring force in the o. direction that this atom, when
displaced in thee direction, experiences on account of the
i atom at rest at the origin. The contribution is, there-
fore, proportional to the second derivative with respect
to x of the potential between the special i atom we are
considering and the one at the origin; and the sum of
this over the three n's, which appears in the trace, will
vanish because electrostatic potentials obey Laplace's
equation. ' It follows from those two separate arguments
that neither nearest-neighbor forces nor Coulomb forces
contribute g-dependent terms to the trace; i.e., that the
left-hand side of (1) is, in fact, a constant.

When the derivation of the sum rule (1) is presented
as in the preceding paragraph, three extensions of its
validity suggest themselves. First, and perhaps trivially,
it is the q-dependence contributed by the Coulomb
forces of each atom (and not only of the sum of them
taken over all the atoms in the entire lattice) to the trace
that vanishes; hence, the rule is valid for all sorts of
lattices, regardless of their structure, and is not con6ned
to the NaCl type or other simple substances, nor even
to diatomic lattices (i will run from 1 to 3nin an n. -
atomic crystal). Second, and more importantly, the
reasoning involving Coulomb forces goes through just
as well for any other electrostatic force, being based
only on obedience to Laplace's equation; therefore, the
validity of the sum rule extends beyond purely Coulomb
forces to multipole forces of all kinds, and its interest
therefore extends also to valence or other non-ionic
crystals in which Coulomb forces are absent but higher
multipole forces are important. 4 Third, the argument
regarding the absence of contributions from nearest

3 G. Leibfried, in Handbuch der Physik, edited by S. Fliigge
{Springer-Verlag, Berlin, 1955), Vol. VII p. 247; M. Blackman,
Proc. Roy. Soc. (London) A181, 58 (1942).

'See, e.g., M. Lax, Phys. Rev. Letters 1, 133 (1958); %.
Cochran, Proc. Roy. Soc. (London) A253, 260 {1959);F. Seitz,
Modern Theory of Solids (McGraw-Hill Book Company, Inc., New
York, 1940), Chap. VII, X.
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Fro. 1. The q-dependent part
of Z; au;I(q). Curve —second-neighbor
interaction in the diamond lattice-
theoretical. Circles —diamond (Hardy
and Smith, reference 9). Triangles—
germanium (Brockhouse and Iyengar,
reference 8).

neighbors "repulsive" (more accurately we should call
them "short-range" or, for our purposes, "nonelectro-
static") forces applies not only to interaction between
6rst neighbors, but to all interactions between all
unlike atoms in the lattice regardless of their distance,
fox only interaction between like atoms contributes
q-dependent terms to the trace.

Summarizing the preceding paragraph, we may say
that (1) will apply to all crystals all of whose atomic
interactions fall into at least one of these two classes:
(1) electrostatic, (i.e., Coulomb, dipole, , multipole);
and (2) interaction between unlike atoms. For brevity,
let us call forces which fall into either of these classes
"trace-constant" forces, and those which fall into
neither of these classes "trace-variable" forces. (A
trace-variable force is, then, a force that is not electro-
static in nature' and acts between like atoms). If, then,
an experimental measurement reveals that P;{»P(q)
depends on q, then this dependence may be attributed
to the presence of trace-variable forces. Thus, the sum
rule provides a direct and simple method for checking
on the presence of trace-variable forces—one computes
Q, {»,s({1) from experimental data and sees if (1) is
obeyed; this is a method which is not only simpler and
demanding of less data, but also more sensitive than
analysis of the entire dispersion relation would be, for
in a scheme in which the eBects of trace-constant forces
do not vanish rigorously, they are likely to be strong
enough to mask the effects of the (presumably weaker)
trace-variable ones.

Let us put this on a more quantitative basis and work
out some examples. To have a, sum rule that applies to
crystals with trace-variable forces we must replace
(1) by

where P{"' is the contribution to the trace of the eth
(labeled arbitrarily) trace-variable force and the P„are
constants independent of q and related to the strength

~ Although the meaning of "electrostatic" interaction may be
intuitively dear to the reader, it is not easy to give a rigorous
de6nition, since, in the 6nal analysis, ajl atomic forces are pre-
sumably dependent on electric charges of the constituents. %e
may perhaps de6ne as nonelectrostatic, those interactions that
cannot be correctly described by the chasmal behavior of some
multipole distribution.

of the force. Let us, e.g., consider central forces between
second neighbors. LThis might well be suspected to be

the dominant trace-variable force in some crystals, for
short range interaction between lrst and third neighbors
will fall into class (2) for most crystal structures while

"short-range" interaction between fourth and more

distant neighbors is likely to be extremely weak, and
"long range" interactions are likely to fall into class

(1).]Quantitatively, the effect of such second-neighbor
forces on the trace must be separately calculated for
each lattice, but this is easy to do for several important
ones. In the CsCl lattice, the second neighbors form a
simple cubic lattice, so that the contribution to the
right-hand side of (1) is' fb "'=3—(Cz+C2+C3),
where C~= cosmic~ and in both the NaCl lattice and the
diamond lattice, the second neighbors form a face-
centered cubic lattice, so that the contributions to the
right-handsideof(1)is'f{ {'&=3—(C~C~+CsC~+CIC~).
The contribution /{2&(q) from central forces between
fourth neighbors can also be read o6' these formulas"

b {2) y{~{l)snd y{ {2) 3 (CPyC22+Cs~)
We have attempted to carry out this analysis for

germanium and diamond, using the phonon spectra
derived, respectively, by Brockhouse and Iyengars from
neutron scattering and by Hardy and Smith9 from
infrared absorption measurements. Our results are
shown in Fig. 1. In each case we used data of {»;({1)in
the $100j and! 111jdirections (the only directions in
which they are given), computed P,' {»,s({1)for several

{1values, subtracted the constant P {»,s(0), divided by
the same constant and plotted the result. In terms of
Eq. (2), what is plotted is p„p„p{"&({I)/p;{»p(0).
(Division by g; {»P(0) was a form of normalization to
make the data for the two substances roughly com-
parable with each other and with the experimental
uncertainty in each case.) The results for germanium
are seen to be strikingly di8erent from those for
diamond: P„P„P'"& seems to be essentially zero for

~ See, e.g., H. B.Rosenstock, Phys. Rev. 97, 290 (1955),Eq. (3).
~ Footnote 6, Eq. (5).' B.Brockhouse and P. K. Iyengar, Phys. Rev. 111,'/4"I (1958),

Fig. 5.
~ J. R. Hardy and S. D. Smith, Phil. Nag. 6, 1163 (1961),

Fig. 2.
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4e, but to be a de6nite and apparently monotonically
increasing function of q in both directions for diamond.

In interpreting this result, we must remember that
the original data are subject to considerable experi-
mental uncertainty —about 12% for Ge and O'Po for
diamond are the maximum probable deviations esti-
mated by the experimenters~'0 themselves. The slight
scatter about zero of the points for Ge in Fig. 1 is,
therefore, physically not signi6cant —we may conclude
that trace-variable forces are absent in Ge within the
limits of present-day experimental precision, By
contrast, the deviation from zero of the points for

'0 In addition, we should quote Hardy and Smith's (reference 9)
description of their own results as "somewhat tentative" —a
necessary consequence of the rather involved analysis required to
translate infrared absorption into phonon energies. Analysis of
neutron scattering is comparatively straightforward.

diamond exceeds the experimental uncertainty by a
considerable margin, and indicates that trace-variable
forces are active in that crystal; their contribution to
the trace seems roughly describable by a function
1—

cosset

in the [111)direction and by 2(1—
cosmic) in

the [100j direction. The curve which has been drawn
into Fig. 1 is the function const. )& ff "&, which the
points should follow if the only trace-variable force in
the crystal were a central interaction between second
neighbors; the fact to notice is that along [111jthey
do not do this, showing that central second-neighbor
interaction cannot explain our results. The reader may
verify, by plotting f& &", that fourth-neighbor central
interaction would not work either. It seems likely,
therefore, that a trace-variable force in diamond is a
long-range, nonelectrostatic one, or a short-range one
with a noncentral component.
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A report is made of an attempt to fit the temperature dependence of the observed nuclear magnetic reso-
nance (NMR) frequencies for the two sublattices in magnetite to the measured temperature dependence of
the magnetization. It is shown that when the microwave g, ff values as reported in the literature are used in
this calculation, no fit between the NMR experiment and the moment measurement is obtained. If a g, ff = 2
is assumed, however, the data may be brought into good agreement.

HE temperature dependence of the nuclear mag-
netic resonance (NMR) frequency for Fe'+ ions

has been shown to be a good measure of the sublattice
magnetization in many ferrimagnetic oxides (e.g. ,
YIG'~ GdIG, ' 4 and Li~.,Fe2.~04'). In this paper a
report is made of the temperature variation of the sub-
lattice magnetization in Fe304 where both Fe'+ and
Fe'+ ions are present. Magnetite in the cubic phase,
above 118'K, is an inverse spinel with all tetrahedral
sites occupied by Fe'+ ions, and with Fe'+ and Fe'+
ions occurring in equal numbers in octahedral sites.
Verwey' has proposed that there is a rapid interchange
of electrons among the iron ions in octahedral symmetry
to explain the high conductivity of cubic magnetite.
The NMR data are analyzed in terms of this model and
in terms of the published values for the electronic g

' C. Robert, Compt. Rend. 251, 2684 (1960).
'LeDang Khoi and M. Buyle-Bodin, Compt. Rend. 253, 2514

(&961).
3 S. Ogawa and S. Morimoto, J. Phys. Soc. Japan 17, 4 (1962).' E. L. Boyd (unpublished).
~ H. Yasuoka, A. Hirai, M. Matssura, and T. Has3u, J. Phys.

Soc. Japan 17, (1962).' E. J. %. Verwey and P. %. Haaijman, Physica 8, (1941).

factor as measured by microwave means. It is shown
that the Verwey model holds for this analysis but that
the microwave g factor does not indicate an unquenched
orbital moment.

Some features of the nuclear resonance of Fe" in
magnetite have been published elsewhere and need
only be brieQy described. ' The signals come from the
bulk of the material rather than domain walls as in the
case of the magnetic metals. The resonance from the
Fe'+ ions in tetrahedral symmetry is a sharp single line.
That from octahedral ions is a very broad distribution
of resonances, the distribution being due prinicpally
to a dipolar magnetic 6eld acting on these ions due to
the rest of the magnetic lattice. The shape of the reso-
nance distribution from octahedral sites unambiguously
shows that it is from octahedrally located ions and that
these ions are in the bulk of the material. Figure 1
shows the observed frequencies of the tetrahedral
resonance, the distribution of the octahedral resonance
and the magnetic moment (as measured by a force
balance) versus temperature. The NMR data were taken

~ E. L. Boyd and J. C. Sloncsewski, J.Appl. Phys. 33, 3 (1962).


