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The analytic structure of partial-wave amplitudes is used to derive a dispersion relation for the scattering
phase shift. This dispersion relation is used to obtain a lower bound on the momentum derivative of the
phase shift. The bound depends on an integral over the unphysical (left-hand) cut in the momentum squared
plane and can be expressed in terms of the number of zeros of the real part of the S matrix along the un-

physical cut. Stronger bounds are also presented involving the position of these zeros and the locations
and widths of resonances and virtual states. The same approach is used to obtain limits on the magnitude
of coupling constants.

I. INTRODUCTION
' T has been shown by Kigner' that the momentum
~ - derivative of the scattering phase shift must exceed
a certain hmit if the potential vanishes beyond a certain
distance. A similar limit has been obtained by Goebel,
Karplus, and Ruderman' for a relativistic neutral two-
particle system, again under the restriction that the
interaction be of 6nite range.

Since, fundamentally, Wigner's theorem is a conse-
quence of causality, it should be possible to prove it
within the framework of S-matrix theory, without intro-
ducing explicitly an interaction range but by making
use instead of the analytic structure of the S matrix.
This is the aim of the present paper wherein the
analytic structure of the S matrix is determined from
the assumption that the partial-wave amplitudes have
no singularities other than those that follow from the
38andelstam representation. As a by-product we also
obtain upper limits for the coupling constants, similar
to those obtained by Ruderman. '

The bounds on the coupling constant or the mo-
mentum derivative of the phase shift involve, in their
weakest form, the number of zeros of the real part or
the imaginary part of the S matrix on the unphysical
cut. Stronger bounds are also presented involving the
positions of these zeros, and/or the positions of the
zeros of the 5 matrix itself in the entire complex plane
(i.e., the locations and widths of resonances and virtual
states), and/or the imaginary part of the phase shift
along the inelastic cut.

2. DISPERSION RELATION FOR PHASE SHIFT

Consider the functions b(s), S(s), f(s), and p(s) of the
complex variable z related by'

e'*'&'& =S(z)= 1+2'�(s)f(s).

The phase shift b(x), the S matrix S(x), and the partial-
wave amplitude f(x) are the boundary values of the
corresponding functions of s as s approaches x from
above, where x is real and positive and equal to the
square of the three-momentum of the scattering par-
ticles in their barycentric frame. p(z) is a kinematic
factor. We consider the scattering of pseudoscalar
isovector particles (pions) as an example. Then

p(s) =""(z+1)-'", (2)

where we have set the pion mass equal to unity. Here
and in the following we define the roots z'" and (s+ 1)"'
such that their imaginary parts are non-negative in the
cut plane with branch lines between 0 and +~ and
between —~ and —1.We note for future reference that
S(s) and f(s) are real functions

S*( *)=S( ) f*( *)=f( ) (3)
whereas .*(*)=-.(:), b*(")=-b(). (4)

1t follows from the JQandelstam representation that
f(s) is analytic in the s plane cut as above. Hence by
Eq. (1), S(z) is analytic in the cut plane, and b(s) is
analytic in the cut plane except for logarithmic branch
points at the zeros of S(z). Let the zeros of the S matrix
on the negative real axis lie at —a„, a„&0, those on the
positive real axis lie at b„, b„&0, and those in the com-
plex plane lie at n, and n, * [it follows from Eq. (3) that
the complex zeros appear in pairs j.The u~ for different

p, b, for different r, and n. for different s are not assumed
to be necessarily distinct. Then the function 8(z),
defined by

8(z) =S(z)/D(s),
D()=II.(+ .)II,(-b,)II.(.--.)(--.*), (3)

is analytic in the cut plane and has no zeros.
Consider therefore the function

~ Work supported in part by the National Science Foundation.
t' Work supported in part by the Atomic Energy Commission.' E. P. Wigner, Phys. Rev. 98, 145 (1955).
'C. J. Goebel, R. Karplus, and M. A. Ruderman, Phys. Rev.

1QQ, 240 (1955).' M. A. Ruderman, Phys. Rev. 127, 312 (1962).
4We omit throughout the subscripts on 8, S, and f, tha

identify their angular momentum and isotopic spin.

1 b(z) 1
1n8(z) = — 1nD(z),

2e+s gs 2~+z
rt(z) =

where we take that branch of 1n8(z) that is real in the
gap —1&s(0. Since $(z) has no zeros, q(s) is analytic
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in the cut plane; furthermore, 2/(z) vanishes at infinity
provided that 5(z) behaves at infinity no worse than
z'"—', a)0. We may therefore apply to 2/(z) Cauchy's
theorem and obtain

cut are essentially unchanged when one considers other
systems; however, additional unphysical and/or kine-
matic cuts may appear. If bound states are present, the
S matrix has poles in the gap; by suitably redeining
D(z) we can still construct an 8(z) which has these poles
eliminated and the derivation proceeds as before. Thus
if there were a bound state in the pion-pion system at
z= —8, 0&8& 2, there would appear on the right side of
Eq. (12) the term (2~z) ' 1nL(imp/'8+gz)/(i+8 —gz) ].

Our b(z) is the same as the physical scattering phase
shift only in the el.astic region: z=k', 0~& 4'~(3. Equa-
tion (12) is valid for z=k' provided that none of the
zeros of the 8 matrix lie in the elastic interval. Since in
the elastic region unitarity and reality imply that the
magnitude of the 5 matrix is equal to unity, it is clear
that the S matrix cannot vanish there. Setting z= k' and
di6erentiating with respect to the momentum k we
obtain from Eq (12). the following expression for the
momentum derivative of the phase shift:

1 '
I 2/(x) j 1 "pit(x)]

2/(z) = dg+- dx~
g ~ S Z Ã 0 X Z

where

L2/(x) j= {2/(x+i0) 2/—(x i0—))/(2i)

It follows from Eq. (6) that for x&0

in{8(x)8*(x))Ln(x)3=—

br(x) 1
+ ln

i D(x) i (9)
gx 2+x

and for x &0
1 8(x) 1

En(x)j= — ln -=2 (*), (10)
8*(x)

db(k') (/2~)'/2 k+1-.I+P 2 Im(a, )'/2
dk u k'+u„ fk2 —/2, /2

where br(x) is the imaginary part of the phase shift.
After substituting Eqs. (9) and (10) into Eq. (7) and

noting that 1 (x+k2)br (x)+- dx
(x—k')2+x1 " hl

) D(x) )

dx
2r a 2(x—z)+x 1 " (x—k') ap( —x)+- dx. (13)

(x+k2)2+x
lnD(z)+

2igz 2igz

M I/2 zl/2 D 1/2 zl/2 (Q ac)1/2 zl/2

Xl rr' n'
y i/2 1/2+Zl/2 e & 1/2+Zl/2 (& 2)1/2+Zl/2

we finally obtain

It follows from unitarity that br(x) ))0, x)~0, and conse-
quently the contributions of all terms in Eq. (13) are

(11) non-negative, except for the integral over 22(—x) which
will be referred to in what follows as I(k'). Our next
task, therefore, is to obtain a lower bound for I (k').

b(z)
ln

gz 2igz

i/2
1/2 —Zl/2 12 1/2 —Zl/2 (u 4)1/2 Zl/2

ig 1/2+Zl/2 ~
12 I/2+Zl/2 (R 2)1/2+Zl/2

~ J. C. Ball and %.R. Frazer, Phys. Rev. Letters 7, 204 (1961);
and in particular T. Ogimoto, Progr. Theoret. Phys. (Kyoto) 27,
396 (1962); and C. H. Albright and %. D. McGlinn, Nuovo
Cimento 25, 193 (1962).

" br(x)dx 1 "2(—x)dx+- +— (12)
(x—z)gx ar 1 (x+z)gx

where we have used the fact that bz(x) =0 for 0& x&~3
(x= 3 being the lowest inelastic threshold in the case of
pion kinematics).

Equation (12) provides the basis for all the con-
siderations to follow. It has been obtained previously by
various authors' and we present our derivation of it
mainly for the sake of completeness and clarity. %e
remark that the structure of Eq. (12) is quite general
and only the details depend on the assumption that we
are dealing with the scattering of pions. The terms due
to the zeros of 5(z) and the integral over the inelastic

3. BOUND ON THE MOMENTUM DERIVATIVE
OF THE PHASE SHIFT

It follows from its definition, Eq. (10), that 222(x) is
equal to the phase of 8(x), up to an additive constant.
Consequently, 2z2(x) changes at most by ar as x varies
between two consecutive zeros of odd order of Im8(x),
or of Re8(x). Let such zeros of Re8(x) that lie along the
unphysical cut be denoted by —P,, j=1 2 n, labeled
in order of increasing magnitude:

Pa&Pl« Pa&Pa+1, (14)

where we have set for convenience 1=pa, pp ——p„+1.Let
1/l,

m'"/ ' & stand for the minimum (maximum) value of
1/ (—x) for p;&&x &p;+1. In order not to interrupt the
argument we postpone the proof that

222p
' ———2l/2

from which it follows that

2Z -'"=—x(j+2), 2V, '"'=+n(j+2) (16)

We may now obtain a lower bound on I(k') by
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breaking up the range of integration into intervals
whose end points are the P; and replacing y( —x)
within each interval by rp; m (if x)k') or q, '* (if
x(k'). Thus, for k'&1 we have

+.min Pj+i (x k2)dx
I(k')) Q

s, (x+k')'gx

(P,+.)» (P,) i

write

f(s) = (z+I)'"g(s)+»(z), (23)

where g(s) and»(s) are real analytic functions. Therefore,

8(s):L1—2»(—1) (s+1)-&1&jL i(—1). (24)z~l

» writing Eq. (24) we have used the fact that the zeros
«D(s) are the same as the zeros of S(s) and so D( 1)—
Wo since

= —-'(1+k') '—2 94+k') '(P )"' (17)
j-1

Proceeding in a corresponding fashion, for k'&1 we
obtain

I(k')) g'(1+k') ' ——,'(1+2m)(~k~) '

—E 9;+k')-'4)"+2K A+k')-'4)"', (Ig)
j-1 j=l

where m is the number of zeros that lie between 1 and k'.
If only the numbers n and es, but not the positions

—P;, of the zeros are known, Eqs. (17) and (18) must be
replaced by the weaker inequalities

I(k')) —(n+-,')(1+k')-' k'&1)——,'(n, +m+ 1) (~ k~)
—'+ (m+-,') (1+k')—'

k')1. (19)

If desired, the dependence on m and k' may be elimi-
nated from Eq. (19) by making use of the inequalities

S(—1)= lim L1—2»(—1)(s+1)»'j~0. (25)

4. BOUND ON THE PION-PION COUPLING
CONSTANT

The pion-pion coupling constant ) may be defined by'

&«= —l(21+1)Pi(0)fi(—l), (26)

where Pi is the 1th Legendre polynomial and fi is the
lth partial-wave amplitude for the scattering of pions in
the isotopic spin 0 state (the same equation holds for
the isotopic spin 2 amplitudes provided that the factor
5 is replaced by —,').

It follows from Eq. (12) that

Thus, if»( —1)~0, the changein the phase of 8(x+i0)
as x goes from —1—e to —1+~ is the same as the change
in the phase of (x+1+i0) '~', i.e., the phase increases
from —vr/2 to zero. If »(—1)=0, then there is no change
in the phase of 8(x+i0). In either case we have

2+ min — ~/2

0&~&n,

0~&4'~&3.

(2o)

(21)
(a.)"'—V (~.)"'—~V '

gib( —2/3) sag' (a~)"'+y ' (n.)"'+iy
In this manner we obtain the rigorous lower bound on

the momentum derivative of the phase shift as

d8/dk) —(n+ ,'), 0&-k'&3, (22)

where n is the number of zeros of the real part of the 8
matrix along the unphysical cut that are not simul-
taneously zeros of the imaginary part of S (this last
restriction can, of course, be dropped since e~&X where.V is the number of zeros of ReS without restrictions).

This completes our derivation of a bound on the mo-
mentum derivative of the phase shift except for the
proof of Eq. (15).By definition, Eq. (10), 2q(x) =0, for
x in the gap between 0 and —1. Hence 2y(x+iO) for x
just to the left of —1 is equal to the change in the phase
of 8(x+f0) as x moves from just to the left of —1 to the
right of —1. Now it can be shown' that the partial-
wave amplitude f(s) has at s= —1 a square-root type
of singularity with Imf(s) vanishing like (s+1)~i2.
Consequently, in the neighborhood of s = —1 we may

6 R. Blankenbecler, M. L. Goldberger, S. W. McDomell, and
S. B.Treiman, Phys. Rev. 123, 692 (1961}.

where y—= (-')"' and

2y " br x)dx
g exp (27)

(x+3)V'x

27J=——"q(—x)dx

(x—-', ) x

n 2 ~.m&& Pj+I

p (x—-', )gx

Hence

1+& '" - (l', )'i'+V
=ln g . (28)

1—v i=' (P )" v—
(

&+v "' " (')"'+v &+v)"'+"
1—v =i (Ps)"' v1—v—(29)

' G. F. Chem and S. Mandelstam, Phys. Rev. 119, 467 (1960}.

where we must use the second form of the inequality
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(29) if only the number e, but not the positions —P;, of
the zeros is known.

Combining Eqs. (1), (26), and (29) we obtain bounds
on ) ~. Thus, for example, we have for s waves

representation:

h ((o)=—+— d(»~
or

p1++~li2+eo
I
1~l o+1I &

I I
~ (30)

Imhp (&u,)-
+P A,„,(32)

s ol&+co

In particular, if no=0 we obtain

—0.29&&,&O.~S, (31)

which may be compared with the limits obtained by
Chew and 1VIandelstam, ' their Eq. (V.19):

—O.S| &X,&0.3.

where p is the pion momentum and n=1, 2, 3 corre-
sponds to the states T=2 Ei~/2, T= —,

'
E3/2 or T=~ Pi~/2,

and T=a2 83~2, respectively. The cutoff function s(~) is
assumed to have the representation

5 (M) = dtn' 0 (t5')/(5$'+07'),

Since only even values of 1 contribute to Eq. (26), and
since f~(z) vanishes like z'+"' as z —+ 0, it is plausible to
expect that all X~, l/0, can be neglected in comparison
with ) 0. In that case, bounds on X may be obtained from
a consideration of s waves alone by setting P =) o.

5. BOUND ON THE PION-ÃUCIEON
COUPLING CONSTANT

dm' » (nP)/ns'= 1.

The Born term X is given by

—4
X =-',f' —1. 2

(33)

(34)

In this section we shaH use the same techniques as in
previous sections to obtain an upper bound on the pion-
nucleon coupling constant.

The analytic properties of the pion-nucleon partial-
wave scattering amplitudes have been studied by Frazer
and Fulco, and Frautschi and %alecka, on the basis of
the Mandelstam representation for the invariant ampli-
tudes, They showed that the partial-wave amplitudes
are analytic in the cut 5" plane, where 5' is the total
energy in the barycentric frame, with the cuts extending
into the complex plane as well as onto the real axis. It
is easily seen, however, that the partial-wave amplitudes
are analytic in the cut or plane, where or is the pion
energy in the barycentric frame, with the cuts lying
only on the real and imaginary axes. This analytic be-
havior is similar to the one that can be derived from the
fixed source Chew-Low model, ' in which the singu-
larities along the imaginary axis are due to the cutoB
function instead of being due to the crossed process
xm ~XN of the relativistic dispersion relations.

As will be seen later, the imaginary cut of the pion-
nucleon scattering plays a similar role, as far as the
dispersion relation for the phase shift is concerned, as
the left-hand cut of the previous sections. Since the
contributions from these cuts are not known a pnori,
there is little diGerence between the Chew-I. ow model
and the relativistic dispersion model. For this reason we
confine ourselves to the Chew-I. ow model which is
easier to handle.

The scattering amplitude, h, has the following

8 W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960};
S. C. Frautschi and J. D. %alecka, ibid. 120, 1486 (1960}.' G. F. Chem an.d F. K. Lom, Phys. Rev. 101, 1570 (1956).

where

h. (—co)=ps A shp(a)), (36)

A =-' —29 4
1.

(37)

Let us look at the analytic structure of q (&u), the
scattering phase shift divided by the momentum:

y. (c') = (1/2ip) lnS. ((o),

S (»») =1+2ip'w'((u) h. (co).
(3g)

It follows from Eqs. (32), (33), and (38) that g (&o) has a
logarithmic branch point at or=0, a cut along the posi-
tive real axis for or& 2 and a cut along the negative real
axis for or ~&

—1, and a pair of cuts along the imaginary
axis due to the cuto6 function. In addition to these
singularities q has logarithmic branch points at the
zeros of S . Since S (&1)=1 and S (0&e)= &~ for
n=3(T»0 for a=1, 2), S must have at least one zero
between —1 and 0 for n=3 (between 0 and 1 for
n= 1, 2) because by the representation, Eq. (32), S is a
real continuous function of co in both the regions (—1,
0—) and (0+, 1). We note that S3 cannot have zeros
between 0 and 1 because h3 is positive definite in that
region. In addition to the real zeros, S„may, in general,
have complex zeros which occur in conjugate pairs. Let

where f is the pion-nucleon coupling constant. The h

may be expressed in terms of the phase shifts b, :

lim h. (»») = e*'.&» sin8, (p)/I p's'(co, )j, (35)
~cop+sE

and satisfy the crossing relation:
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us assume for simplicity that 5 has just one real zero
between —1 and +1 at co= —~, and just one pair of
complex zeros at cu =co„and cu =fd„.

By proceeding in the same manner as in previous
sections the following dispersion relation for g can be
derived:

1 1 "Imp. (cv')

q (co) = ln(SnSn)+ — dred'

2zp

1 " Imp„(oo') 1 " dm+- d(d +-
'r 2 M M ~p 5$ +OP

X[m Imr. (rn) co R—er (m)g, (39)

where 5~ is the portion of the 5 matrix due to the Born
term and the real zero:

function with v given by

r.(rn) =
2 (m'+ 1)'"

1+2(m'+1)"'k (im)s'(irn+e)
Xln (48)

1+2(eP+ 1)'~'k. (inc) e'(im o—)

To obtain an upper bound on the magnitude of the
coupling constant we make use of the dispersion relation
for g in the (3,3) state in order to take advantage of the
inequality (45). It then follows from Eq. (39) and from

1 — 1 8
lim q3(co)+ in'& =——ln f'—

2ip — 2 3

f'&~ 4[K/(1+t )1~~, (50)
(dt +(d+ K iKp

SL}—— 1'= (1 K2)l/2

(u1'+(a++imp

where
40

(o,*k,+oo,k,*+i((a,—oo„*)
Q=

(dr kg+td~kp $((alp Mp )and S~ is the portion of the 5 matrix due to the pair of

complex zeros:
(51)

rf = exp —(2/7r) dm Imr(tn)/rn
tS p(k„+k,*)(co—(o,)—((o,—co,*)(p—k,)Se=, (41)

(k„+k,*)((o—co,*)—(co,*—(u,) (p—k,*)

where k„'+1=&v,
2 and Imk, )0.

The second term in Eq. (39) is due to the left-hand cut
with x (&u) given by

It follows from Kq. (38) that g (&1)=0. Imposing this
requirement on. Eq. (39) and using Eqs. (45) and (47)
we obtain the inequality

"i[2t (1+t-)j+~ fi&o,- (52)

x-(~) =n-( —~).

Using Eqs. (35), (36), and (38) we obtain

x.(~)= (1/»p)»(Zs ~-so'"""),

(42)
where

(43)

(o„~k„+(o„k„~

(co,*k,+&a,k,*)'—(k„+ k„o)'

1
Imp. ((v) = ——ln

I P A.pe"'«' I.
2

For +=3 we obtain

Imx. (oo) ~& 0,

by making use of Eq. (44) and the inequality

(44)

(45)

8= —(1/n) dm m Imr(es)/(eP+1).

Using Eq. (52) to eliminate ~/(1+1') from Eq. (50) we
obtain

4(1+8 o)—
I Zs ~sse"""

I
& Zsl nasl =1 (46)

The third term in Kq. (39) is due to the right-hand
cut. It starts at the 6rst inelastic threshold co= 2 because
Imp (a&) =0 for 1 &&co &~2. We also note that by unitarity

Imp. ((o) ~&0. (4&)

The last term in Eq. (39) is due to the cuts along the
imaginary axis. It is determined entirely by the cutoff

'0 Additional zeros may of course be included. Their only eGect
is to strengthen the inequahties {50)and {52).

It now remains to obtain bounds on A and B. This
requires a knowledge of Imv, which plays here the same
role as q did in the mx scattering problem. The estimate
of upper and lower bounds on Imv, although straight-
forward, is more complicated than the corresponding
estimate for y. In the present case we must know the
number of zeros, n, of the following quantity (which
corresponds to Im8 of Sec. 3):

(Rem) (Imw)(Reh(im)+2(rn'+1)'I'I k(am) I

'
X [(RerI)'—(Im~)'j} (55)

where the argument of v is in~+~.
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The imaginary part of ~ is then bounded by

(I+1)s.
[Imr[ &

2 (tn'+ 1)'I'

and A and 8 are bounded by

rnp+ (m02+1)'12+1 "+'
A~&

ma+ (rso'+ 1)'I'—1

8& -'(n+1) (mo'+1) '".

(56)

an entire function G(s) with an infinite number of zeros,
none of which are at s=0, may be represented as

G(s) = g (1—s/s„) exp (s/s. )+-'(s/s )'+
1

1
+ (s/s.)'-', (60)

k,—1

with the integers k„chosen in such a way that

Thus, we finally obtain 2 (s/s. )""
1

(61)

m+1 —2P (ego'+1) '"
'~&-,'n

2 (m '+1)'i'(1 P)+n+—1I

no+ (two'+1)'"+1 "+'

ma+ (mo'+ 1)"'—1

For a Feynman-type cutofF, i.e.,

0 (m') = m, o'5 (m' mo'—), (59)

is absolutely convergent for every s. Here the zeros of
G(s) occur at s„and the s„ for different v are not neces-
sarily distinct. Since the use of D(s) in Eq. (5) corre-
sponds to setting all k„ in Eq. (60) equal to unity, it
follows that we have assumed that if the number of
zeros of the S matrix is infinite then the spacing be-
tween them increases su6iciently rapidly so that

we find m=3 and therefore f'&~0 36, when. n and P are
calculated from the (3,3) resonance data and m~ is
chosen to be the nucleon mass.

2 Isis. l & ~.
s~1,

(62)

6. DISCUSSION

The main purpose of this work was to show that there
exists in field theory an analog to %igner's theorem, in
spite of the fact that the concept of a finite interaction
range is not meaningful. It might be well to review here
the assumptions that were made to obtain this result.

First, the validity of the Mandelstam representation
was assumed thus providing us with the information
about the analytic structure of the Smatrix. Clearly the
analytic structure of the S matrix could be considerably
more complicated without invalidating our results. Thus
the use of the Mandelstam representation should not be
regarded as being essential but rather as supplying a
convenient framework.

Second, it was assumed that the function 8(s), defined
by Eq. (5), exists, i.e., that the product D(s) has
meaning. This product is obviously meaningful if the
number of zeros of the 5 matrix is finite. The situation
is more involved if the 5 matrix has an infinite number
of zeros. According to the Weierstrass factor theorem, "

"K. Knopp, Theory of Functions (Dover Publications, New
York, 1947), Part II.

Although this restriction can be relaxed the resultant
bounds on the momentum derivative of the phase shift
become quite involved and so we prefer to keep Eq. (62)
as one of the conditions needed to obtain our results.

Third, we have assumed that b(s) behaves at infinity
no worse than s'"—', e&0. This actually is not an
additional assumption but follows from the previous
two, since if D(s) is finite and the Mandelstam repre-
sentation is valid then 8(s) can diverge no worse than
logarithmically.

Lastly, our result as expressed in terms of I Dor
example Eq. (22)j will be useful only if e is finite, m

being the number of zeros of, for example, Re8(s) along
the unphysical cut. Should n be infinite we can still
obtain a bound by using the inequalities that involve
explicitly the positions of these zeros Dor example,
Eqs. (17) and (18)j, provided that the infinite sums or
products over the number of these zeros converge.
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