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Recently, Green has shown explicitly that different potentials which fit the same S-wave phase shifts
from 0 to 250 MeV (lab system) can give quite different binding energies of nuclear matter. In this paper
we show, for two particular potentials, a velocity-dependent one vs one with a hard core, how this dif-

ferent behavior is related to the form of the two-particle wave function at small interparticle distances.
The equality of the phase shift vs energy for two potentials requires that the two-particle wave function
must have not only the same asymptotic form but also the same value of an eftective-range integral, which

places some constraint on the form of the interior wave function as well. It is shown that the potentials
give also nearly the same results to Grst order in the "separation method, " an approximation to the treat-
ment of nuclear matter in which the wave function is assumed to equal the interior wave function at short
distances joining on smoothly with the unperturbed wave function at a distance of about 1 F. However, the
change in the particle propagator due to the velocity dependence of the nucleon-nucleus potential gives a
positive contribution to the energy, which depends on the wave function at short distances. This contribu-
tion is much bigger for the hard-core potential than for the velocity-dependent one, since there is more
of a short-range correlation eftect in the former case.

I. INTRODUCTION

' 'T was suggested by Peierls' that the hard core in the
~ - nucleon-nucleon interaction might be replaced by a
less singular, but strongly velocity-dependent repulsion.
Recently, several authors have investigated this problem
in some detail. ' 4 By suitably adjusting parameters, it
was possible to give almost as good 6ts to observed
nucleon-nucleon scattering cross sections with a velocity
dependence as with a hard core. Indeed, it has been
shown explicitly by Baker~ that the scattering phase
shifts vs energy resulting from a potential containing a
velocity-dependent repulsion are exmtly the same as
those for an angular momentum dependent potential
outside a hard core. Since the velocity-dependent po-
tential is nonsingular, the binding energy of nuclear
matter can be calculated using a perturbation expan-
sion. This was done by Green, ' who found that (not-
withstanding some uncertainty in the magnitude of the
higher order terms) such a potential would give several
MeV per particle too much binding of nuclear matter.
Conversely, Brueckner and 4~Iasterson' have shown that
the Breit potential, ~ which has a somewhat larger core
radius than the Gammel-Thaler potential but gives
nearly the same phase shifts, leads to a considerably
smaller binding of nuclear matter (8 vs 16 XfeV/A).
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(1962).
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Rev. 120, 2227 (1960).M. H. Hull, K. E. Lassila, H. M. Ruppel,F. A. McDonald, and G. Sreit, ibid. 122, 1606 (1961).' J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291, 1337
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Green then investigated this problem more closely by
taking a velocity-dependent potentiaP whose parameters
are adjusted to give practically the same S-wave phase
shifts from 0 to 250 MeV (lab energy) as a core plus
exponential well potential considered previously by
Scott and the present author. "The latter potential has
its parameters adjusted to give a bound state at 0 energy,
an effective range 2.5 I', and a core radius of 0.4 F. Its
5-wave phase shift is close to the empirical 'So phase
shift and it becomes negative at about 230-3IeV lab
energy. If both of these potentials are arbitrarily as-
sumed to act only in 5 states of relative motion, then
they, of course, give the same scattering cross sections
up to at least 250 MeV. (Actually Green considered
several di6erent velocity-dependent potentials, all of
which give nearly the same phase shifts, but his potential
No. 3 6ts ours particularly accurately, and will be the
only one considered in this paper. ) Of course, as is well

known, ""two potentials which 6t the same 5-wave
phase shift vs energy (and bound-state energy, if any)
must be identical if it is required that (1)both potentials
be static, i.e., no velocity dependence such as is con-
sidered in the present paper and (2) the fit extends to
all energies, not just up to 250 MeV. In MS it was shown
that the core+exponential potential would lead to an
energy minimum of about 10 MeV per particle at a
Fermi momentum kg of 1.4 F ' corresponding to a radius
Ro——1.082'" F. However, Green' 6nds for his velocity-
dependent potential an energy 18 MeV/A (using second
order perturbation theory and a modi6ed propagator)
at this value of kg and no energy minimum at all (for
Eo)0.5A'" F).Thus, apparently, two potentials 6tting
the same scattering data (since they are assumed to

' A. M. Green, Phys. Letters 1, 136 (1962).
' S. A. Moszkowski and S.L. Scott, Ann. Phys. (N. V.) 11, 65

(1960) referred to in the present paper as MS."I. M. Gelfand and B. M. Levitan, Doklady Akad. Nauk
S.S.S.R. 77, 557 (1951).

~ R. Jost and %. Kohn, Phys. Rev. 87, 977 (1952).
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act only in 5 states) nevertheless can give quite different
results for nuclear matter.

In this paper we would like to point out that this result
follows directly from the diferent behavior of the two-
particle wave function at short distances.
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II. EFFECTIVE RANGE THEORY

Figure 1 shows the two 5-state wave functions at
three diBerent energies. "The wave functions are nor-
malized so that at large distances:

R(k, r) ~ S(k,r) =sinI kr+bs(k)].

The values k =0.7 and 1.4 F ' correspond approximately
to the average and maximum relative momentum of a
nucleon pair in nuclear matter (for k~=1.4 F '). It is
seen that the two wave functions have practically the
same asymptotic form (i.e., same phase shift) at all
energies hut the wave function R, for the core+ex-
ponential potential (V,) has much more of a "wound"
in it than the wave function E, for the velocity-de-
pendent potential (V.). Now the fact that the two po-
tentials give the same 5-wave phase shifts 58 at all
rnomenta implies that they also give the same derivative
d8s/dk. Using effective range theory this derivative
can be expressed in terms of the wave function at the
given momentum. By a straightforward calculation it
can be shown that
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where S(k,r) is the asymptotic wave function as defined
in Eq. (1).Thus for two potentials giving the same phase
shift at all energies, the wave functions do not only have
the same asymptotic form, but also the same value of
the integral J'0" R'dr. This is, indeed, satisfied as can
be seen explicitly in Fig. 2 for the case k=0.7 F '. The
di6erence between the wave functions is much less
noticeable in a plot of E' than one of E itself. The two
shaded regions where the wave functions do not overlap
have nearly the same small area, so that their contribu-
tions to the integral J' R'dr essentially cancel. Thus,
while the equlity of the phase shifts implies some condi-
tion on the interior wave function, it does not seriously
restrict the form of the wave function at short distances.

III. NUCLEAR MATTER—FIRST-ORDER
SEPARATION' METHOD

A quite accurate idea for the effect of nuclear matter
on the two-particle wave function can be obtained by
dividing the wave function space into two regions as
suggested in AIS. At the separation point r=d(k) the
logarithmic derivative (rR'/R) is equal to the value
kd cotkd for the unperturbed wave function. It was

"A. M. Green (private communication}.
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Pro. 1. Comparison of two-particle 5-state wave functions for
velocity-dependent potential (Potential No. 3 of reference 9}
and core+exponential potential (reference 10), which give nearly
the same S-wave phase shift from 0 to 250 MeV (lab energy).
(a), (b), and (c) show the respective wave functions R, and R, vs
interparticle distance for relative momenta k=0, 0.7 P ' and
1.4 I' '.

shown in MS that the two-particle wave function in
nuclear matter is quite well approximated by a wave
function, called E, which coincides with the interacting
two-particle wave function for r&d, but equals the un-
perturbed wave function at larger distances. In Fig. 3,
we plot E' for the two potentials at k=0.7 F '. The
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normalization is now chosen differently from before:

R'(k, r) -+ 5(k,r) =sinkr/k. ,3

The 6rst-order contribution to the potential energy
is given by'0

2.0

kg'
PE('&= (Vi(k, k)). ,

4x'
where

v (aa') 4, f=so),r) v(v, r)ta(k, r)dr.

(4)
1.0

0
0

As a rough guide, we may set"

(Vi(k k)) = Vi(0 7 0 7) (6)

Incidentally, for a velocity-dependent poten
'

tential of the
form considered here:

' and E which coincideFn. 3.Comparison of wave functions „an E'
le wave function for r&d(k an wi

the unpertur eurbed wave function S=sin r or r' t for the two wave functions.indicated are the separation istances or

S 1 MeV F~ corresponds to 0.069 MeV/ binding atince i e
); '=1.4 F ', the first-order binding energy

two potentials differs by less than an Mev/A. If we use,
instead, conventional 6rst-order perturbation t eory, we
obtain

(7)V(V,.)=V(.)-LV W(.)+W(.) V j,
it is easy to show that

Vi(k k) =4m. (V+2k'W)5'(k, r)dr

V. (k,k)=4, , k, dS k, r)V(V, r S k,.dr

8 numerical integration we n6nd for the velocity-
dependent potential: =4)r LU+(k'+k")W]s(k', r)s(k, r)dr.

(12)

(9)

V.~(k,k) =4)r 5(k,r) V(r)R;(k, r)dr

V,~(0.7,0.7) = —553 ')IeV F'.

This result is surprisingly close to that for a core+ex-
ponential potential. For the latter, we obtain

6nd
V.'(0.7,0.7) = —493 AIeV F'.

The short-range correlation correction

(13)

For a hard-core potential, all matrix elements are in-
6nite while for the velocity-dependent potential, we

V (r)S'(k,r)dr, AV= Vi—V'=4r SV(R 5)dr. —
0

and as was shown in MS

V.~(0.7,0.7) = —542 MeV F'.
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Fro. 2. Comparison of R,' and E,~ with asymptotic form.

evidently contributes —~ for the core+exponential

a d t t ntial Indeed while conventional per-
turbation theory is obviously inapplicable for a ar
core potential, it also does not converge well for the
velocity-dependent case either. The far-off iagonal
elements 0.7 F ' k'&)1.4 F ' of the repulsive term

r ''onare quite large due to the presence of the factor ( ) on

second-order energy of —10 MeV/A even with a modified
propagator.

and 1.4Table I summarizes the results for k=0, . , an
F ' and it is seen that at least to first order in the separa-
tion method, the two potentials considered give nearly
the same results.

So far, our results bear out Beg's argument" that po-
tentials which are equivalent in the two-body pro em

'4 M. Beg, Ann. Phys. (N. Y.) 13, 110 (1961).
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TABLE I. Comparison of 6rst-order energies for velocity-
dependent V, and core+exponential V, potentials. U'(k, k) is
the 6rst-order result in conventional perturbation theory. U~{k,k)
is the 6rst-order result in the separation method. All matrix
elements are expressed in units MeV F.' Vo

=Bshe

U (S Rs)—2dr, (15)

to the separation method is the so-called dispersion term
given by

V,' V 1 UL

0
0.7
1.4

—1000—493
+21

—1052—553—78

—1031—543—76

IV. NUCLEAR MATTER—THE DISPERSION TERM

Up to now, we have neglected any change in the par-
ticle propagator due to the presence of the other particles
(except, of course, for the Pauli principle which sup-
presses long-range correlations).

However, due to the well-known momentum depend-
ence of the nucleon-nucleus potential, there will be a
significant di6'erence in the binding energy of nuclear
matter for our two potentials. A very crude way of
representing this eGect is the so-caHed "effective-mass"
approximation, which assumes that the potential varies
quadratically with momentum. A considerably better
approximation is to set the one-body potential equal
to a constant at high momenta. This gives the so-called

dispersion approximation&no, &5 or c«eference spe
trum. '"6 The dominant second-order correction term

'~ H. S. Kohler, Ann. Phys. (N. Y.) 16, 375 (1961}.
'6 H. A. Bethe, B. H. Brandom, and A. Petschek, Phys. Rev.

129, 225 (1963).

will also give nearly the same results for nuclear matter
at not too high densities. The wave functions E' are
close to the two-particle eigenfunctions for an intermedi-
ate density. The eBect of the other nucleons is assumed
to be large enough to wipe out the long-range correla-
tions (which would, for example, give a phase shift)
and yet too small to have any eGect on the short-range
correlations associated with the soft or hard core. It
appears from our results that Bbg's argument does, in-

deed, apply for densities from 0 up to values at which
the eGect of modified particle propagation on the short-
range correlations becomes important. Unfortunately,
as we shall see presently, the latter appears to be already
the case at normal nuclear density.

where AU is the extra one-body potential for a particle
excited far out of the Fermi sea compared to one in
the Fermi sea. Taking AU = 60 MeV, "we obtain for the
dispersion contribution 5 MeV/A for the core potential,
but only 0.6 MeV/A for the velocity-dependent case.
This seems to the major cause of the larger binding
energy in the latter case and especially, for the absence
of saturation, since the dispersion term turns out to be
strongly density dependent. Rough estimates indicate
that the other second-order terms (in the sense of MS)
contribute less than 1 MeV/A for the velocity-dependent
potential so that the separation method appears to con-
verge more rapidly than for the core+exponential
potential.

V. CONCLUSIONS

As we have seen, the behavior of the two-particle
wave function at short distances has only a very minor
eGect on the dependence of 5-wave phase shift vs energy,
but an important one on the interaction of two particles
in nuclear matter.

Thus, it appears that elastic scattering data alone
even up to 300 MeV may not be sufhcient to specify
the nucleon-nucleon potential accurately enough for
purposes of many-body calculations. Other information
seems to be required in order to deduce the behavior of
the wave function at short interparticle distances.

Conceivably, it might even prove helpful to use bind-
ing energies of complex nuclei to specify the nucleon-
nucleon interaction more precisely.
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