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%'e introduce the Regge-Froissart continuations of various partial-wave amplitudes for mX scattering
into the complex J plane. The notion of J parity is clari6ed by considering parity nonconservation. The
analyticity and symmetry properties of the Regge-Froissart continuation in the energy plane are also
studied and the results of analysis applied to backward pion-proton scattering. A similar discussion is given
of the ~+~ -+ X+8 channel and the forward elastic pion-proton scattering.

I. INTRODUCTION

HE importance of regarding the scattering ampli-
tudes as a simultaneous analytic function of

energy and angular momentum J was 6rst pointed out
by Regge for nonrelativistic potential scattering. ' This
notion has been extended to the relativistic 5 matrix
and has already revolutionized present thinking in
strong-interaction physics. ' Here, we present a sys-
tematic discussion of the pion-nucleon problem from
that point of view.

In Sec. II, we introduce the proper Regge-Froissart
continuations of various partial-wave amplitudes into
the complex J plane for mX scattering, where we assume
parity nonconservation. This is done to elucidate the
nature of the J parity and to bring out clearly that J
parity has nothing to do with space parity. As a by-
product of this discussion we clarify the concept of the
range of exchange potential for the scattering of two
unequal-mass particles —this is discussed in the Ap-
pendix. These J-plane continuations are studied in
Sec. III as to their analytic behavior in the energy
variable and new amplitudes free from kinematical
singularities are introduced. Also, these amplitudes have
important symmetry properties, which reflect in the
expressions given in Sec. IV for the backward pion-
proton scattering in the direct channel. The observed
particle and. resonance states in the A&V channel are
also discussed in Sec. III. The last two sections, V and
VI, deal, respectively, with the J-plane analyticity of
hehcity amplitudes in the w+~ —+ X+X channel and
with its implications for the forward elastic pion-proton
scattering.

II. REGGE-FROISSART CONTINUATION OF PARTIAL-
VfAVE AMPLITUDES IN THE mN SCATTERING

CHANNEL: J' PARITY

%e introduce the proper analytic continuations into
the complex J plane of the various partial-wave ampli-

t This work done under the auspices of the U. S. Atomic Energy
Commission.
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tudes for mE scattering. Even though parity is con-
served, the discussion is carried out for the general
parity-nonconserving case because confusion has pre-
vailed whether J parity and ordinary parity (i.e., space
parity) are distinct quantum numbers for Regge
trajectories. The J parity is the notion that only the
alternate physical J values on the Regge trajectories
give rise to physical bound states and resonances. This
certainly is true for spin-zero —spin-zero particle scat-
tering. Unfortunately, the separation of the amplitude
into even and odd J-parity parts for this case coincides
with the separation into even and odd space-parity
parts. So one is likely to regard the J-parity notion as
nothing distinct from the space-parity diagonalization,
and this is the source of confusion. The only way to
resolve this situation is to study a problem in which
parity is not conserved and then see whether one still
has the notion of J parity. As parity conservation is
implied by angular-momentum conservation for scat-
tering of two spin-zero particles, one has to study a
problem with spin. In the following we study scattering
of a spin-zero particle by a spin-one-half particle; i.e.,
we study ~X scattering where we assume parity
non conservation.

There are now four independent invariant ampli-
tudes, instead of the usual two amplitudes A and B.
The T matrix can be expressed as

where

T= A+iy—QB+iy,y QC

Q= ', (Eg +Kg), -
(2.1)

and K1 and K2 are the four-momenta of the initial and
the 6nal pion, respectively.

The difi'erentiai cross section do/dQ can be written as

where

80
[ (final

~ f [ initial)
~

'
dQ spins

A Af=fr+a mfa 0;f2+a" 5ff3+o" k;f4,

(2.2)

(23)
A

and kf and k; are unit vectors in the direction of the
6nal and the initial pion three-momentum, respectively.

stam, Phys. Rev. 126, 1202 (1962); S. C. Frautschi, M. Gell-
Mann, and F. Zachariasen, ibid. 126, 2204 (1962); R. Blancken-
becler and M. L. Goldberger, ibid. 126, /66 (1962); B. M.
Udgaonkar, Phys. Rev. Letters 8, 142 (1962).
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The f s are given by

f,= [(8+m)/8~iV][A+ (W —m)B7,

f&= [(E—m)/Ss W][—A+ (W+m)B],
fg= —(k/Sm W) [WC+D7,

and

where

—-[W(Cgpt+Cgp;)
16n-W

+ (D~~& D&—+&)7, (2.8)

f,=—(k/Ss W) [WC D]—, (2 4)

with k, E, and W being the magnitude of the three-
momentum of the pion, the energy of the nucleon, and
the total energy, respectively, in the center-of-mass
system: i.e.,

E= (W'+m' —1)/2W,

4k'= W' —(2m'+2)+ (m' —1)'/W'

e might note that time-reversal invariance implies
that D=O; i.e., that f3 f4. How——ever, we do not need
to assume time-reversal invariance.

The partial-wave decompositions of the f s are
given by

fl=p {)J-t.Z-t'PZ+$' —2 {)1+t,J+-,'PJ t',

fs=Z {t~+t ~+1'P~+t' Z{t—~ t, ~ t'PJ t'~---
fs ——Pap„, , Pz, t' —E a. .,.+, P, ,',

f4——g az t,g+1 Pz+)' P{tz~t,g —t~Pg )', (2.5)

where al.",~.~ is the partial-wave amplitude for transi-
tion between an initial and a 6nal state, both with
total angular momentum J, and having orbital angular
momenta I.' and I.", respectively. In the conventional
notation {t~ t, q t =fq t,+ and {t~+t q+t =fg+t. . The
summation over J runs over J= 1/2, 3/2, 5/2, . The
argument of the Legendre polynomials is

s= cos8= j.+ (t/2P) = 1+(2m'+2 —s—I)/(2k') (2.6)

where s, I, and I,are the usual invariant variables, which
have the signi6cance of becoming the total energy
squared in the barycentric systems of the ~$ scattering
channel, the crossed xiV scattering channel, and the
s+w +X+8 chann-el, respectively.

The projection formulas for the diferent partial-
wave amplitudes can be worked out and are given by

+1

{)J+~„z+ =— d(cos8)[f)Pzpt+fd'zyt 7, .-
2

and
1 +'

d(cos8)[f&~+t+f4»+t] (2 7)
2 J

Using these projection formulas (2.7), and the ex-
pressions (2.4) for f; s in terms of the invariant ampli-
tudes, we get, Gnally,

E+f8
ugpt, ggt = [Agent+(W m)B~t]—

16m W

E—m
+ [—A ggt+ (W+m)B gpss],1&8'

d(cos8)A (s,u, t)Pq(cos8). (2.9)

The Bg, Cg, and Dq are dered similarly.
Expressions (2.8) and (2.9) define the various partial-

wave amplitudes for physical values of J. One has now
to Gnd an analytic continuation of these amplitudes
into the complex J plane, from these physical J values,
that is suitable for a Sommerfeld-%'atson transform.
As the only J dependence of partial-wave amplitudes
is contained in A~, B~, C~, and D~, the problem re-
duces to Gnding a proper continuation of these quan-
tities. To that purpose, we notice that invariant
amplitudes satisfy 6xed energy-dispersion relations of
the type

1 "A)(s, t')dt' 1 " A„(s,N')dl'
A (s,l, t) =— +— (2 10)

4 ~ ~ & (~y)' I —I
A g (s,x') dh'

4 x'+2k'(1 —cos8)

A „(s,x'+ (m' —1)'/s)dx'1+-
{m+1) —{ns 1) /, *+2k'(1+cos8)

(2.11)

By substituting expression (2.11) for A in (2.9),
we get

1
Ag t= —— dx' [A,(s,x')

xk'

+ (—)~ &A.(s, x'+(m' —1)'/s)]

f x'
XQg ti 1+ . (2.12)

2k'

We see that except for the (—)~ & factor, Eq. (2.12)
provides an expression suitable for Sommerfeld-%'atson
transform. The canonical way to get rid of the (—)~ &

factor is to de6ne two analytic continuations of A J ~,
one away from even integral values of J—~, and another
from odd integral values' of J—~; i.e.,

1
A j t'= —[Ag(s, x')+A (s, x'+ (m' —1)'/s)]dh'

mk'

( x'
XQJ—ji 1+

2k' (2.13)
3 E. J. Squires, Nuovo Cimento 25, 242 (1962}.Also there is a

good discussion of J parity or signature in the paper of S. C.
Frautschi, M. Gell-Mann and F. Zachariasen, Phys. Rev. 126,
2204 {1962}.
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$A g (s,x') —A „(s,x'+ (m"- —1)%)]dr'
~k2

If one uses Am~' for A j+1 in Eq. (2.8), together
with Bippy' for Bqp», Cqp~' for Cgy~, and Dqp for

D~p~, one obtains a continuation of the di6erent partial-
wave amplitudes that agrees with the amplitude for
these physical values of J= 1/2, 5/2, 9/2, . etc. Simi-

larly, by using A j+y& for A j+1 in Eq. (2.8), and replace-
ments Bqp~& for Bqy~, Cqp~& for Cqp~, and Dqp~& for
Dgp~, one would obtain another continuation which

agrees with the amplitude for these physical values of
J=3/2, 7/2, 11/2, . This is precisely the notion of J
parity, which here follows irrespective of any parity-
conservation considerations, and only arising because of
the simultaneous presence of the direct and exchange
forces. It is a straightforward matter to express the
Sommerfeld-Watson transform of the scattering ampli-
tudes in terms of these even and odd J-parity con-
tinuations of the various partial-wave amplitudes. For
example,

$ dJ
fi,2= ~- oj-),j-y"P'j+&'( —z)+~j+~'(s)]

4 ~cosmJ

i dJ
~j I j 1 ' Lf j+1 ( s)~p j+$ (s)]

4 g cos7l'J

i dJ
— ~j+~, j+~"L~j+:,(—s)~f'j~~. (s)]

4 e cos~J

z

oj+;,j+)"Lf'j+ (—s)+f'j+)'(z)],
4 qcosmJ

(2.14)

where on the right-hand side of Eq. (2.14) the upper
signs refer to f~, the lower signs to fm, and ( is the usual
undistorted contour for the Sommerfeld-Watson trans-
form. Of course, the contour C can be distorted in that
entire region of the J plane over which the various con-
tinuations exist if the contribution of the enclosed
singularities, in particular Regge poles, is included.

III. REGGE TRAJECTORIES IN THE +N
SCATTERING CHANNEL

Ke now study the analyticity and symmetry prop-
erties in the energy variable of the continuation of the
partial-wave amplitudes into the complex J plane,
which we introduced in Sec. II. Ke also discuss the
observed particle and resonance states in this channel
in terms of the present analysis.

If we consider the different partial-wave amplitudes
continued into the complex J plane as functions of the
invariant variable s=8",we encounter, apart from the

s-plane singularities of Agp», etc. , kinematical singu-
larities of the gs type caused by the factors of W—m,
TV+m, and 8', etc. , which occur in the problem because
of the spin. The existence of kinematical singularities
in the s plane was already brought out for partial-wave
amplitudes corresponding to the physical J values, by
earlier authors. ' Thus it is advantageous to work in
the lV-complex plane.

The functions AJp~'4', etc. , have additional branch
points whose locations are given by k'=0, when J~-,'
is not a positive integer, apart from the usual branch
points, which are those of A ++~ for physical values of J.
However, the function A jp~'&/(2k') j+& has precisely
the same analytic structure as the function A j(=i/
(2k') j+&, for physical values of J.

%'e are thus led to consider the following quantities,
if we wish to avoid any kinematical singularities:

16@W ugp~„gp~
he) jF)j('~&(W)=

Eam (2k') j—&

(3 1)

h jan) j+)""(W)=—

and

16r5' ay~), gp)~('&)

k (2k')j &

(3.3)

g C~ )(~,~) D~ )(~.e)

hj~) jp)j('~'(W)=
(2k') j & (2k') j—&

g j+1(+4) (2k2)Dj g(~ 4)
+2Wk' W . 3 4

(2k') j+& (2k') j+&

It is easy to see from expressions (3.1) through (3.4)
that these eight partial-wave amplitudes h defined for
complex J have no kinematical singularities in the 8'
plane, and their singularity structure in the 8' plane
is precisely the same as that of the functions h~+ (W)
=$W/(E+m)] f(+ introduced and discussed by Frazer
and Fulco. 4

Besides having nice analytic structure in the 5'
plane, these new amplitudes also have some very simple
symmetry properties in the W plane. ' Ke have

hj—$ j—$""(W)=—h j+),j+)j' ~'(—W), (3.5)

h j+$ j—$""(W)= hj )j~ —j' 4'—(—W). (3.6)

'S. Frautschi and D. Walecka, Phys. Rev. 120, 1486 (1960);
%'. Frazer and J. Fulco, ibid. 119, 142.

'The author is indebted to Dr. N. Dombey for a discussion
about applying the Regge method to nucleons, as an after efFect
of which the present author was led to realize the importance of
the symmetry relation (3.5). However, the present way of apply-
ing the Regge method to fermions is difFerent from Dr. Dombey's
method. The author is also thankful to Professor M. Gell-Mann

J,(e,y) (~,4)

hj~1, j~)j'»(W)= (&) +(W&m)
(2k') j-& (2k') j-&

A g+$ )(e,$)-
+2(E+m)' W +(W+m), (3.2)

(2k2) j+) (2k2) j+$
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The analog of symmetry relation (3.5) for o~ 1,~ ~(W)
was 6rst pointed out by MacDowell for physical J
values. ' Here it is seen to hold true for complex J
values also. The other symmetry relation is new. These
relations essentially follow from the reQection properties
of the f;(W)'s given by

fi(W) = —f, (—W)

f3(W) =—f4(—W). (3.8)

i.e., the four amplitudes h~g, ~g J'('&& are all decoupled,
and, in general, would have diGerent J-plane singu-
larities, apart from the correlation implied by the
symmetry relation (3.5) and discussed before.

A family of Regge trajectories can thus be specified
if we give the J parity and space parity. So far we did

for pointing out that Gribov and Pomeranchuk have also reached
similar conclusions. The present discussion makes it clear that the
occurrence of two correlated Regge trajectories persists, even when
parity is not conserved.' S. W. MacDowell, Phys. Rev. 116, H'4 {196O}.

The reQection properties (3.7) and (3.8) follow from the
invariant nature under 8' ~ —lV transformation of
the amplitudes A, 8, C, and D.

The symmetry properties (3.5) and (3,6) are very
signif(cant. Weknowfrom them that if kJ+), J+$ "»(W)
has a singularity in the J plane, given by J=a(W), then
k~ 1,~ ~~"&)(W) would have a corresponding singu-
larity in the J plane at J=n(—W). In particular this
singularity may be a Regge pole, J=a(W). The sym-
metry relation also implies the relations between the
residue of the Regge pole J=n(W) in k~+~, ~+~ ('~)(W)
and the residue of the Regge pole J=n(—W) in
kz g z 1 ('4)(W)

In the case of parity nonconservation, which we are
considering, all the four partial-wave amplitudes having
the same J parity and corresponding to the same J are
coupled to one another, and thus would share the same
Regge poles in the J plane. This sharing property com-
bined with the above symmetry property implies that
if one of the amplitudes has a pole at J=a(W), then it
would also have a pole at J=n( —W), and the other
three amplitudes likewise would have poles at J=(),(W)
and J=a(—W).

For the real physical case of the conserved parity,
we have

kgb). ~)~('» (W) =0.

Further, unitarity no longer couples the even and odd
space-parity parts. Unitarity condition in the physical
elastic region reads, for real J and real TV,

k(Eats)(2k')~ &

Imh~), ~)~&') =
16 $'

and
k(EWm)(2k')~ ~

Imh~y, ~g
1&rR'

not consider isospin. The inclusion of isospin gives one
more quantum number, I= 1/2, 3/2.

If we regard the observed particle and resonance
states with baryon number one as Regge poles in the
m E scattering channel, then they can be interpreted
as follows:

(1) Nucleon, isospin one-half, and F1 ~X resonance
with I= 1/2 at 1680 MeV energy may be regarded s,s
the 6rst two members of the Regge family with I= 1/2,
even parity, and even J parity. It must be observed
that without the notion of J parity it would not have
been possible to explain the absence of an I= 1/2, F1 s.X
resonance. Further, both these objects have to lie on
the same Regge trajectory; otherwise we would expect
to 6nd another particle with nucleon quantum numbers
and mass occurring where this Regge trajectory crossed
J= 1/2. We can get an idea of the average slope of this
Regge trajectory in terms of the observed masses of X
and F1mX resonance. This turns out to be dn/dW
=(370 MeV) '.

(2) The Dg mX resonance with I= 1/2 at 1510 MeV
has to be regarded as the 6rst member of the Regge
family with I=1/2, odd parity, and odd J parity. An
observation of a second member of this family depends
on whether this Regge trajectory ever crosses J=1/2.
On the basis of the above estimate of slope, we might
expect it to happen around 2250 MeV, if one were
allowed such an extrapolation. More likely, however, is
that this is the only observable member of the family.

(3) The 3, 3 resonance (i.e., F1 s.iV resonance with
I=3/2 at mass 1238 MeV) has to be regarded as the
first member of the fainily with I=3/2, even parity,
and odd J parity. Using our previous estimate of slope,
one wouM expect this trajectory to exhibit its second
member Fi(, ~AT resonance with I=3/2 around 1900
MeV, where one has observed a bump in I=3/2 state.
The quantum numbers of the bump, however, are not
yet certain.

Iv. HIGH-ENERGY BACKWARD mN SCATTERING

The results obtained in the last two sections about
the J-plane analyticity in the s X scattering (i.e., the s
channel) apply equally to the u channel, as this is also
a xX scattering channel. As the Regge poles in the e
channel control the high-energy backward xX scatter-
ing, we are now in a position to give expressions for the
~.V backward-scattering angular distribution expected
in the Regge picture.

%'e have

do—(w+p ~ n+p)
dQ

1 (t))2—1)'-—
~ f (+)~fi( ) Q, (+)~f (—)1 ~

2

s

XRegi(+)Wfi( )j+[f (+)Wf ( )j. (4.1)
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Using crossing symmetry, we have

do—(x~p -+ x+p)
dQ

=
~ fi&+)+~fi(—) & [f (+)&~f2 ( )e]

~

s

(m' —1)'——u — Re[f (+)'af & &']*
s

x[f2(+)~~f (—)o]
since

(4.2)

and
[[f& 2'+'+f1 2 ]N a[[f1,2 "'(u,s, t)]»

[fi 2(+) —fi 2(—) ]&r=0

where the subscript E stands for nucleon Regge
contribution.

The physical nucleon pole appears in the amplitude
he+a, s+~s('& (W ) at J= 2 and W„=m in the u channel,
where I=8'„' and TV„ is the c.m. energy in the u chan-
nel. If we denote this Regge trajectory by J=n&&(W„),
the amplitude hz ), z y ('(W ) will have a trajectory
given by J=n)&( W) U—sing't.he Sommerfeld-Watson
transform for fi, f2 in the u channel, obtained by re-
placing W and z by W and z. (the energy and cosine
of the angle of scattering in the u channel) in expression
(2.14) and using the symmetry relation (3.5), we find
that the contribution of the nucleon Regge pole to
fi( & f2& ) ls glvell by

[fi,m"'(u, s t)]~
(E —m)(2k„') "&w»b»r(W )

32W cos[znN(W„)]

X [Pa)r&w„)py'(zc)WPa&r&w„)+g'( —ze)]

(E„+m)(2k„') )r&—w") &b&)r(—W„)

32W cos[zn»(( —W )]
&&[P „( w„)~k'(z.)~P „( w„)~k(—z,)],

f '"'(u s t)&f1,2" '(u, s, t)
=f),p&+) (s,u, t)&f),2( '(s,u, t). (43)

This simply expresses the fact that )r+p scattering in the
direct channel looks like x p scattering in the u channel
and vice versa. The superscript t, refers to the ampli-
tudes in the crossed I channel with I as energy square.

As the detailed expressions are long, let us illustrate
how to work out the contribution of the diferent
Regge poles to fi'+'(u, s, t) and to f2&+&'(u, s,t) by taking
nucleon Regge poles as an example.

Now we have

f +&'(,s, t) = -',f, ,&»'(u t)+ 'f, t '(u -t)

fi, s( &'(u, s,t) =-',f '»'(u, s,t) ',f&2(—»'-(u, ,s, t),

where superscripts —',, 2 refer to the value of total iso-

spin. As the nucleon Regge trajectory has I=-', , it
would not contribute to I=-,' amplitudes and we get

where

b»&(W„) = lim ([n)&((W )—J]hs+t, s+ts" (W„)),
J'~~+(~ )

4k~' =u —2m2 2+ (—m' —1)'/u

E =(W '+m' 1—)/2W„,

z.= —[s—m' —1+2E„(W„—E„)]/2k ' (4 4)

By substituting Eq. (4.4) together with similar
contributions from other Regge poles in Eq. (4.2) we
have the angular distribution in the backward xp
scattering.

Now the backward direction in the s-channel wX
scattering is given by

u—(m' —1)'/s =0.

Thus, at very high energies, the backward cone has the
u values, which are negative; i.e., t/1/'„ is pure imaginary.
If n&ji(W„) and b)&(W„) are real analytic functions
with cuts on the real axis only, then nN( —W„) and
b&r( —W„) would be comPlex conjugates of n)r(W„)
and b»r(W„), respectively, and there would be inter-
ference terms between the trajectories J=n&lr(W„) and
J=na(( —W„), which would lead to oscillations in the
angular distribution.

V. REGGE POLES IN THE m+m —+ N+N CHANNEL

%e now come to a discussion of the J-plane analy-
ticity in the &r+7r —+ 7+5 chan. nel; i.e. , the t channel.
The Regge poles in this channel control the high-
energy forward elastic xX scattering.

The partial-wave decomposition in this channel is
given by7

Sm
2 & "&(s,u, t) =—P(J+-', ) (pq)'

p2

8$ cos83
X Ps'(cos8s) f &+&s(t)

-LJ(J+1)]'"
Ps(cos83) f+&+—)s (t), (5.1)

and
(J+2)

8&+)(s,u, t)=8)r P
[J(J+1)]'&'

X(Pq)'- P, '(cos83)f '+& (t), (5.2)
where

t=4(p'+ ') =4(q'+1),
cos83——(s+p'+q')/(2pq) =z, ,

f+&~&s=same definition as of Frazer and Fulco,

and thesumsover J run through J=0, 2 4 . for A(+&

and 8(+), that is I=O; and J=1,3, for 3( ' and
8(—), that is1= j..

'%. Frazer and J. Fulco, Phys. Rev. 117, 1' (j.960}.
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In what follows we do not consider the analytic con-
tinuation of f+(+&s into the complex J plane, but rather
the continuation of f+'+& and (j) &+& defined by

J+
(f) (k)z — f (+)s

[J(J+1)]')2
(5.3)

as these are the quantities that we always encounter.
This gets rid of the 6xed branch points in J at J=O, —1.
We have for physical J values

A (+) tg
f (6)s— p2 +

gs (Pq)s (2J+1)(Pq)s '

X[(J+1)Bs+i(+)+JBs-i(+)3

,(+) g, (+)

(f) (+)s—
16)r(Pq)s '

Using these expressions to project out these partial
waves, we obtain, after certain simpli6cations,

same as that of the physical partial waves. They are
thus real analytic functions in the t plane with a right-
hand cut 4&/& ~, and a left-hand cut —~ &t
&4(1—1/4m'), on the real axis.

Since unitarity couples both f++s and (f) +s to a
number of common channels like the I=0, xm scattering
channel, they will share the same Regge poles together
with the I=O, xm scattering amplitude. Similarly for
(f+) 'and (f)

d(r/dQ=
l fi+f2 l'+ (t/k') Ref)*f2, (6.1)

VI. HIGH-ENERGY FOR%'ARD ELASTIC
SCATTERING

High-energy forward elastic scattering is dominated
by the Regge poles in the crossed channel z+z. -+S+¹i.e., the t channel, which we analyzed in the
last section from the Regge point of view.

We have for differential and total cross sections,

p' [1+(—)']
f+'+"(t)= ds

Sn' (pq)s+'
with

~total- fm(fi+f2)& 0,
&))t (aP —1)&

;6.2)

s+p+q
X A. (+&(s',t)— B (6) (s' t)

2

co= (s—))&'—1)/(2)r&) = the lab energy of the pion.

Here one has to substitute proper isospin combinations
for fi and fs. Thus

and

s'+ p'+q')
XQs

2pq
(5.5)

and
f;=f,(+&&f;( & for z+P ~ s+P,

f;= v2f &for—m
—

p -~ z'&t. (6.3)
1 [la(—) j

(f) (+)s- ds' 8,(+& (s', t)
16'' (pq)

Re-expressing Eqs. (6.1) and (6.2) in terms of ampli-
tudes A' and 8, where

s'+ p'+q' s'+ p'+q'y
X QJ i QJ+)

2pq 2pq

ra+ t/(4')
A'=A+ 8,

1—t/(4 ')
(6 4)

We have used the crossing symmetry (Bose statistics
for the pions) also in writing these expressions. Looking
at these expressions, one again sees that, apart from the
factor [1&(—)~], the quantities f+(+)s and (f) (+&s

de6ne analytic continuations that are suitable for
making Sommerfeld-Watson transforms. Thus we again
dehne the even and odd J-parity continuations by re-
placing (—)s by +1 for even J parity and by —1 for
odd J-parity continuations. This makes the odd J-
parity continuations for I=O and the even J-parity
continuations for I=1 identically vanish. This is a
particular instance in which a symmetry property
(here, Bose statistics for pions) tells us that only one
J parity is physical. Since only one of the J-parity
continuations is nonzero, we shall use the same nota-
tion as f+(+&~ and (f) (+)s to denote the nonvanishing
one.

The analytic properties in f of the J-plane analytic
continuations f+(+&s and (f) '+' are precisely the

we obtain,

and

(&)&t+(u)' ))+ l
s— ll~l, (6.5)4' k 1—t/(4'))

0"' '= ImA'(s, t=0).
(aP —1)&

Now we have from Eqs. (5.1), (5.2), and (5.3),

(6.6)

&"'(s,t)=S Z(pq)' '(f)-""~ '(cosa) (6't)

8~~'"'(,t) = ——Z(pq)'(J+l)f+'+"(t)& ( ost) ),
p2
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2~0(P~
Lo'(t)+ 103b+"(t)')m

~ '(1)(—«)~& '«}(«)

sintr(t+ (t)

pq
a+(t}—1

8(+) —) +20rt — b +(t)
~00 m

(6.8)

~-'(t)'( —st) ~I'-'(t)'(st)

On the hypothesis that large s (i.e., coset) behavior
is dominated by the Regge poles in the t channel, we
have

Thus these must be a trajectory having zero baryon
number, even 6 parity, even J parity, and zero isospin;
i.e., the trajectory has the quantum numbers of the
vacuum that must pass through 1 at t=0. This is the
Pomeranchuk trajectory. There cannot be any tra-
jectory that passes through a point J& 1 at t=o other-
vrise vre would have a cross section increasing as a
power of energy vrhich is certainly not allowed by the
Mandelstam representation. Also, for isospin one we

expect the p Regge trajectory to be same as n (t). Now
Re tr (t) = 1 at t=30m '; hence, at t=0 we would. auto-
matically have a (0)(1.

Thus, at high energies, the tr+p and tr p scattering
will both be dominated by the Pomeranchuk-Regge
pole and vre will have

sintr(t+(t)

I
~++(t) I'— (I ~++(t) I'+

I
~+(t)~-+(t)

I
')

4m'

do s 't+(') u—(tr+p —+ tr+p) ~
where n+(t) and t}t (t) are Regge poles that have maxi- 16x 2m

mum real parts for the isospin zero, nr+0r —) f)(+E t
channel, and for the isospin one, tr+tr —+ X+Xchannel,
respectively, and where

In writing these expressions we have used the results
concerning the J parity and sharing of Regge poles by
diferent amplitudes, vrhich were established in the last
section.

These expressions (6.8) could be further simplified to

t g

)
+() -typ —'

e'(6) ~ C k(t)I
&2m sintrtt+(t)

i aa(t) 1-]~S——toed:(t)—
B(+)~ &+(t)C +(t)

2mi s)ntrtt+(t)

(6.9)

where C++(t) is linearly related to b++(t), and C +(t)
to b +(t). Substituting these behaviors (6.9) into our
expressions for total cross sections, we get

( g a+(0)—1

trtotsl(& p)+&tots-)(&+p) ~ c +(0)I
&2m

(6.10)
( S )a (0)—1

~total(~
—

p) ~total(~+p) ~ C —
(0)I

&2mi

Now if the constancy and equality of the tr+p and
tr p cross section is to be achieved in this picture, then
we must have

(1+(0)= 1,

tt (0)&1.
(6.11)

b +(t)= lim {mif +(~) (t)LJ—tr+(t) j),
J'-+a+(t)

and (6.8')
b +(t)= lim {m~-'(f) +(~) (t)LJ—a+(t)]).

Z-+a+ {t)

~
—isa (t) 2

X
sintra (t)

(6.13)

By using these expressions (6.12) and (6.13), it
should be experimentally possible to determine the
Pomeranchuk and p trajectories for negative values of t.
A signiicant feature of the Regge-pole hypothesis is the
logarithmic shrinkage of the vridth of the diGraction
peak with energy.
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g+~—isa+(t) 2

X . (6.12)
sintru+ (t)

However, for the charge exchange 0r p-otrots, the
Pomeranchuk-Regge pole cannot contribute because
there vrould have to be a charge exchange in the crossed
channel; this cannot happen because the Pomeranchuk
trajectory has zero isospin. Charge exchange is a pure
I= 1 process when looked at in the t channel. Thus, this
process is dominated by the p Regge pole, and vre have

der )2[a (t)—I]—(tr-p -s trott) - ——
I

dt "8~ 2mi
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APPENDIX. THE RANGE OF THE EXCHANGE
POTENTIAL

There has been some uncertainty as to what quantity
should properly be called the range of the exchange
potential in the case of the scattering of two unequal
mass particles, such as xX scattering. The discussion in
Sec. II clarifies this situation.

It will be seen from expressions (2.12) and (2.13)
that the absorptive parts in the f and I channels having

the same value of the integration variable x' super-
impose each other. Now x'=t for t absorptive parts
and x'=e —(m' —1)'/s for u absorptive parts. Hence
the range of the exchange force arising from the ex-
change of mass gg is Ltt —(m' —1)'/s] 'I' in the sense
that (t) & is the range of the direct force arising from
an exchange of mass gt in the t channel. Unlike the
direct force, the range of the exchange force is energy
dependent and gets smaller as the energy gets larger.
In particular, the exchange of a single nucleon gives
rise at low energies to a force of range of approximately
(2m) '" and approaches the naively expected range
(m) ' only at very high energy.
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A theorem of statistical mechanics relates density fluctuations to compressibility. A new derivation of
this is given. The theorem is violated in the BCS model of a superconductor. The difhculty is resolved by
those same improvements in the theory which lead to a gauge-invariant Meissner effect.

I. INTRODUCTION
' T has been observed by Luders' that density Quctua-
- ~ tions in the BCS model of a superconductor violate
a standard result of statistical mechanics (Sec. 2, Sec. 3).
The difhculty is analyzed here. It is found to be resolved,
at least for zero temperature, by those same improve-
ments of the theory which lead to a gauge-invariant
Meissner effect (Sec. 4, Sec. 5). A new derivation of the
standard theorem is given (Sec. 6).

number

dx p(x)

is given by
(1V")—(S')'= 0'kT(BP/Bp),

or with a di8erent form of the right-hand side

(X")—(S")'= 0'pk T (Bp/Bp), (4)

Bp
dx G(x)=AT—,

RA
(2)

where p is mean density. An equivalent statement is
that in a large subvolume 0' the fluctuation of particle

~ Permanent address: CERN Geneva.' G. Luders {unpublished).' See for example L. D. Landau and E. M. Lifshitz, Statistical
Physics (Perga, mon Press, London, 1958), p. 365.

II. THEOREM

Consider an infinite homogeneous system in thermal
equilibrium, specified by temperature T and chemical
potential p. The two-particle correlation function is
defined by

G(x- y) = (p(x)p(y))-(p(x))(p(3')) (1)

where p(x) is density at position x, and brackets ( )
denote thermal averaging. The standard result' is that

where p is pressure.
The usual argument is that for large enough 0' one

can ignore interaction across the dividing surface with
the remainder of the system. The latter is treated merely
as a reservoir of particles. The subsystem in 0' is then
represented, to some unspecified degree of accuracy, by
a grand canonical ensemble. Equation (3) is readily
derived, and (2) follows from it.

The theorem has been stated for an infinite system.
In formal discussion one considers first a large but finite
system, of volume Q. Ke then use the conventional
periodic boundary conditions, so that the quantity on
the right-hand side of (1) remains a function only of
(x—y). It is essential that the limit 0 —+ ~ is taken
before the integration in (2) is performed. It is easily
seen that the quantity

lim dx G(x)

is ensemble dependent. In fact, it is proportional to the


