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A method is developed for generating relaxation by introducing a fundamental interval r and a stirring
hypothesis. The application to spin and harmonic oscillator systems is discussed in some detail. AII the re-
suIts are obtained by exact calculations without applying perturbation theory as the systems considered
are simple and completely soluble. Equations similar to phenomenological Bloch equations are derived in
the case of spin systems. The relaxation times obtained by the application of the theory are not only pro-
portional to the strength of interaction, but also to the fundamental interval r which plays an important
role in the theory. It is shown that in the case of a harmonic oscillator system, an initial Boltzmann distribu-
tion relaxes to a final equilibrium Boltzman distribution through a sequence of transient Boltzman distri-
butions.

INTRODUCTION

HIS is a continuation of our work on stochastic
dynamics of quantum-mechanical systems. ' We

have shown in our previous work that non-Hamiltonian
dynamics is essential for relaxing systems without
going into the details of generating relaxation mecha-
nisms. Here we develop a theory for generating re-
laxation and apply it to simple systems such as coupled
spins and coupled harmonic oscillators.

The unitary time development of the density matrix
is characteristic of all isolated physical systems and
others which are acted upon by external agencies but
do not react back on them. An example of the latter
type is an ensemble of particles with spin (and asso-
ciated magnetic moment) in an external magnetic held.
On the other hand, one may be interested in a physical
system A which forms part of a larger system or is in
interaction with another system 8; for instance, in
paramagnetic relaxation, a system of spins in inter-
action with lattice. Again, in a system with several
degrees of freedom, one may be interested in just one
or a few of these; for example, the spin state of particles
scattered by a target possessing spin, irrespective of
the distribution of their directions. In all these cases
it is possible to define density matrices which refer only
to the system or degree of freedom of interest and thus
contain just the desired information. Such a density
matrix, say, p" may be obtained by taking a partial
trace of the density matrix p describing the complete
interacting system. Thus, if A denotes a complete set
of commuting observables for the system A of interest
and j3 the additional set of observables required to
specify the state of the total system (2+8) completely,
one can choose a representation of the density matrix
p @ labeled by the eigenvalues a, 5 of A, B. Then p
has matrix elements defined in terms p"~ by

paa' =prob c'5
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with the density matrix p~ satisfying the following
conditions~:

(p,pQ) = (p"ppP) (hermiticity), (1 2)

(y,p"p) &~ 0 (positive-semide6niteness), (1.3)

Trp" = 1 (normalization). (1.4)

)In (1.1) and throughout we have invoked the sum-
mation convention whenever repeated indices occur. j
While the development of p"s(1) is unitary that of
p" (t) is not unitary in general. The specilcation of p"
at one time t~ is not sufhcient to determine p" at any
future time t2. For this, in general, one has to refer back
to the equation for p, solve it to obtain p" (tm) and
then evaluate p" (4) by using (1.1).However, there are
situations of great physical interest where one can
write down an equation for p" that gives very close
approximation to the actual time development of p~
and thus avoid the necessity for appealing to p"~ at
every stage. The classic example of this is the Bloch
equations' for paramagnetic relaxation, in which the
efFect of the interaction of spin (A) with reservoir (8)
are lumped into a few relaxation times.

In Sec. 2 we develop a general program for relaxing
systems by introducing a "stirring hypothesis" with a
fundamental interval ~. In Secs. 3, 4, 5, and 6 we discuss
in some detail relaxation mechanism of two coupled
spins and derive equations similar to Bloch equations.
Finally, in Sec. 7 we treat an example of a coupled
harmonic oscillator and show that an initial Boltzmann
distribution relaxes to a final equilibrium Boltzmann
distribution through a sequence of transient Boltzmann
distributions.

2. GENERAL PROGRAM FOR RELAXING SYSTEMS

We consider a system C composed of two subsystems
2 and 8: A corresponds to the "physical system" of
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interest; B corresponds to the "reservoir" or "thermal
bath. "The composite system AB= C is considered as a
complete system even though B is kept in an inex-
haustible temperature bath. %e can, of course, include
"external forces" in the Hamiltonian of the composite
system. Now we write the density matrix for the
complete system C in the following fashion:

P =P ~ Pab, a'b' ) (2.1)

Pab, a'O' Paa' P &bb'y (2.2)

where p" is the density matrix for the subsystem A
and P ebb is the density matrix for the subsystem B.

Similarly, a general Hamiltonian for the combined
system is given by

X,'~3'..b,.b =X"+BC +3'.;.„(2.3)

where XA and X~ are the Hamiltonians of the systems
A and B, respectively, and 3'.; t, is the interaction energy
operator of the combined system.

Now let us suppose we are interested in ending how
the system A relaxes when it is in contact with system
B.Ke 6rst start with a density matrix of the subsystem
3 which is p„"and "extend" it to be a density matrix
for the combined system C by de6ning

Pab, a' O' Paa' P &bb"

A similar process of "extension" can be defined for
Hamiltonians of systems A and B a1so:

Xaa' ~ ab, a'b' =~aa' ~bb'q (2 4)

bb' ~ ab, a'b' =bb' ~aa' ~ (2 3)

The Hamiltonians X,A and K~ correspond to energy
operators of the systems 3 and B, respectively, when
the systems are not in contact with each other. If the
systems when brought into contact do not interact
then no relaxation takes place. Interaction between
the two systems A and B is the mechanism which
brings about the relaxation phenomena. Therefore, to
produce relaxation, the general Hamiltonian must
contain in addition to such extended subsystems
Hamiltonians (2.4) and (2.5), a true two-system
Hamiltonian ("interaction Hamiltonian") which can
not be written as the sum of two independent terms.

Finally, we deine a process of "stirring" which
associates with every general density matrix of the
combined system C=AB, a special density matrix C
by the following correspondence t:

Psbs'b' ~ +(P, sbs'b' j Pss , s's Pbb ~ . (2 6)'

where the indices a, a' correspond to the "coordinates"
of the subsystem A and similarly b, b' correspond to the
coordinates of the subsystem B. Now we consider a
special class of density matrices whose dependence of
b, b' is simply of the form ebb . Often the density matrix
for the complete system is given by

This process of stirring thus defines for every density
matrix po a special density matrix 8(pc); this corre-
spondence is linear but, in general, not unitary; in fact
as can be seen it has no inverse since many general
matrices are mapped into a special density matrix.

This process also associates with every general
density matrix p~ a density matrix pA of the subsystem
A by the way of "restriction":

Pab, a'b' ~ Paa' =PaP, a'PC A — C (2 7)

and the mapping 8(p, b,, b o) is simply the "extension"
of this "restriction. "

Now let us start with the density matrix of the
subsystem of interest p„"(0)at time t=0, and extend
it to p, b, , b (0)=p „„"pbb ' and compute the density
matrix po(ir) at r by the following unitary trans-
formation:

p (1r)=U (r)p (0)U (r), (2.8)

where U (~)=exp(irKo) and Ko is an appropriate
combined system Hamiltonian containing an "inter-
action. " The quantity r is an appropriate parameter
which is intrinsic to the system which we have referred
as "fundamental interval" previously.

Now we compute a new density matrix p" (1~) for
the subsystem A given by

p- "(ir)= (U'(r) p'(0) U").p, "p (2.1o)

We extend the system p„"(ir) to p, b, , b o(ir) by the
following relation:

p.b,.b'(») =p....."(ir)pbb'. (2.11)

We again compute U (»)pc(ir)Uc" (») and obtain
pc(27). By the same procedure we obtain a new density
matrix for the subsystem of interest p, "(27). We
continue this process n times and obtain

-"( )=(U'() 'L( —1) 3U"()&," (212)

p.b;b o[(m, 1)sf=—p.„,. "[(n—1)s.jpbb. r. (2.13)

The integer-valued variable n now serves as a "time
parameter" and, in general, as n increases the sub-
system density matrix p" (nr) corresponds to more and
more relaxation. Ke may call the nth case an n-step
relaxation.

The following assumptions have been made in the
formulation of generating relaxation developed above.

(I) Statistical independence of the density matrix
of sy.stem A and system B at 3=0, or, in other words,
the density matrix of the combined system could be
factorized into density matrices of component systems
at t =0, i.e., p (0)=p" (0)p (0).

(II) The relaxation times (e.g. , T~ and T2 for spin--',

systems) of the system of interest, A, are much larger
than the fundamental interval r.

(III) Time averages are never taken but at every
fundamental interval r, partial trace with respect to
the reservoir is taken.
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where
p = ',I(-,'I+p;,~),

-

p"= aI+P»~it

(3 3)

pB (3.5)

where e~ and c~ are Pauli spin operators for systems 1
and 2, respectively, and pl, (j=1,2, 3) are polari-
zations for the spin of system 1 in direction 1, 2, and 3,
respectively.

At )=0, system A corresponds to one of the spins
which has the most general distribution and not im-
mersed in any kind of heat bath and system B corre-
sponds to the other spin which is immersed in an in-
exhaustible inGnite temperature bath. At t&0 the two
systems are brought into contact. As there is no external
magnetic Geld applied to the system, the spins do not
precess and because of the interaction between the two
spins there will be relaxation alone. Since we are
interested in the system A, we now calculate the
relaxation of this system applying the theory developed
in Sec. 2.

The unitary matrix which transforms pc(0) into
pc(r) is given by

Uc (r) = exp (4Xo»ir4;r)

=exp( 2krnoi+(rg, )' irlr' c'4r']}& —(3.6)—

(IV) The system 8 is assumed to be in contact with
an inexhaustible reservoir so that the change in the
system 8 is negligible. At every interval r the system
8 goes back to its original state at 1=0 while system
A of interest changes its state. The mechanism of
stirring introduced in this model annuls the correlation
between the system A and 8 at every fundamental
interval r and discards all the o6'-diagonal elements of
the system 8 which acts as a reservoir.

3. DYNAMICS OF A SYSTEM OF TVfO SPINS WITH NO
EXTERNAL MAGNETIC FIELD AND ONE OF

THE SPINS IN CONTACT VGTH INFINITE
TEMPERATURE BATH

Let x and g be the wave functions of the two spins;
these are then two-component vectors representing
the amplitudes for spin-up and spin-down states. The
complete wave function for the total system is given
by

(3.1)

where IP is a four-component vector. The Hamiltonian
for the system is a 4)&4 matrix.

Let the Hamiltonian of the combined system be
given by

Ac=BC"+Ma+a;, 4 3C;.4——li(ir»——ir2,),
j= 1, 2, 3 (3.2)

where %~=KB=O as there is no external magnetic
Geld acting on the system and X denotes the strength of
coupling between the two spins.

The density matrix of the combined system at t=0
is given by

Tr&2y= Tro 22= Trt723= 0. (3.10)

By the method of iteration we can now calculate p(ltr),
which is given by

p" (N r) = —',I+P I;0 I, (COS'2llr) ".
If we let rtr = t, (3.11) can be written as

p" (t) = 'I+ p»o»-(cos2Xr. )"I'

(3.11)

(3.12)

The time evolution of the polarizations p» is given by

pl, (0) ~ pl, (t) = (COS2Xr)"I'pU(0). (3.13)

Now we shall compute the matrix E which maps the
polarizations pl, (0) into pl, (t) and is given by

(cos2rX) 'I' 0 08=0 '(c os 2rX) 2' 'I0 . (3.14)
0 0 (cos2rll)'" r

The matrix E is already in diagonal form, and equation
(3.13) can be put in the following form:

Pl, (t) =exp) —(2t/r) ln sec2rgP»(0); (3.15)

therefore
e "r=expL —(2t/r) ln sec2rX]. (3.16)

We see that all the three polarizations pll, pl2, and pia
have the same relaxation time T given by

T= r/(2 ln sec2A). (3.17)

It can be seen from (3.15) that, as t —+ 4e, all three
polarizations approach zero, which corresponds to an
inGnite temperature bath.

%e can also see that there will not be any relaxation
in the subsystem A when the coupling constant X=O.
This means relaxation does not take place unless the
systems A and 8 interact with each other and as X
increases the rate of relaxation also increases.

This model predicts that as the fundamental interval
7 -+ 0, the relaxation in the subsystem A ceases to take
place and therefore r should be a Gnite nonzero
quantity. Thus in this model the relaxation time T is
not only a function of X the coupling constant, but also
a function of r the fundamental interval which is true
of all the models discussed in the forthcoming sections.

but we can write (3.6) as follows:

Uc (r) —1&—sil rP +3&4i rl+ir, ir2. (&4i A 1)] (3 7)

where r is the fundamental interval, and we have taken
ft= 1. Now we can compute pc(ir). It is given by

p (ir)= U (r)p (0)U (r)
=4+2Pl, ol; cos 2rh+Pq, o2, sin 2cX

+SlI14CXpi~ 8& BIO'Iii'r24 '(3..8)

If we now take the partial trace with respect to 02 we
get

p" (r) = 24 I+PI—;o I, COS'2llr. (3.9)

In obtaining (3.9) we have used the relation
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where
u'(0) =~"(o)~'(0),

~"(o)= pl+ p»a»

u'(0) = pl.

(4 2)

(4.3)

(4.4)

The unitary matrix which transforms po(0) into po(r)
is given by

Ua(r) =exp[—ir(aip+op, )yHp/2+ii(a»o p;)j. (4.5)

If we compute p" (r) as before, taking the partial trace
with respect to system 8, we obtain

4. DYNAMICS OF A SYSTEM OF TWO COUPLED SPINS
WITH EXTERNAL MAGNETIC FIELD IN THE

z DIRECTION AND ONE OF THE SPINS
IN INFINITE TEMPERATURE BATH '

The system under consideration consists of two spins.
An external static magnetic field IIp is applied in the z
direction. The spin system 2 is in contact with an
infinite inexhaustible temperature bath as in the
previous sample and spin system 1 is assumed to have
the most general distribution. The Hami:etonian of the
combined system is given by

X 2 Hr[palp+ 2a3]+X a»apj) J= 1) 2) 3 (4.1)

where p is the gyromagnetic ratio, K = ——,'pHpoia is
the Hamiltonian of the system A, K = —2papa. » is
the Hamiltonian of the system 8, and 3C&&$ Aoijo2j
is the interaction energy of the combined system. At
I=0 as before, system 3 and system 8 are noninter-
acting and the density matrix of the composite system
ls given by

p (7)= pI+cos 2XT[pijoij 'cos247T

—p»ep;paip sin(A+2pipoip sin'par], (4.6)

where ca= —yHp/2 is the precessional frequency of the
spins in the external static magnetic field IIp in the z
direction. The time evolution of the polarizations p»
is given by

pii(1r) = cos 2Xr[pii(0) cos2pir+ pip(0) sin2a&r j,
Pip(1r) = cosP2Xr[Pip(0) cos2cor —P»(0) sin2por j, (4.7)

pip(1r) = cos'2Xr pip(0).

Now the matrix E which maps pi, (0) to p»(1r) could
be written as

cos 2Xr cos2~r —cos 2Xr sin2~r
K= cos'2Xr sin2cor cos'2Xr cos2u&r

0 0

(4.9)

In the present example the rotation of the po]ari-
zations takes place in the xy plane; the combined e6ect
of rotation and relaxation is contained in the 3X3
matrix E and it can be factorized as follows:

0
0 . (4.8)

cos22Xr
r

Since the system is subjected to an external magnetic
field, the matrix E' given by (4.8) contains the combined
eGect of rotation of the polarizations in the x, y di-
rections due to the external magnetic field in the z
direction and the relaxation effect due to interaction
between the two spins.

Any matrix E can be factorized into a product of
unitary and Hermitian matrices, i.e.,

cos'2Xr 0 0
BCU= 0 cos'2P 7 0

0 0 cos'2Xr

cos2cor —sin2cvr 0
sin2cor cos2~r 0 .

0 0 1
(4 1o)

S. DYNAMICS OF A SYSTEM OF TWO COUPLED SPINS
%'ITH EXTERNAL STATIC MAGNETIC FIELD H,

IN THE z DIRECTION AND THE RESERVOIR
SPIN IN CONTACT W'ITH A FINITE

TEMPERATURE BATH

ort e So far we discussed a system of two coupled spins
with one of the spins in contact with an infinite tem-
perature reservoir. Now we consider spin 2 in contact
with an inexhaustible finite temperature bath which

(4.12) would result in a Boltzmann distribution for the energy
levels. Again we assume the most general distribution
for spin system 1.

The Hamiltonian of the combined system is given bycorre

K~=SCA+BC~+Ã;.~,

X = coo']3)A (5.1)

6 F. D. Murnaghan, The Theory of Group Representations (The
Johns Hopkins Press, Baltimore, Maryland, 1938).

The unitary matrix is given by

cos2cor —sin2ror 0
U= sin2cor cos2cor 0 (4.11)

0 0

and the Hermitian matrix which is responsible f
relaxation of the polarizations is given by

r
cos'2Xr 0 0

0 cos'2Xr 0
0 0 cos'2Xr

Now, again by using the method of iteration, v
compute the time evolution of the polarizations
sponding to pure relaxation and this is found to be the
same as in the previous example discussed in Sec. 3.

As one could have expected, the magnetic field in where
the z direction does not aR'ect the rate of relaxation of
the system of two coupled spins. The mechanism which
causes the relaxation is the interaction between the
two spins and not the external magnetic held.
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where x=coP, P= 1/kT. Since the spin systems discussed

in Secs. 3 and 4 are special cases of the spin system
treated here, we would like to compare the results of
this section with the previous sections.

If we put P=O and Ho=0 in Eq. (5.7) we obtain the
following expression for p" (1r):

(5 2)K =GtPO'23)

(5.3)X inc =~&1jg'2g'.

The density matrix of the combined system at k=0 is

given by
p'(0) =p" (0)p'(0)

p" (o)=V+PVoV

p~(0) = exp( —aCP/kT)/Z~,

Zo= Tr exp( X—P/kT)

= 2I+ptt'oct' cos 2X'r. (5.8)(5.5)

(5.4) p" (1r)=2I+ocs[P» cos'2Xr]+a11[P11cos'2rk]
+o'12[p» cos 2Xr]

In the expression (5.5), k is the Boltzmann constant
and T is the absolute temperature of the bath.

The unitary matrix which transforms po(0) into
po(r) is given by

U (r) =exp(i[co(ota+o21)+hrl;om;]r}, (5.6)

Equation (5.8) is the same as Eq. (3.9) given in Sec. 3,
which corresponds to the ininite temperature bath and
no external magnetic 6eld applied to the system.

If we now just let t)-+0 in Eq. (5.7), we get an
expression for p" (r) given by

where co= —yHct/2. Now we compute the density matrix
for the subsystem p"(r) using (5.6) and taking the
partial trace with respect to system 8. It is given by

p" (1r)= —,'I+o»[pc~ COS'2hr]

+o11[pll cos2cor+p» sln2cor] cos 2Xr

+(T»[p» cos2cor p11 sin2cor] cos'2Xr. (5 9)

p (1r)= oI+o»[P13 cos 2Xr—2 taIlllx sill 21cr]

+o11([P11cos2cor+P12 sin2cor] cos 2rX

+-,' tanhx sin4) r[PII sincot —p» coscot]}

+o12([P» cos2cor Plz s—ln2cor] cos 2Xr

+-,' tanhx sin4Xr[P12 sin2cor+ p11 cos2cor]}, (5.7)

The expression (5.9) is the same as Eq. (4.6) of Sec. 4
which corresponds to the inhnite temperature bath and
an external held IIO applied to the system in the z

direction.
The mapping pl, (r)=ICPI, (0) is given by

P11(r) a cos2cot+b sln2cot

P12(r) = —a sin2t t+b cos2cot

.P»(r)

a sln2cot+b cos2cot 0 p11(0)
a cos2cot+b sin2cot 0 p, m(0)

0 a p»(0) —c/a
(5.10)

where

and
a= cos225.7, b = —,

' tanhx sin4Xr,

c= g tanhg sin'2X7.

Again, as in the example treated in Sec. 4, here also
there is the combined e8ect of relaxation and rotation
in the x, y directions, while in the z direction there is
just the pure relaxation effect. We separate these two
effects by the Inethod of polar factorization as before.
The matrix Ic given in (5.8) can be w'ritten as

R 0 0 cos(8—8) sin(8 —8) 0
0 It! 0 —sin(8 —8) cos(8—8) 0, (5.11)
0 0 a 0 0 1

where 8= 2cor, 8= tan '(b/a), and R= (a'+ b')'".
In the relation (5.11) the matrix with sines and co-

sines represents pure rotation. As we are interested in
pure relaxation phenomena, we discuss here the pure re-
laxation of the polarizations pl;. By using the method of
iteration we hand the time dependence of the polariza-
tions p11 and p». We treat the case of p» a little later.

PII(rtr) =R"PII(0)= [(a'+lp)'"]"pet(0), (5.12)

p»(rtr) =Ic.'"p12(0)= [(a'+fp)'t2] "p 1(0). (5.13)

—o tt rtp (0)—
p (t)= ""p (0)

(5.16)

(5.17)

where Tm is the relaxation time of the polarizations P11
and p» and is given by

T2= (5.18)
ln sec2rX ——,

' ln(cos'2r7c+ tanh'x sin'2')

We could immediately see from (5.16) and (5.17) that
as)~

Ptt(t)=P12(t) ~ ~.

Now substituting t for rtr in (5.12) and (5.13), we

obtain

P11(t)= [cos2rX(cos'2rX+ tanh'x sin'2rX)'"]"'PII (0),
(5.14)

ply(t) = [cos2rX (cos'2rX+ tanh'x sin'2rX)'t']" 'p»(0) .
(5.15)

The expressions (5.14) and (5.15) can be written in the
following form:

p11(t) = e tt'[ln sec2rX —l2 ln(cos22rX

+tanh'x sin'2r7c)]PII(0)
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coshx —a'gg slnhx =e "'*=e '»"= exp (—BC~/)

If we let x~0 in (5.18) the result obtained corre- since
sponds to the in6nite temperature bath discussed in
Secs. 3 and 4 and given by

Tg r/(2——ln sec2rX). (5 19) and
Tre "'*=Tr(coshx —o» sinhx) =2 coshx, (5.29)

The expression (5.19) is the same as (3.17) given in
Sec. 3.

The time evolution of the polarization in the s
direction corresponds to pure relaxation as there is no
rotation of the spin po1arization in the s direction and
is given by

pgg(r) = pgg(0) cos'2rX —-', tanhx sin'2'. (5.20)

If we calculate p»(nr) by applying the method of
iteration we obtain

pgg(nr) = (cosg2A) "p»(0)
(cosg2rlb, )"—1—

g tanhS sin 7'X

cos'2' —1
= (cosg2rg "pgg(0)

+-', tanhx[(cosg2A)" —1]. (5.21)

If we substitute nr= t in (5.21) we get

p&g(t) =exp[—(2t/r) ln sec'2'][pgg(0)+-g, tanhx]
——,

' tanhx (5.22)
ol

p»(t) —po= exp[ —(2t/r) ln secg2rX][p»(0) —po]
=e-""[p»(0)—po], (5.23)

where 3C"=coo». The result in (5.28) shows that the
system A in contact with system 8 (which is main-
tained at temperature T) attains the thermal distri-
bution corresponding to temperature T as t —+ ~.
Now, we write the density matrix p" (t) It i.s given by

p (t)=-,'I+e "rgpgg(0)a»+e " gpgg(0)o&g

+e '~r'P»(0)o»+Poo»(1 —e '~r'). (5.30)

6. DYNAMICS OF THE TVfO COUPLED SPINS WHICH
ARE AT EQUILIBRIUM SEPARATELY AT TEM-

PERATURES TI AND T2 RESPECTIVELY AT
t=0 AND ARE ALLOWED TO

INTERACT AT t&O

The system considered is a set of two spins A and 8
initially at equilibrium at temperatures Tj and T2„
respectively. The system 8 is maintained in a thermal
bath at temperature T2 and A is not in contact with any
kind of bath. The system A relaxes by virtue of its
interaction with B. The problem is to study the re-
laxation of A and its approach to equilibrium by its
interaction with 8 and using the stirring hypothesis
with a fundamental interval 7-.

The Hamiltonian for the combined system is given by

where

and
po ————,

' tanhx
c ~~+~a+X. . X

~ (olg+o go)+~ (&Ijog j)) (6.1)

~~.(t)/@= (1/2', )[~o—~,(t)]. (5.26)

It should be noted that the relaxation times Tj and T2
are diferent in the example treated here. Further the
relaxation time T~ is the same in the spin systems
treated in Secs. 3 and 4.

If we let t —+ oo in Eq. (5.23), we obtain

Tg= r/(2 ln secg2rh). (5.24)

If we now identify p»(t) with M, (t) and po with Mo
we get the Bloch equation for 3f.(t):

itp»(t)/Bt= (2/r) In secg2r) [po—p&g(t)] (5.25)

or equivalently,

wh««= —yHo/2. As in the example treated in Sec.
4, an external static magnetic 6eld is applied to the
system in the s direction.

The density matrix for the composite system at t=o
is given by

where
p'(o) =p" (o)p'(o),

p (o)=e p( —X"tt )/Z"

p (0)=exp( —X Pg)/Z&.

(6.2)

(6.3)

The quantities pg, pg, Z", and Ze are defined as follows:

Pg ——1/kTg, Z"=Tr exp( —K"Pg),

Pg
——1/kTg, Z =Tr exp( —3CePg),

p, g(oa) = —
p tanhx. (5.27)

The density matrix p" (t) for the subsystem at t= ~ is
given by

p"(~)=-ggI —-,'tanhxogg

coshx —o &g sinhx exp( —3C"P)
(5.28)

2 coshx Z"(P)

where k is the Boltzmann constant.
The unitary transformation which maps pa(0) into

po(r) is given by

Uo(r) = exp( —if( (o gg+ogo)+hog;og;]r). (6.4)

The density matrix for the subsystem A after taking
the partial trace with respect to the system 8 is
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given by

1 srnh(Pg —Po)oo
p (r) =—coshpyoo —oo'yo cos4Xr

ZA coshpooo

sinh(pg+ p,)oo-

coshpooo
1=—(coshPgoo —o'got slllhPy&o cos 2ib r

gA

+sin'2Xr coshp~oo tanhpooo]}. (6.5)

The density matrix pA(0) could be written in the fol-
lowing fashion:

pA(0) = (1/Z")LcoshPgco —ago sinhPgooj. (6.6)

If we define sinho/P~ ———P»(0) we can compute
p»(1r) from (6.5). It is given by

p»(1r) =cos'2) rp»(0)+sin'2) r coshp~co tanhpoo/. (6.7)

We can now calculate p»(Nr) by iterating the equation
above and obtain

p"(~)= (coshpioo+a»po)
Z" (P )

(coshp&o/ —o ~o coshp~oo tanh/opo)
2 coshP&oo

Ti= r/(2 ln seco2rX). (6.12)

'V. RELAXING COUPLED HARMONIC OSCILLATOR

(coshoop, —o ~o sinhpooo)
2 coshpooo

exp( —KApo)
(6.11)

ZA

since Z" (P~)= Tr exp( —K"P~)=2 coshP~oo, Z" (Po)
=2 coshp~, and MA=a»co. It is seen from Eq. (6.11)
that the subsystem A attains the thermal distribution
corresponding to the bath at temperature T2 as one
expects. We further notice the relaxation time T& is
the same as the ones we obtained in Secs. 3, 4, and 5,
given by

p»(mr) = (coso2Xr) "pro(0)
(cos'2),r)"—1

+sin'2' coshooP~ tanho. Pi
cos22Xt' —1

= (cos'2lb, r) "pro(0)

+coshoop~ tanho/poL1 —(cos'2Xr) "j. (6.8)

Now substituting t for Nr in (6.8) we get

p J 3(t) — ( (coso2&r)

«~pro�(0)

Z"(p.)

+coshoopi tanhoopot 1—(cos'2Xr) «'j}

[(cos'2Xr) «'(pro(0)+ po) poj—
ZA )

1
Ls ""(p»(0)+po) —poj,

ZA )

where Po= —cosh'&Pq tanhcoPo and Tz= r!2 ln sec 2'.
The expression (6.9) is very similar to Eq. (5.23)
discussed in detail in the previous section. Ke can now
write p" (t) at t. It is given by

p" (t) = (coshoopo
ZA )

—a»t:e ""(P»(o)—Po) —Poj} (6.1o)

We could find the equilibrium distribution of the
density matrix of the subsystem A by letting t —+ ~ in
(6.10):

The system considered in the example is a set of two
harmonic oscillators A and B. Both the systems A and
8 are initially in equilibrium at temperatures T& and
T2 at t=D. At t&0 the system 8 is maintained in a
thermal bath at temperature T2, but A is not in contact
with any kind of bath. System A relaxes by virtue of its
interaction with system B.We study here the relaxation
of system A and its approach to equilibrium by its
interaction with system 8 using the stirring hypothesis
with a fundamental interval r.

The Hamiltonian of the combined system is given by

X' t= XM (aytao+aotag).

We further define the following quantities:

py+oo/toogl pg —$tlko/fy
a 1

~ a) I
(20k') / (2r/too)~/o

(7 2)

po+'Lt/t/d/to po —or/too/to
a t-

) a2=
(2ortoo)'~o (2r/too)'/o

(7.3)

where p~, q~, po, /to are momentum and position operators
of the 6rst and second harmonic oscillators, respectively.
The quantity co is the angular frequency of the harmonic
oscillator, X is the strength of coupling between the two
oscillators, A and 8; and m, the mass, is the same for
both the oscillators.

Ka=BCA+Ks+5C; o

= Lcoagtag+o/aotao+) o/(agtao+aota, )), (7.1)
where

X =(oagtai) SC~=(oa2ta2)
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[a;,a;]=0, [a;t,a,t]=0,
[a;,a)t]=e;I., i=j =1, 2. (7.4)

The operators u~, u~t, a~, c2t have the following
commutation relations:

Equation (7.9) could be written as

p (r) [Z (8 )Z2 (82)] le 2( JsIC—(8IaItaI+Hssstas)e2is JI

exp( —20j)
S
—2lsZI eXp(8J )e2(s'il

ZI (81)Z2(82)
(7.11)

The initial density matrices p" (0) and ps(0) have the
Boltzmann distribution and are given by

where we have de6ned'

J+ a1 a2 J— a2 a1 J3 2 (a1 a1 a2 a2) 2 ('nl 'n2)

JI 2(J++J )2 (a1—a2+a2 aI),(7.5)))&(0)=Z —I(8I)g—aIta»I

pB(0) Z —
1(82)e

—sstas()I 1
J2=—(J+—J )=—(a)ta2 —a2'a1),

2i 2j

(7.6)

j 2 (a1 a1+a2 a2) 2(nl+'n2)

tn= 2 (a1 a1—a2 a2) =J2,
0= 2 (81+82) j 8=82 81) x=XMT

It can easily be veriied that all the J's obey angular
momentum commutation rules; j and m can be con-
sidered as eigenvalues for Jm and J3, respectively.

We can express (7.11) as

exp( —20j)
) c(r) = e ia~Ie (~~ac it~i (7.12)

ZI(81)Z2(82)

p'(0)=p"(0)~'(0)=z '( )Z '() "'"" '"" (»)
The unitary operator which transforms pc(0) into pc(r)
is given by

(7 g) whereUc(r) = exp (—Mcr).
cosp= cos'p+sin'p cos(I,

tang= tan(2= —cosp tan(q/2),

p= 2x, q= i8—
The density matrix p(r) is given by

pC (&)
—e A ( It s+aItsI)s))Ca(0) ei3 (aIt s+ ItaI)as( I 9)

where 81——pits, 82 ——p2(s, p1——1/kTI, p2 ——1/kT2, k= the
Boltzmann constant, T~= absolute temperature at
which oscillator A is initially maintained, T2= absolute
temperature at which oscillator 8 is maintained at all
times& ZI(81) =Tre "ts'" is the partition function for
system A, and Z2(82) =Tre "t"" is the partition
function for system B. The density operator for the
combined system p~ at t =0 is given by

We obtain the simple relation (7.9) since Finally, the relation between the old and the new
coordinate system is given by

[K"+K~,K;,2]=0

[pc(0), X"+X~]=0. (7.10)

tann= tang=i cos2x tanh(8/2),

cosP =cos'2x+ sin'2x coshe.

(7.13)

(7.14)

Here we have taken the density matrix in the energy
diagonal representation.

We obtain p" (r) by taking partial trace with respect to
system 8 and it is given by

(n1'I I)"(r) I
n,)=P (n1 n2! pc(r) In)n2)

=~aI'aI 2 (nin2I P (&) I n)n2&

(7.15)

p (nin2Ie ' 'e " 'e '~ Ie 't 'In)n2)z, (e,)z, (e,)-
j. nI+n2

+t(aI-ss), 3(aI—a2) (&~p~V)~z, (e,)z, (e,)
(7.16)

((j+~) '(j—~) '(j+~ ) '(j—~') ')'"
, ~I'(& p +)—p ( 1)X &

—i(m'a+ t) (S)n21 p)2K+m' (mC1OS) p2)+mm——2)r
z' (j tn' K)!(j—+n2 —E)!E!(IF+in'—n3)—

' J. Schwinger, Notes on Angular Momentum, NYO-3071, 1952.
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j= (e&+em)/2, m= (I& —nm)/2, and E is an integer. Now we can write (7.15) as

&~~'Ip"(r)l~~»- = g exp[ —O(eg+n2)] exp[ —,'~-(n~ —e2) (a+y)]
~i(8x)zm(82) "'

gg SQ ~
! I

XZ (-1)» (coslp)eel+eel 2x (sin~ p)2K (7 1 6s)
(ng E—)!(eg—E)!E!

We 6nally obtain the following result after summing over n2 and E:
cos-',P //1 —sec-', P exp[~(y+ n/2) 0—]

&Ni'I p"(r) I~~&=
(p)z, (e,),e*,pEO+(i/2)( +X)) 'cC —coeep exp'�(x+ /p) Oj—)

X(1—cosx2P exp[i(7+a/2) —0~]) '. (7.17)
If we now substitute n= y=ib in (7.13) we get

tanh8 = cos2z tanh (8/2).

Now substituting (7.18) in (7.17) we 6nally get

(7.18)

Zi(8i)~2(82)&~i'I p" (r) I»&=8. -
cos-,'P exp(h+ 0)—1 - "& 1

-exp(O —b)[exp(0+6) —cos-', P] 1—cos',pe &~@
(7.»)

It could be shown that the trace condition Trp" (r) = 1 is satis6ed. Equation (7.19) could be written as

&e&'I p (r) Inq&=8„, „,Z(8q(r))e "'P"'~

with
cos(-,'P) exp(0+8) —1

g
—~1(&)—

exp(Q —C) exp(O+C) —coe-',p)

(7.20)

(7.21)

The quantity 8&(r) thus replaces 8&(0)=0~ —8/2 as
the effective inverse temperature after stirring once at
the instant r. It could be seen from (7.20) that the
initial Boltzmann distribution (7.5) attains another
Boltzmann distribution at temperature [8~(r)] ' at the
first fundamental interval v. Now we can compute
[8~(2r)]-', [8q(3r)] ', . . .[8~(er)] ' to show that the
system A attains the same temperature as that of
system 8 as nr=t —+ ~. Unfortunately, there is no
simple analytical method of carrying out the iteration

CURVK As HI ~ lO, 82~5s Tl'2 Tp
CURYK B: Nl 5s H2'lO, Ti*2T2

0.20

process as in the case of spin systems. Since the tran-
sient distribution of the relaxing oscillator is always
canonical in this case it is possible to characterize it by
a "temperature" J(t)=h///k8(t) This resu. lt is similar
to the result obtained by Montroll and Shuler, ' and
Mathews, Shapiro, and FalkoG' in the sense that the
transient distribution of the relaxing oscillator is always
canonically distributed. Even though it is not possible
to compare the analytical expressions for 8&(r) as in
our case there is no simple method of iterating the
expression (7.21), we have shown in Fig. 1 that Montroll
and Schuler's graphical results agree with the results
obtained here. It could be seen in Fig. 1 that the
relaxing oscillator attains the same temperature T2 of
the bath as t —+ .

O. i 5
I

o.l 0

0.05.

I e p e e e

OT 2T 41 6T ST IOT i2T l4f
t

Fxo. i. The "temperature" Jk/hf =$81(t)p' as a function of
time t for the relaxation of an initial Boltzrnann distribution.
Broken curves refer to Montroll and Shuler and solid lines refer
to the present results.
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