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The cross section for a bremsstrahlung process in which almost all the energy of an incident high-energy
electron is transferred to the photon is calculated analytically, using techniques previously developed for
atomic photoeffect. Only terms of relative orders u4, u'g', and q are neglected, where u —=Ze' and q is the mo-
mentum of the outgoing low-energy electron (with A=c=m, =1).Similar results are obtained for positron
bremsstrahlung and pair production; previous work on the photoeBect is extended. The accuracy of these
predictions is discussed, and they are compared with experiments.

I. INTRODUCTION

lr ONTRARY to the Bethe-Heitler formula, the~ cross section remains finite for a bremsstrahlung
process in which the momentum q of the outgoing
electron is zero. A low-energy electron in the Coulomb
field does not look like a plane wave, but rather like a
bound state, and (as was noted by Fano, Koch, and
Motz') the process may be viewed as an approximate
inverse of the atomic photoelectric effect. In recent
theoretical calculations' ' the leading terms of an
expansion in u—=Ze' have been obtained for this
limiting bremsstrahlung cross section o.t,p.' For example,
from previous photoeffect results, O-~, p from electrons
of very high energy k is immediately given as

o,;,= (47resas/l's)e-" L1—(4sr/15)aj, (1)

if terms of relative order a' are omitted. ' The conver-
gence of such a series for large a is evidently uncertain.
Complications also arise since experiments" are
performed for small but finite q. In the present paper
we attack both of these problems, by calculating to
several more orders in a and retaining dependence of
the cross section on q; our results neglect only relative
orders u', a'q', and g' in tT&'p from very high energy
electrons. Only the leading term in 1/h has been retained
in the expression for the cross section. Furthermore, as
in Eq. (1), this expression is not a complete series
expansion in a, since some normalization factors are
left unexpanded. These factors, as discussed later, are
not entirely unique; they are chosen to improve the
apparent convergence of the series of the total cross
section at the tip.

We use a formalism previously developed for the

photoelectric eGect' "; the same calculation will also
give us new results for other related processes. An
improved version of the formalism is outlined in Sec. II.
The method requires calculation of successive terms of
an expansion in the angular momentum l of the low-

energy particle; each term contributes in relative order
a".We obtain an expression for the s state cross section
of any of these related processes, valid neglecting only
relative O(a'), etc. ; all the remaining conclusions of
this paper follow directly from this result. First, we
have new analytical results for s-state photoe8ect;
these are discussed in Sec. III and compared with
previous work. ' "For other processes we also need the
results previously obtained for p-state cross sections. s I
Then in Sec. IV we give predictions for the bremsstrah-
lung cross section a-&,p from very high energy electrons,
with the assumption that the low-energy outgoing
electron is not observed. After discussing the extrapola-
tion to finite incident electron energy we compare with
experiments. In Sec. V we give the analogous results for
positron bremsstrahlung and for pair production in
which one member of the pair is of low energy.

II. GENERAL FORMALISM

It has been shown" that for any very high energy
Coulomb-field vertex process in which there is almost
complete transfer of momentum between a photon and
an electron or positron, the cross section, integrated
over all states of the outgoing high-energy particle, is
determined from the integral"

where e is the total energy of the low-energy electron
in the process. If we sum over the polarizations of the
high-energy particle, then"
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where r and r' are expressed in cylindrical coordinates

(p,s) and (8',s'), and 8=8'; under these circumstances
F depends only on ~g~, not 8 itself. In Eq. (3), ll is the
wave function of the low-energy electron and the sum

is over all states of this electron which will not be
distinguished. In Sec. V we will generalize these results

to include the cases for which the low-energy particle in

the process is a positron.
For the purposes of this paper it is sufhcient to take P

as a partial-wave solution of the Dirac equation of
definite j, l, m, and to sum over m. In photoeffect this

gives us the cross section r;~ from a given shell, which is

the quantity of direct physical interest. In bremsstrah-

lung, if we do not observe the outgoing low-energy

electron, the cross section can be written simply as the
sum of the cross sections for emission of the electron
into de6nite partial-wave states, without any inter-

ference terms: o =g o;r. Since each o, ~ is, in principle,
a physically measurable cross section, the series for 0.

(which resembles a Born series since o, ~ a') should

converge even if the Born series does not. Thus, if in

Eq. (3) we sum over m for fixed j, l, we obtain

= kA(r)A (r') P~(c os c)a+ ka' B(r) B(r') Pr(cos~)

A(r)=Xr& 'P A„(ar)", B(r)=1Vr~'Q B (ar)" (5)

where A„and B„are constants, then the eth term of
the expansion first contributes to the cross section in
relative order u" or higher, and hence to any desired
order it is sufhcient to replace the sum in (5) by finite

polynomials in r. Making the transformations

8=p slnhco~ s'= p sinh~', (6)

and returning the contours to the real axis, the integral

(2) becomes

I'(2y+2)

~2y+2
Ch dy (sinhsx) && '&"

~
—t'. [8(a)—8(y) j

&& (sinh'y) && "&Is

(coshx+ coshy) '&+'

where

I"(2&+2+@)sinhxs sinhysP (x,y)xZ, (g)
I'(2y+2) e" (coshx+coshy)"

performing the p integration, making the transforma-
tions

%=M+'b 'll', y=G& t tl,

+saA (r') B(r) k cos8P (cosc0) P(*,y) = («')' ' 2- p"P-(*,y),

8(~) =a*+-', (&—k)S.,

%sin'8 P~ (cosra) saA (r—)B(r')
d cos8

k cos8'P~(cosco) ~sin'8' P~(cosro), (4)
d cos8'

where A (r) and aB(r) are, respectively, the large- and

the small-component radial wave functions of the
low-energy particle; the choice of signs (+) corresponds
to the possible cases j=l&-,', l'=i&1, k= j+-,', re=8
—8', cos8=s/r, sin8= p/r.

A technique for evaluating integrals of the form of Eq.
(2) as a power series in a was developed for the photo-
effect. The method is also valid for bremsstrahlung at
the tip and the other related processes, ' giving a series in

a and q. It was shown that if the radial wave functions,
after removing a factor r& ' /where y=(ks —as)'ls)
and a normalization factor S, are expanded in series in

(ar) and (qr),"

with 5, the usual step function: ~1 according as x&0
or x&0."

To calculate an s-state cross section neglecting only
relative O(a4), etc., we need in Eq. (5) the first four
terms of the expansion of A(r) and the first three of
B(r). Systematically expanding (8) in a and evaluating
the integrals, we get

e "I"(2/+2) 4 1 I'(2/+2+I)I= Z— I„,
4we'~+' ~~ e I' (2y+2)

(10)

where y= (1—a') "' and

and to the desired order the only nonva, nishing coefQ-

3 I„= Q a;,A;A,+ Q b,;B,B,
2g s+g=n, sag i+g=n, t(g

+ g c~JA&;, (11)

"In the form of Eq. (5), the series is written as in ar so th.at the
ath coeKcient may contain terms like (o/li) to powers as high as
the eth.

rs e(g) diiiers froni that used in the photoeffect papers, since
there the factors e ~" of the bound vrave functions vrere not
expanded. The present procedure is simpler, even for photoeGect.
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cients are

app= —-a+I 1— 8 Nlrb )
2 6 k 576 (18 576

The total cross section for E-shell photoeRect in the
limit of high photon energy k may then be written as

g2+1 2

)rx= o.o e "(1—0.837a—0.100a'+0.552a'), (15)
271+2

aoi =-——a+
I

—— a'+
I + 4ra',

4 20 (48 120 (400 120 where
)ro ——47re'a'/P yr ——«= (1—a')'»' (16)

23
+O2= ——6 ~ X'8 )

2 l 3

4 300

1 1 pr'
q 23

a„=—— + Ia'+ ~ao,
30 100 180» 900

1 7r

CP3= ——8 ~—8,2 l 3

15 70

1 7r

a)s= ——a + a,
20 140

C13= ——8,2
70

/25 m' 5
boo= &+

I

———a'+—~a',
(12 6 12

3 3
bpi= ——a'+~as, bps

————a',
4 20 15

(12)

1 7r 2 1
co1=—+2 —~3, co2 =—&2

2 6 15 35

cop= —1+—a—
I

— a' ——+—~a',
5 5 6 30 75 30

The term of relative 0(a') was earlier obtained in this
way, ' and has recently been verified by Weber and
3~tullin. '4

In the result (15) most, but not all, dependence on a
has been expanded in series. Factors which have not
been expanded converge slowly, or appear to worsen
convergence of the series used, or worsen agreement
with the exact results obtained numerically. o Justifica-
tion for retaining the factor e, which appears in a
natural way in the calculations of all these related
processes, seems quite strong; there is less justification
for the other factors and we have here made a somewhat
different choice than previously, ' in order to be able to
generalize to the bremsstrahlung problem.

The unscreened cross section for photoeffect from the
Jz subshell may be obtained in the same way. To the
same orders as before, the radial coefficients become

Bp——1—8~ r

1 f1 m'

C1P= ——————8—
3 k4 18

37 7 3'
180 60 140

31=—2 —~a2,

A2=-„—3

4&
—3

(17)

1 3 3
C12=—8 ~ C2P= —8 —~C, C3P=—0 .

30 10 70 io

Equations (10)—(12) are the major result of this paper;
substitution of specific choices for the radial wave
function coeKcients A„and 8„ for the low-energy
particle immediately gives the corresponding s-state
cross section.

III. PHOTOEFFECT

and then

4 1 I'(2y+2+44) 2»» 4pr 10
I„= a'I 1——a+——a'

n o«" I='(2y+2) 3 k 15 3

139 77 7561
)r'a'+ )roas — rras I. (18)

720 720 6300

The corresponding cross section is

For E-shell photoe8ect we may take the radial
coeKcients of the bound-state wave function as

$2yI+1e—m'a

0 &,
——o-o (1—0.837a+0.214a'+0.561a'), (19)

g3~2y&+2

A ))
——2+0 (a4), Bp ———(1+-'a')+0 (a4),

A i ———2+0(a'), Br——1+0(a'),
A s——1+0(a'), Bs —-', +0(a'), ——
A s———-', +0(a').

where
1+p ) i»2

I, b-(1—«')'»' (20)
2 )

(13)

)r,,/a i,=—(1—0.120a +0.269a ), (21)

From (15) and (19) we also obtain for the ratio of

This choice is not entirely unique, since it depends on cross sect'ons

the definition of 1V in Eq. (5). Then from (10)

4 1 I'(2y+2+)4) 2 4pr 37I = a' 1——a+—a'—
«" I' (2y+2) 3 15 12

139 77 7681's'+ 'a' —— a'). ()4)
720 720 6300

which shows„ in agreement with the»urnerical calcula-
t;ions, ' " that the ratio is nearly ~ for all elements. The
.numerical and analytical results for the cross sections
themselves are shown in Table I.

)4 T. A. Weber ar)d C. J. Mullirr, Phys. Rev. 126, 615 {1962).
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0.1
0.3
0.4
0.5
0.6

(1)

0.696
0.397
0.317
0.268
0.242

1$

(2)

0.699
0.394
0.315
0.260
0.222

(3)
~ ~ ~

0.0496
0.0403
0.0333
0.0289

(2)

~ ~ ~

0.0491
0.0392
0.0329
0.0286

TABLE I. High-energy limit of Is and 2s photoeffect. 0'/o'p is
given as a function of o: (1) as determined by Eq. (15), (2) by
machine calculation, and (3) by Eq. (19). gy= —2 —38 —

3q )

A2= 2
—s(q/~)'

A 2= —2+ (2/9) (q/~)'.

Bp= —1+4q',
Bi= 2

—
2 (q/~)',

B2= —s+ 2 (q/~)',
(27)

The terms in (q/a) arise, as already remarked, from
writing the series in q and u formally as a series in a
only. Inserting (27) in (10)—(12), and also expanding
e and y~ in a, we have

a See reference 9.
b See reference 10.

IV. ELECTRON BREMSSTRAHLUNG

4 1 r(2~,y2+e) 2 p Z~ 13I.= asl 1—-—o,+—as—.~ e r(2~, +2) 3 l 15

139

720

We now proceed to our main task, to calculate the
cross section for the high-frequency region of the
bremsstrauhlung spectrum, in the limit of high incident
electron energy, neglecting only relative orders a',
a'q', q, etc. , where q(&1 is the final electron momentum.
In this approximation, the cross section is simply the
sum of the partial cross sections for final s and p
electrons

qrbrem= qre+&vq/2+qrvq/q. (22)

The s-state cross section o-, can be obtained to the
desired order from Eqs. (10)—(12); the p-state cross
sections, which are of relative O(a2), are already known
to the needed order from the L-shell photoeRect work. ' "

For the s state we have

o.,= L(22re)2/k)I, (23)

X LA o+A iar+A 2 (ar)

2+As�(ar)

2], (24)
Gr~-'2~ ( 3

B(r)= l 1+ q' LBo+Biar+—B2(ar)2),
I'(2~+1) k 8

where
fqr/se) ( as)

G=eXpl
I rl &+2

l
q&

' '—(2/r) q'/',

&2q) k q)
(25)

and e= (1+q')"' is the total energy of the final electron
and, y=pi ——(1—as)'/2 Note that"

»m 6= a~-~12
q—Q

(26)

YVith this choice of normalization X, the coefficients in
the radial expansion are given to needed order as

1~ Also note that in the approximation

~ —„.-"- ] G —o1/2 (1 e
—qea/q) —1/2

in agreement with the result of reference 3 for. the behavior of the
cross section near the tip.

with I as defined in Eq. (2). The radial functions A

a,nd B of (4) and (5) may be expanded to the needed
order in r as

77
+

720

7241 1 22
a'+—q'+ aq'). (qp)

6300 6 315

We then obtain for the s-state cross section

g~~2g2 62~—m'a

(1—0.837a+0.318a2
ke' r (2yi+ 1)

+0.564as+0.417q2+0.012aq2). (29)

The normalization in front of this expansion has been
chosen in such a way that under the formal substitution
q' —+ —a2 the expansion (28) reduces to that of Eq. (14)
for the K-shell photoeAect. "The good convergence of
the photoeffect result (in the sense that it agrees well

with the numerical calculations even for large a)
encourages the hope that the bremsstrahlung result in
the form of Eq. (29) may also converge fairly well.

For p-state bremsstrahlung the cross sections, to the
desired order, may be written3

where

2qre2asp'+2 4qr )
o.„„=F(v) e '1+—al,

kr (2yi+1) 9

256qresa27~' ( 332r )
qr„„,=I'"(v) e 'I 1— a l,

3kr(2y +1) k 140 I

(I ~2) 1/2 ~ (4 g2)1/2

I'(v)=(1+v ')(1—e "") ', v=~/q

(30)

(31)

' It is easy to see that it is possible to connect the two expan-
sions in this way to all orders. For looking at the Dirac equation
for large and small components, under this substitution the
continuum wave function with c= (1+g')'~' becomes the bound
wave function of total energy (1—c')'/", except for di6erences in
normalization. Hence under this substitution, Ib«~ differs from
I»„t, only by a simple normalization factor.

"Mihai Gavrila, Phys, Rev, 124, 1132 (1961),

These results were check by an independent calculation
using the formalism of Sec. II; the dependence on a has
also been verified by Gavrila" in his work on L-shell
photoeffect.

From Eq. (22) we conclude that the cross section for
bremsstrahlung near the tip can be described by the
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5.0

2.5

2.0

Bethe-Heitler formula away from the tip and is also
moderately accurate in the tip limit. The results are
given for the dimensionless quantity k(do/dk)/nrs'Z',
where (do/dk) is the cross section, n is the fine structure
constant, ro is the classical electron radius, k is the
photon energy, and Z is the nuclear charge; they are
plotted against the energy e of the outgoing low energy
electron, i.e., against k,„—k+1.

At the tip, q~o, and the total high-energy cross
section is from (33)

t.O

0.5

0.0
1.0

I

1.2 1.6

ys ~ 2yi, F(p) -~ (1+p ')a 'G',

the total cross section may be written

2@2 Q2fP
—m'a

(32)

gbrem (1—0.837a+1.457''
ke' I'(2y +1)

+0.255as+1.556qs —0 297aq') (33)

which neglects only relative orders u4, u'q', q4, etc.
In Fig. 1 we show the predictions of our theory for

the shape of the Fe spectrum near the tip for highly
relativistic electrons calculated in two different ways:
(1) using Eqs. (22), (29), and (30); (2) using Eq. (33).
The difference between these is mainly due to the added
c ' dependence which Eq. (33) gives to the p-state
cross sections. For reference we show the corresponding
Bethe-Heitler prediction, which, of course, is not valid
in this high-frequency region. We also show the result
of an analytic extrapolation" which reduces to the

' The extrapolation is performed by multiplying the Bethe-
Heitler prediction (at high energy) by the factor expLs a(s/g —1)g
X ~p(1+Joe/g) ~s/~1'(1+ia) ~s which tends to unity for high g
where the original prediction holds. For g&(1 this factor is propor-
tional to 1/g, and hence the modified Bethe-Heitler formula
becomes 6nite at the tip, with the correct value to lowest order in
d,, and also the correct large characteristic e factor of. the tip
cross section. However, the —471-a/15 term of the tip is not
obtained,

Fn. 1. High-frequency region of extremely relativistic electron
bremsstrahlung spectrum for Fe as calculated by (1) Eqs. (22),
(29), and (30); (2) Eq. (33). The original and modified (see
reference 18) Bethe-Heitler predictions are also shown. k(do/dk)/
nr0'Z' is plotted against the energy e of the low-energy outgoing
electron, where a=k, —k+1 in units of m, .

sum of (29) and (30), each of which has a physical
meaning. However, it is also instructive to combine
these terms into one series to facilitate comparison with
other work' and for simplicity of calculation. Making
the replacements

Set', a'a'» '
ob...„(q=0)= e (1—0.837a

ki'(2yi+1)

+1.457as+0.255as). (34)

The equivalent of the u' term in the above expansion
(34) has recently been calculated" by Deck, Mullin,
and Hammer' (to be called the DMH result). The
difference in the results obtained by (22), (29), and (30)
and from (33) and (34) and the DMH formula provide
some measure of the uncertainties in these expansion
procedures. For the tip, these three methods are nearly
equal for low-Z elements, differ by a maximum of 2%
for Ag(Z=47), and less than 4% for Th(Z=90). The
closeness of these results suggests the choice of Eq. (34)
for actual calculations because of its relative simplicity.
It is instructive to rewrite Eq. (34) with the choice of
normalization factor of DMH, thus changing both of the
relative O(a') and O(us) coeKcients. The predictions for
high-energy electron bremsstrahlung cross section at
the tip obtained from (34) and its inodified form are
shown in Fig. 2 as a function of Z. The difference for
Ag is only 3%, whereas for Th it is 35%.

There are two sources of uncertainty in this calcula-
tion of the total cross section at the tip: (1) the accuracy
with which we have calculated the s and p cross sections,
and (2) the contribution from higher partial waves. We
argue that we have taken expressions which well
represent the s and p cross sections; for medium-weight
elements they are certainly quite good, but in the heavy
elements it is possible that the errors are large (30%
or more). Again, in medium weight elements the
contributions of higher states of relative O(u4) are
certainly small. But in heavy elements, for which the
p states contribute about half of the s-state contribution,
it has been argued' that the higher shells are also
important. A calculation of the d-state contribution,
to lowest order, indicates that its relative magnitude
is approximately 2a', and so is large. In Fig. 2 we show
the modification to the predictions of Eq. (34) due to
this d-state contribution, and it is fairly sizable for
large Z. It thus appears that realistic quantitative
predictions cannot yet be made for the very heavy

'9 This result, which is only valid through relative O(as), has a
diAerent appearance than Eq. (34) because the choice of unex-
panded normalization factors is not the same. The two results are,
of course, equivalent if the same factors are retained in the
normalization.
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FIG. 2. Z dependence of high-energy electron bremsstrahlung
cross section at the tip as calculated by (1) Eq. (34); (2) Eq. (34)
plus d-state contribution; (3) the equivalent of (34) but with the
choice of normalization of DMH. k(do/dk)/arssZ' is plotted
against the nuclear charge Z.

~ Mihai Gavrila, Phys. Rev. 113, 514 (1939).

elements, but that accurate results are now available
for medium-weight and light elements.

We now wish to compare these results with the recent
experiments on the high-frequency region of the
bremsstrahlung spectrum. To do this requires a further
approximation, since the discussion to this point has
kept only the leading order 1/k energy dependence of
the cross section on the energy of the high-energy
incident electron, and all present experiments are at
low enough energies so that the deviations from this
high-energy approximation are sizable. Now, the
energy dependence of bremsstrahlung and photoeffect
are the same through order a, and hence from Gavrila's"
work we know the complete energy dependence of the
bremsstrahlung cross section through this order. ' A
function I'(P), such that P(1)= 1, multiplies the entire
cross section, and a function Q(P), where Q(0) =0 and

Q(1)= —4z-/15, further multiplies the term of relative
order u. Both of these changes tend to increase the cross
section as P, the velocity of the incident electron,
decreases. Our approximation in using this procedure
for bremsstrahlung, as discussed in reference 3, is the
neglect of the further energy dependence of the terms of
relative O(a'), etc. , and we are again encouraged by the
good results obtained in this way for photoeffect cross
sections. Our confidence will of course be greater for
high-energy incident electrons, and we will not discuss
bremsstrahlung from electrons of energy less than
2 MeV.

Using electrons of kinetic energy 15.1 MeV, Fano,
Koch, and ~/Iotz' measured O.t,~ for W and Hall and
Hanson measured it for Th. For W the result for
k(do/dk)/Z' was 1.38&0.41 mb and for Th 1.6~0.16
mb. The present theory, including d states (extrapolated
to finite energies), gives 1.41 mb and 1.66 mb with
rather large uncertainties; the agreement seems accept-

0.6 0

0.50

I-

0.30
CL

+ +
t b

O. 20

0.1 0

0.00
I.OO I.IO l.20 j.30

FIG. 3. Ratio of positron to electron b rem sstrahlung cross
sections for Fe and Th in the high-frequency region; d states are
not included. The 6gure may also be interpreted as giving the
ratio of production of low-energy positrons to production of
low-energy electrons in high-energy pair production.

able. For 4.54-MeV electrons on Au, Fano, Koch, and
4iIotz' found 1.8~0.3 mb, to be compared with 1.7 mb
from our theory.

V. POSITRON BREMSSTRAHLUNG AND
AND PAIR PRODUCTION

It is easily verified that the integral I of Eqs. (2)
and (3) also describes processes involving a low-energy
positron, if we make the substitution a ~ —a. Hence
the corresponding results are obtained for the high-
frequency region of positron bremsstrahlung simply by
making this substitution in Eqs. (29)—(33). One must
note, however, that G(—a) =G(a) exp( —zae/q) and so
Eq. (26) becomes

ljm G(—tr) = e
—«'«~ &~ &—'i'. (35)

q~o

Low-energy positrons do not get near the nucleus, and
the cross section for positron processes is accordingly
suppressed, vanishing at the tip g=0. For this reason,
Eq. (34) in the positron case becomes

Set.'u'a'&' '
o,., b,. (q -+ 0)= m u—2m'a e/q

ki' (2y i+1)

X (1+0.837u+1.457a' —0.255as), (36)

with a)0. Note that well away from the tip, when
e/q=1, electron and positron. bremsstrahlung have the
same characteristic factor e . The terms in 4z.u/15,
etc. , remain opposite in sign, but the work of Davies,
Bethe, and Maximon" indicates that they actually
"Handel Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev.

93, 788 {1954}.In this paper, the correction to Born approximation
for high-energy initial and 6nal electron bremsstrahlung is
proportional to a' for small Z. Indeed, the expression they obtain
is even in a. This implies that for large g, electron and positron
bremsstrahlung are equal.
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vanish for large q, when a series expansion in q is no
longer legitimate. We show in Fig. 3 how the ratio of
positron and electron bremsstrahlung cross sections for
Fe and Th vary in the high-frequency region of the
spectrum. The results for Th are, of course, less accurate,
but they show how the factor e' '(' '«' of the ratio
keeps the cross sections significantly different mUch

further back from the tip.
Predictions for the two limiting regions of the pair

production spectrum require no further work. It has
previously been shown' that the cross section for a
pair production process in which the positron takes
almost all the energy is identical to the cross section for

the high-frequency region of the electron bremsstrah-
lung spectrum, under the usual assumption of a very
high energy incident particle. Hence, all results for
electron bremsstrahlung may be taken over without
modifications, understanding q again as the momentum
of the low-energy electron. In the same way, pair
production in which the electron takes almost all the
energy is identical with the high-frequency region of the
positron bremsstrahlung spectrum, with g the momen-
tum of the low-energy positron. Figure 3 may hence
also be interpreted as the ratio of pair production
cross sections for these two cases, production of low-

energy positrons is suppressed.
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The excitation of the metastable state (2S) of atomic hydrogen by fast protons is discussed. The direct
excitation cross section of 25 is calculated from a coup. ed set of equations (1S, 8, 2P'). The indirect popula-
tion of the 2S state by excitation to higher states with subsequent cascade to the 2S state is described by
Born approximation. The calculation is shown to apply to a fast crossed beam experiment.

I. INTRODUCTION

'HE virtue of the proton-hydrogen scattering sys-
tem is that it is the simplest of the atom-atom'

type. It is worthwhile understanding this system as a
prototype of a more general atom-atom collision thereby
gaining some confidence in the theoretical methods
which we would like to apply to these more complicated
collisions.

It would appear that the general atom-atom scatter-
ing problem breaks into two natural subgroups. Firstly,
at high energies (where the relative velocity of the
atoms is larger than the circulating electron velocities)
we have the problem of direct collisions (elastic and
inelastic) and the problem of rearrangement collisions.
The direct collisions are treated here neglecting re-
arrangement. The wave functions thus obtained can
then be used to calculate the rearrangement collisions.
The justification for this procedure is that rearrange-
ment probabilities are small at high energies. '

Secondly, at low energies a molecular description is
more appropriate and direct and rearrangement colli-
sions can be treated on almost the same footing. ' Only
direct high-energy collisions will be treated here.

~ By atom-atom collision we mean here the collision between
two heavy bodies. One or both may be ions.' M. H. Mittleman, Phys. Rev. 122, 499 (1961).

Ke have in mind the following experiment. A slow
beam of ground-state atomic hydrogen is crossed with
a high-energy proton beam. The slow hydrogen beam
is then allowed to proceed sufficiently long for excited
states to decay ( 10 s sec) leaving only the metastable
2S state. The beam then passes through a small elec-
tric field where the 25 state is quenched. The resultant
Lyman o. radiation is then detected. This then measures
the 2S population due to the collisions and cascade
from higher states.

In the next section we describe the population of the
2S level by a calculation by the method of coupled
states (1S,25,2P). This method yields a result in sharp
disagreement with so-called distorted-wave methods''
but in qualitative agreement with the second Born
approximation. ' The reasons for this are discussed. The
method of closely coupled states is known to be an
approximation to a more exact optical potential
method. ' The modifications introduced by this last
method are also briefly discussed.

In the third section the population of the higher

' D. R. Bates, Proc. Phys. Soc. (London) 73, 227 (1959).
A. E. Kingston, B.L. Moiseiwitsch, and B. G. Skinner, Proc.

Roy. Soc. (London) 258, 273 (1960). The second Born approxi-
matiov is not calculated exactly here. Only the 1S, 25, and 2I'
states are allowed of the in6nite, set of intermediate states.

' M. H. Mittleman and R. Pu, Phys. Rev. 126, 370 (1962).


