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In this paper it is shown that the experimental mean life of the first excited 3 state of Pb~ can be ap-
proximately accounted for if configuration mixing is introduced instead of considering this state as a pure
single-particle shell-model state. For this purpose an octupole-octupole force is assumed {an extension of
the quadrupole-quadrupole force of Elliott). Further, the direct interaction theory of inelastic scattering
in the distorted-wave Born approximation is used to calculate the cross section of 23-MeV protons for
excitation of the 0.57-MeV and 0.90-MeV levels of Pbo' /corresponding to the transitions (PI~2) ' ~ (f~g~)

'
and (pI~2) '~ (p3~2) ', respectivelyj and for excitation of the anomalous peak at 2.6 MeV (3 state of
Pb~') using the configuration-mixed nuclear wave function. It is suggested that the anomalous peak at 2.6
MeV for Pb~s and Pblv is also due to superposition of many single-particle transitions as in Pb~'. As a result
of the configuration mixing, reasonable agreement is obtained between the experimental and theoretical
cross sections for the above-mentioned cases. Finally, various suggestions which can lead to better under-
standing of this process are made.

I. INTRODUCTION

N a previous paper, ' we analyzed the experimental
~ - data on the inelastic scattering of 23-MeV protons
reported by Cohen, Mosko, and Rubin. ' ' Our basic
idea was to consider the inelastic scattering as being
well described by the theory of direct interaction in the
plane wave approximation. ' ' We applied this idea to
calculate the inelastic scattering cross section of nuclei
for which the structure of the lower-lying levels is
fairly well known. It is found that the above theory
could well explain the experimental results on the
relative magnitude of the excitation of the various
states. In particular, the anomalous peak at Q= —2.6
MeV in the Pb isotopes was considered as due to the
proton transition, (dz&2) —+ (09&2), which is commonly
considered to explain the 3 state of Pb"'. The mean
life of this state has been measured by Crannel et al.'
and reported to be 4(&2)XIO " sec; on the other
hand, the theoretical value of this life calculated using
the %eisskopf single-particle formula' is approximately
7)&10 '" sec, if 1.183'"F is used for the radius of the
charge distribution. This result means that the enhance-
ment of the E3 transition probability over the single-
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particle value is larger by a factor of ten to thirty-five
and this fact may support the view that the first
excited 3 state of Pb"' is an octupole type of collective
state rather than a single-particle state. The above idea
has been used by Lane and Pendlebury' to account for
the observed experimental mean life of the 3 state of
Pb~'. In this paper an alternative approach (i.e., the
use of the idea of configuration mixing) is made which
accounts for the same discrepancy as well as having
some additional advantages discussed below.

As mentioned above, one can conceive of two ways
of describing the 3—state. One is to use the idea of the
surface vibration model of Bohr and Mottelson" and
the other is to use the idea of configuration mixing. " "
If the first one is used, the values of the parameters
which are needed to describe the collective motion are
fixed by the experimental values of the energy level of
the excited state and transition probability of the p—ray
from the excited to the ground state. Then the cross
section for the excitation of this state by direct inter-
actions can be calculated using methods which have
been considered by several authors. '~" In such a case,
however, the strength of the interaction of the incident
proton and the collective motion is not easily connected
with g', the strength of interaction of the incident
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EFFECTS OF CONF IGU RATION M I X I NG 1N Pb'''

proton and the target nucleons for excitation of the
single-particle levels. If the method of con6guration
mixing is used, the above difhculty disappears. It is
usually, however, rather difFicult to obtain a wave
function in this way which gives a big enhancement of
the electromagnetic transition probability. In Sec. II
it will be shown that such a wave function can be
obtained by introducing an octupole-octupole force,"
which may be considered a natural extension of Elliott's
quadrupole-quadrupole force." " It is then found that
all the configurations mixed by this force add up
constructively to the transition amplitude giving a
large transition probability which can account for the
experimental lifetime of the 3 state of Pb"'.

Further in Secs. III and IV we calculate the inelastic
scattering cross section of 23-MeV protons for energy
levels of 0.57 and 0.90 MeV for Pb20~ corresponding to
the transitions (Pi(3) '~ (f»3) ' and (Pi(3) '~
(pg(g), respectively, by using the direct interaction
theory. The inelastic scattering cross section for the
anomalous peak at 2.6 MeV (3 state of Pb"') is also
calculated using a nuclear wave function with con-
figuration mixing. In our calculations we take the
interaction between the incident proton and the struck
nucleon to be a three-dimensional delta function, an
assumption which permits important calculational
simpli6cations. The e8ect of the nucleus upon the
incident proton is included through the use of the
method of distorted waves in which the empirically
known nuclear potential which describes the elastic
scattering is used. Finally, a brief discussion of our
results are given in Sec. U.

II. THE LIFETIME OF THE FIRST EXCITED
STATE OF Pb208

As has been discussed in the introduction, the 6rst
excited 3—state of Pb"' is a collective state rather than
a single-particle state. In terms of a shell model the 3—
state of Pb"' is usually interpreted to arise primarily
from proton excitation (do(g) g (dgig) hg(3. However,
the theoretical value of the mean life calculated using
the Keisskopf single-particle formula for this transition
is larger than the experimental value by at least a factor
of ten. In this section it will be shown that the above
discrepancy can be removed if we introduce the con-
figuration mixing.

The highest orbitals which are completely filled with
protons in the ground configuration of Pb isotopes are
s»2, d3/~, and d&, 2, while the lowest unoccupied proton
orbitals in the same configuration are hgig, fg(3, and
f»g. As this ground configuration corresponds to the

' T. Tamura and D. C. Choudhury, Bull. Am. Phys. Soc. Ser. II,
3, No. 8 (1958); D. C. Choudhury, Ph.D. thesis, University of
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completely filled major shell, it is clear that only a 0+
state is possible. On the other hand, each of the above
6lled orbitals has even parity while the unfilled one has
odd parity. Therefore, if a proton from any one of the
above filled orbitals is excited to any one of the above
unoccupied orbitals, then any state constructed from
this new configuration has odd parity. Thus the 3—
state in question is a linear combination of all the
3 substates constructed from the above sort of
con6gu rations.

Clearly the amplitudes (including sign) of a mixture
of various substates in the 3 (collective) state is
determined if some particular interaction is assumed
which has nonvanishing matrix elements between these
substates. It is useful for our purpose to consider an
octupole-octupole type of interaction which is analogous
to the quadrupole-quadrupole type of interaction
considered by other authors. '~" Ke choose the inter-
action of the following separable form:

V~3= c L,, r, r, I'3 *(S,,@,)I'3„(e,,@,).

If c is taken to be negative, then the assumed force is
at tractive.

For simplicity, we first assume that among the
above substates there exists a dominant one, say
[(l)ji) '(lgjg) j334, and the 3 state under consideration
is obtained by adding some substates to this dominant
one by a 6rst-order perturbation calculation, Vo o

being the perturbing interaction. Then it is easy to see
that the wave function of the 3—state in this approxi-
mation can be given by

I3-)=(I/v'-~')(I[(f j) '(f j)l )

++3,4[1/(E)3 E34)]([(lgjg) '(l4 j4)]33il Vo o

Xl[(&lji) (4j3)13M)l[(4jg) '(4j4))m))

l[(fiji) )(lojg)joM)

I cl+2 (—)'""&j III'oil j»
'41E»—E341

x(j II)'lli )ILoi ) (4i )i )) '(g)

In (2) the ket vectors are the wave functions of the
above substates; E;k is the energy difference between
the configuration [(l;j;) '(4jg)]33r and the ground
con6guration; sum over 2 and 4 means the summation
is to be performed over all possible substates in which
at least one of the two inequalities (fiji)W (4jg) and
(lojg)W(/4j4) holds, and from the definition of the
dominant con6guration it can be considered that
E»—E34(0. The double-barred quantity (jill Ygll j,) is
defined by the relation

&j,milr'F'3
I jgmg)

=
&jill I'gll jg) (—)"'+"(ji™»omgI

3—™)
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where

&j IIY.llj.)= —[1/(»«-)"j&+&, .'"-"~(/ j /.j.; l 3),

(jl—2Nlj32233I3 —223) being the clebsch-Gordan coeffi-
cient and Z being the Z coefFicient de6ned by Bieden-
harn e/ (2/.~ It should be noted that (jill Y3II j3) is a pure
imaginary quantity.

The matrix element of the E3-transition operator
between the state (2) and the ground state

I
0"&, which

is assumed to consist purely of the ground con6guration,
can be written as (3 Ic'p;r 3Y3 (8,4/);) Io ), where the
summation is over all the existent protons and c' is an
appropriate constant. (It is perhaps worthwhile to note
that we assume neutrons to be without charge; conse-
quently neutron configurations are neglected. } The
evaluation of this matrix element is straightforward and
the result is

&3-1Z; c":Y3.(8;A;) I
0'&

=("/v'~) &-)" &j.llY. lfj.&

x (1+22.4[le l/IE» —E24131 &j2IIY3ll j4&l') (4)

It is worth noting that the contributions from all the
mixed substates to this matrix element are additive,
which guarantees that the transition probability is
certainly enhanced compared to the case in which the
3 state is described simply by the dominant
configuration.

In the actual case, the ratio Icl/IEl3 —E24I might
not be small compared to unity. In such a case the above
perturbation calculation is not accurate enough and it is
necessary to solve a secular equation. Even in such a
case, however, it is expected that the relative phase of
the mixture of each substate in the ground-state wave
function will be the same as it is in (2). It is further
expected that the magnitude of the amplitude of each
of the mixed substates will not dier very much from
each other. Therefore, and particularly as we do not
have any reliable knowledge of the quantities
(El3—E24), the best we can do is to replace (2) by

(A'2)"' ' '
I &jlllY311 j3&I

xl[(/, j)-'(/j3)j~), (5)

As the second order approximation we next consider
the mixture of some higher order configurations with
the ground state. Because of the above-mentioned
considerations on the parity of the orbitals involved,
it is clear that the con6gurations which can be mixed
to the ground state should have two protons excited
from the filled orbitals to the unoccupied ones.
These states could be written, with obvious notation, as

I {[(/1jl) (/3j3) j3[(/2j2) (/4j4)73) 0 ). Now the mixture
of these new substates to the dominant substate of the
ground state (i.e., the 0" state which results from the
ground configuration), could be obtained by the simple
perturbational calculation because the energy difference
IE»+E24I between these substates and the dominant
substate could be much bigger than (c). Thus the new
wave function of the ground state can be written as

Io )= I
fille shells)3.

(/l| )1/2

7x7((2lcl
+ Z ( )(+A+ 4'2"'4 IE»+E24I

x&jill Y3ll j3)&j2ll Y3ll j4)L1—(exch)]
I

xl(L(4~)-'(4~))L(4~) '(4))1) )), ())

where the exchange term in the square brackets is
given by

(exch) = [&j)ll Y311j4)&j2ll Y3ll j3H
x C((j, ll Y, ll j,&&j2ll Y, ll j,&l-(

X(—)'"' ' "//'(jlj4j3j2;33). (g)

Although the sign of (exch) is not unique, its magnitude
is at most of the order of 0.1 and thus the sign of the
first square bracket in (7) is positive definite.

The matrix element of the operator p; r,'Y3 (8,&;)
between states (7) and (5) can be easily calculated and
the result is

(3 I p; c'r 3Y (B,2/), ) I
0")

=Cc'/(%~2)'"j Zi 3l(jill Y3llj3&l

~here now the summation over 1 and 3 runs over all
the substates. By using (5) the matrix element (4) is
reduced to the following simple form:

&3-lr„"r"Y.-(e,~;) I~&
=C"/(~)'"jZ. 1&j.lfY.fij.&l, (fi)

where the additivity of all the contributions is naturally
retrained. In (5) and (6) the normalization constant
Xi is )ust equal to the number of the mixed substates.

~ I. C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod.
Phys. 24, 249 (1952).

7fcf+p I &jill Ylll j3& I'I(j2ll Ylll j4) I'
l'34 2IE(3+E24I

(
1 1

+ [1—(exch)) . (9)
I&j IIY3llj3&I I&j2IIY llj4&I

It is clearly seen in (9) that all the calculated matrix
elements add coherently.

It would now be of interest to estimate the order of
magnitude of the transition probability derived from
the matrix element (9). As we do not know the precise
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magnitude of the quantity c or of the energy diGerences
of different orbitals, a very precise evaluation is
impossible to do and the following simpli6ed version
will sufFice for our purpose. First, the magnitude of the
reduced matrix element (jl~~ Ys~~ js) fluctuates from some
particular values of j& and js to the others within a
factor of three, but its average value is quite close to
unity, the similar reduced matrix element corresponding
to %eisskopf's simpli6ed model being taken as the
unit. Secondly, the amplitudes of the terms which
appear under the summation symbol in (7) may all be
of the same order of magnitude and thus (7) may be
approximated by

~
0+)= [1/(Xs)'"](~611ed shells)o'+ll pl, 3,3,4 (+)

X
~ ([(~ljl) '(fs j3)13[(4js) '(4 j4)73}o')), (10)

the sign factor being taken as it is in (7). Here g is a
constant which will be much smaller than unity.

If we restrict our consideration to those con6gura-
tions which were mentioned in the beginning of this
section, it can be shown that the normalization constants
which appear in (9) are given by Xl= 8 and Xs= 1+364P,
and thus the square of (9), again measured by taking
Weisskopf's value as the unit, is given by (8+643l)3/
8(1+36rP). (See Fig. 1.) This is already equal to eight
for q=0 and increases rapidly with the increasing g.
Therefore, at least qualitatively, it will be quite easy
to explain in this way the experimental value of the
transition probability which is known to be at least
ten times larger than the %eisskopf value.

It is clear that the model so far considered is quite
crude. It would be certainly necessary to take into
account the eGect of some short-range interaction in
calculating the con6guration mixing. For example, if we
consider as a short-range interaction, the so-called pair-
ing interaction, " configurations like ([(lljl) 7o
X[(4js)'jo} will be also mixed into (7) due to this
interaction and the relative amplitude of the above
conhgurations will be aBected. Further, the matrix
elements of the E3 transition related to the newly
considered con6gurations might be out of phase, in
which case the above-obtained transition probability
would be decreased. The value discussed above is,
however, quite large, and furthermore if necessary it is
possible to increase the magnitude by adding higher
configurations such as h~~j2, i~3~2 which have been
neglected in the above.

The actual magnitude may be determined if the
relative strength of the octupole-octupole and the
pairing interaction (and also the energy difference
between different orbitals) are known. As they are
not known, it would not be of much use to pursue the
discussion in further detail here. It is possible, neverthe-
less, to conclude that we know at least in principle the
way to explain the large transition probability by
describing the related states exclusively in terms of the

~ A. Bohr, B.R. Mottelson, and D. Pines, Phys. Rev. 110, 936
(1958)."S.T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat, -Fys.
Medd. 31, No. 11 (1959).
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individual particle model, (i.e., without taking into
account the collective model). This idea will be utilized
in Sec. IV in calculating the cross section of the exci-
tation of the 3 state of Pb~'.

III. THE CALCULATION OF THE INELASTIC
CROSS SECTION FOR Pb'0'

In this calculation we shall fix our attention on a
particular example which can be easily generalized for
other cases as well. It would not be a very poor approxi-
mation for our purpose to consider that the ground,
first, and second excited states of Pb~~ have, respec-
tively, the following pure neutron configurations:
(p~~2)

—', (f,~~) ', and —
(pa~~)

—' while all the 82 protons
form the closed major shells. Therefore, in this model
the transition from the ground state to each of these
excited states is simply a transition of a single neutron
hole to another, i.e., L(pi~2) '~ (lj) '). In the shell-
model calculation this process turns out to be equivalent
to a particle to particle transition. For derivation of
the cross section in the distorted-wave approximation,
we shall follow the theory of Lamarsh and Feshbach. "
Let us consider the scattering of an incident particle
from an initial nuclear state

~
i) to a final state

~ f) with
the incident particle wave function &0(r) with wave
number E; and energy E and inelastically scattered
wave function p&(r) with energy E' and wave number
E' in the center-of-mass coordinate system. Then to a
first approximation 40(r) and p~(r) will satisfy the
following coupled equations:

(—(A'/2p) 7'+ U(r) —Ego(r) = 0, (11)

[—(h'/2p) V'+ U(r) —E'Q~(r) = (f ~

H'—~i)@0(r), (12)

where U(r) is the optical-model potential which
produces the observed elastic scattering from the same
nucleus at the same energy and H' is the efI'ective
interaction; in other words, it is the remainder of the
total interaction between the incident particle and the
target nucleus after the average interaction with the
target nucleus "U"has been subtracted. Here the wave
function po(r) represents the sum of the incident and
the elastically scattered outgoing wave and the wave
function Q&(r) represents the inelastically scattered
outgoing wave only. Therefore, &0(r) and p~(r) have
the asymptotic forms

where the symbol P, is used to represent a summation
over final spins and an average over initial spins. Thus
our problem is reduced to obtain the solution of (12)
which has the asymptotic form of (14). This equation
can be solved by the Green's function method (Mott
and Massey" ) and for large r the wave function pz has
the asymptotic form

1 d dGI. 2p L(L+1)——r' + K' U—(r—)
r' dr dr h' r2

Gz(r) =0. (18)

Now, comparing equation (16) with that of (14), we
obtain

fi(8,4) = (f~ H'~i)40(r'8')K (r,r')dr'. '

2xA'

Therefore, from (15) we have the differential inelastic
scattering cross section

E p 2

d~(8) =— Z.. (fl H'Ii)y, (r'8')K(r, r')dr .
E 2vrh2

(19)

Evaluation of the Matrix Element of the
Interaction Operator H'

For the e6'ective interaction B' between the nucleons
of the target nucleus and the incident proton we take a
three-dimensional delta function. Let

H'= g' +„8(r„—r), (20)

where r„ is the position vector for the nucleon under-
going transition from one state to another and r is that
of the incident proton. Expanding the 5 function we have

X (f ~
H'Ii)yo(r'8')K(r, r')dr', (16)

where

K(r,r') =pz (2L+1)e'&Ie &'z G~(r')Pl. (cosO~), (17)

0& being the angle between the vectors r and r' and
Gl, (r) is the solution of the homogeneous wave equation

(14)

where fo(8,g) and fq(8,$) are the elastically and in-
elastically scattering amplitudes, respectively. There-
fore, the differential inelastic scattering cross section
is given by

d~(8) = (K'/K) 2-I fi(8@)I', (15)
"J. R. Lamarsh and H. Feshbach, Phys. Rev. 104, 1633 (1956).

where F's are the normalized spherical harmonics.
Now suppose we are considering the excitation from

an initial nuclear state ~J;3E;) to a final state
~ Jar)

which is due to a single-particle transition and the
remaining core of the nucleus has zero spin. Then by
means of Racah's algebra, we can easily evaluate the

"N. F. Mott and H. S. Massey, The Theory of Atomic Collisions
(Oxford University Press, New York, 1949), 2nd ed.
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matrix element and the final result, is given by

&lf—1iil
(flH'lz) g=' (—)."' " 'L(2J'+1)(2J~+1)3"'

(4~)(/z

XP (z)z (Jt—MgJ, M;/qM, —Mf)
(2q+1)"'

X W(JtJgJJ, ; Oq)Z(lf Jf1;I, ; —,'q)

X Yzzz' ~i(8y)R„,i, (r)R„.z.iz(r), (22)

where R„,.i,.(r) and R„i'(r) are the radial functions for
the orbital nucleon undergoing transition in the ground
and excited states, respectively.

Now let us consider the function go and G, t,he solu-
tion of the homogeneous wave equations (11) and (18).
For the effective average potential U(r) we assume that
it is spherical symmetric, and we write it into two parts

X[
LL'L1L1'qrt

q &
L1'—L'+L1—L n

X (I-Oq0/L'0) (LiOq0/L i'0) (L i'OL'0/n0)

XZ(I-(Lz'LL i qn)Z'(lf Jf ized( i zq)

XHi. z((A'Hr. r. ("' 'f*P„( oc8s)i, (28)

where HI. I.""I)is defined by

= (—)' (z)"'
1. &l. &I.

(2z+(i'"(2z'+1) (i' )((( )

X X (r)f (r)R.,&;(r)R.,i, (r)«,

the differential cross section after certain simplifications:

'- E' 1
do (8)=g''-

2~2 Q 2J +$

U(r) = U, (r)+ U, (r), (23)

where (Bc/Ez, ) and (Bz/iVL ) are the normalization
constants and Xz, (r) and fz, (r) satis y t e o owing
differential equation:

and U, (r) is the Coulomb interaction potential. U, and
U, satisfy the following asymptotic conditions:

U. = —(Vo+ iW) 1/(1+ expL (r—R)/a]), (24)

+—E'—U —U—
dr'- h'

L'(L'+1) l'z'—fz (r)=o,
rz 2tz (29)

and
rU, —+0 for r~o,

rU, —+ 2ztE/K for r&R,

and inside the nucleus,

U, = (ZZ'e/2R)t 3—(r/R)'j for r&R,

go=2, , LX, (r)/rjP, .(cos8), (25)

Pz, (coso)
= L4~/(2L+1) j2- Yi-(8(o) Yc *(8'e') (26)

and substituting fz/r for Gz. , then

where =(7ZZ''etzO/' K; Ze and Z'e are the electric
charges for the nucleus and the incident particle,
respectively.

Expanding

dzXz. (r) 2tz- L(L+1) fz'

+—L U, —U,— — —xz(r) =0. (30)
dr"- h' r' 2p

Now Eq. (28) is completely defined and using this
expression we can calculate the difI'erential cross
section d(r(8).

IV. THE INELASTIC SCATTERING CROSS SECTION
FOR ANOMALOUS PEAK AT 2.0 MeV OF Pb'"

CORRESPONDING TO ITS FIRST
EXCITED 3 STATE

In the previous section we have seen that the life time
of the first excited 3 state can be approximately
accounted for by using wave functions with con-
figurating mixing. Here we use the same waz)e functions
to calculate the inelastic cross section for this state.
As in Sec. III we assume here again that the interaction
between the incident proton and the struck nucleon is a
three-dimensional delta function. Let us write the
wave functions for the ground state IO+) and the first
excited state

~

3 ) as follows, in obvious notation

K(r, r') =Qz p 4zre'"ze &'i (fz/r)

n(.n

Now making the substitutions in Eq. (19) for (i)0 from
Eq. (25), K(r,r') from (27), (f i

H'ii) from (22);
integrating over the angular coordinates, averaging
over initial states and summing over hnal states, we get

P (+)(1. n1(, ni).0
(X!/ni!n. ! )'" p

X (1 nz 1, n.)o( )() (31)—
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where ej, e2 are the number of equivalent nucleons
forming closed shells with spins j&, j2, , respectively,
and X is the total number of nucleons (i.e., ni+n2
+N3+ =X). The wave function for I3 ) state
corresponding to Eq. (5) of Sec. II where one particle
has made a transition from a closed shell (fiji) to an
empty shell (l&j&) can be written

l3 )=2 ~ » Il. (f j) '(f ji)] ~)

2 (~)irju's
(.V!/(ni —1)!n2! ~ )'~i &

In the second-order approximation we introduce the
conhguration mixing to the ground state as it was done
in Sec. II, i.e., we take Eq. (7) of Sec. II for the wave
function of the ground state

I
0+) instead of Eq. (31)

of this section. Then, with the approximations used in
Sec. II and in view of the detailed consideration
obtained therein as well as from the work of Pinkston
and Satchler, "we infer that

p, 'E'
d~(e) = T(~3)g" —(I Z(lijifi j3; k3)

I
)-'2'' E

XB(ji"' ')i!t (j~')i ]~A(j2"*)o LL 'LI L1' n
(i)Lz+L(' I L' n— —

X(1 &i—1) (js'). ,(1 . N2)0

X(&,~,q,~,/m), (32)

where a;»-, is the amplitude of the state

IL(f j )-'(f j )] ),

and its phase is given by Eq. (5) and its magnitude is
taken to be independent of j's values; (jim ijamal 3M)
is the Clebsch-Gordan coefBcient.

From Eqs. (21), (31),and (32), the calculation of the
matrix element gives the result

(3- IH'I 0+)

=g'Z t~ Z(fi fi;l3)l (—) R-i, (r)
2118 (7X4r)'"

XR.,i, (&) &3jr(ev), (33)

where R„,i, (r) and R„,i, (r) corresponding to the initial
and 6nal-state radial wave functions for the nucleon
undergoing transition.

Substituting for the matrix element (3 I
H'I 0") from

Eq. (33) in Eq. (19) and following through all the
steps for deriving Eq. (28) of Sec. III, we obtain for the
differential cross section

p, 'E'
d~(e)=g", —(Z lo, *Z(fijifajm k3)l)'2'' E

(&)
r q+ t &' r I' n——

J L'LqLI'n

X (L030/L'0) (Li030/Li'0) (Li'OL'0/eO)

XZ(LiLi'LL', 3n)Hr, z,*Hi,, ,rP~(c os)eI. (34)

In obtaining the above equation we have taken the
radial integrals HL L'"'» de6ned in Sec. III to be
independent of E values, and have omitted the super-
scripts on BL, L&~'~3)

X (L030/L'0) (Li030/Li'0) (Li'OL'0/n0)

XZ(LiLi'LL', 3n)Hc r,*Ha, r. ,P (c. os8) I,

where (I Z(li jil&j3, si3)
I ),„is the average of the absolute

values of Z(fij &l&j 3, -', 3) of all the mixed configurations
and 2'(E3) is the ratio of the transition probability of
the 3 state using nuclear wave functions with con-
6guration mixing to the Keisskopf s on the single-
particle model. Ke use this expression to calculate the
inelastic cross section for the 3 state of Pb"".The value
of T(E3) may be taken ten to twenty-five as estimated
from the expression (8+64')'/8(1+36vP) I here g is
defined by Eq. (10)].

V. RESULTS AND DISCUSSIONS

In this section we give the results of some calculations
of the inelastic cross section by the direct interaction
process and compare them with the experimental ones.
A brief discussion of our present calculations is also
given. The calculations have been performed by taking
for U', a Saxon well of the form"

U', = —(Vo+iW)/(1+expl (r—R)/a])
where Uo=44. 3 MeU, 5'=11.8 MeU, @=0.5)&10—"
cm, 8=1.332'j'&(10 '3 cm and for the Coulomb inter-
action U, the following form:

U.= (ZiZ2e'/2R) [3 (r/R)'] fo—r r &R,

where Z~ and Z~ are the number of electric charges for
the nucleus and the incident particle, respectively. For
the radial wave function of the nucleon bound inside
the nucleus we have taken the harmonic oscillator
function given by

R„i(r) exp( r2/2b')r'iL. i+i,'+&(r'/b—')

where L~"(r) is an associated Laguerre polynomial,
b'=h/MW=2. 33X10—"cm." Thus in our present
calculation the effect of the nucleus upon the incident
proton has been included through the use of the method

'7 W. T.Pinkston and G. R. Satchler, Nucl. Phys. 27, 270 {1961}.~8 R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954}.~ W. W. True and K. W. Ford, Phys. Rev. 109, 1675 {1958}.
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of distorted waves as discussed in the previous sections.
The above-mentioned nuclear parameters which give
the best fit to the elastic scattering data have been used.
The interaction between the incident proton and the
target nucleus has been considered throughout the
entire volume of the nucleus. The absolute inelastic
scattering cross sections of 23 MeV protons at 90' for
energy levels of 0.57 and 0.90 MeV for Pb" correspond-
ing to the transitions (p», )

—'~ (f„,)-' and (p„,)-' ~
(Pa;2)

' are obtained = (g'p/2sA')'X3X10 ' and
= (g'p/2sh')'X2. 5X10 ', respectively.

The differential inelastic scattering cross section of
23-MeV protons at 90' for the 2.6-MeV ~3 ) state of
Pb"' is found to be = T(E3)(g'p/2wh')'" X1.5X 10 .Now
if we suppose that the anomalous peaks at 2.6 MeV for
Pb"' and Pb" are also due to the superpositions of
many single-particle transitions as in Pb'"' then the
cross sections for them will also be given by the same
value. We have estimated ten to twenty-five as a
reasonable value for T(E3) in Sec. IV and if we take
(g'y/2W')'=100 mb/sr as estimated by Lamarsh and
Feshbach, " the cross section for the anomalous peak
is found to be 1.5—3.8 mb/sr which is very reasonable
compared to the value (=2.5 mb/sr) measured by
Cohen and Mosko. '

With the same value for (g'p/2m%')', the cross sections
for 0.57- and 0.90-MeV levels of Pb'"~ are found to be
0.3 mb/sr and 0.25 mb/sr, respectively. The ratios
between the cross sections for these levels to the
anomalous peak at 2.6 MeV are between 0.20 to 0.08
for 0.57-MeV level and between 0.16 to 0.07 for 0.90-
MeV level. These are to be compared with the experi-
mental ratios which are approximately 0.1 and slightly
smaller than 0.1, respectively, as obtained from Cohen
and Rubin's measurements4 (if the background which
exists in their experiment is taken into account). Thus
we see that the agreement between the experimental
and theoretical cross sections for the anomalous peaks
at 2.6 MeV of Pb"', Pb2o~, and Pb'"8 as well as for the

0.57- and 0.90-MeV levels of Pb"' is fairly satisfactory.
These results at least in principle show how one can
understand the 3 collective state and also the anomal-
ous peaks in (p,p') reaction observed at 2.6 MeV in Pb
isotopes in terms of the single-particle picture. This
description can also be applied to the other first excited
3 state."

In conclusion, we hope that our present analysis may
serve as a useful guide for obtaining more realistic
configuration —mixed nuclear wave function as a result
of residual interaction. It is believed that the above
approach can also serve as a guide for more re6ned
inelastic scattering calculations where it might be
necessary to take into account a finite range of inter-
action between the incident proton and the struck
nucleon; it might even be necessary to vary the Saxon
well parameters as was done by I-evinson and Banerjee. "
Finally it should be noted that our analysis has been
limited to a few cases and it would be interesting to
examine more cases in the above spirit. This will
certainly clarify some of the difficulties which we have
in understanding the collective states in terms of the
independent-particle model.
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