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Calculations are made of the small-angle inelastic proton-deuteron cross section near threshold. The
theory assumes impulse approximation to relate the interaction of the incident proton with the target
nucleons to the free nucleon-nucleon scattering amplitude. Effective-range theory is used to describe the final-

state interaction of the target nucleons in the S state. The cross section at small angles is dominated by
events which leave the target nucleons in the singlet S state. The cross section depends on three nucleon-
nucleon parameters: the coefbcients of the singlet S and triplet S terms in the cross section, Z, and Z& and
the sum of the proton-neutron and proton-proton differential cross sections, 0 „+o». These parameters
are determined at the laboratory angles of 5', 10', 15, and 20' by making a least-squares fit to the experi-
mental measurements of Stairs, Wilson, and Cooper in the preceding paper. This fit mainly determines Z, .
This parameter is particularly sensitive to the isotopic spin zero nucleon-nucleon amplitudes and thus
these values of Z, may be of use in future phase-shift analyses.

I. INTRODUCTION

HE scattering of high-energy protons from deu-
teriurn has been extensively studied. in recent

years with the aim of relating the proton-deuteron cross
section directly to the fundamental nucleon-nucleon
interaction. The elastic proton-deuteron cross section
and polarization have been measured by Postma and
%ilson' and studied in the impulse approximation by
Kerman, McManus, and Thaler. ' The quasi-free (often
called quasi-elastic) proton-deuteron scattering has been
studied experimentally by Kuckes and %ilson' and
theoretically by Kverett. ' Quasi-free scattering is an
inelastic process in which the incident proton interacts
with one of the target nucleons essentially as if the latter
were free. Two detectors are placed about 90' apart to
detect the two outgoing particles and their energies are
selected to insure that the third particle (the spectator
nucleon) has nearly zero energy. Under these circum-
stances the theory says that the proton-deuteron cross
section can be related directly to the free proton-nucleon
cross section.

In this paper we discuss a different type of in-
elastic process, which we term slightly-inelastic scat-
tering. By slightly-inelastic we mean an inelastic process
in which the incident proton loses only a few MeV. In
such a process a high-energy incident proton interacts
with one of the target nucleons and transfers to it just
enough energy to disintegrate the deuteron. Thus, the
process is p+d -+ (e+p)+p, where the 6nal proton has
the high energy. One is interested in the cross section
do/dDQE', where 0„ is the solid angle into which the
high-energy proton is scattered and E' is the 6nal
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energy of the high-energy proton. Experimentally one
observes, at a 6xed scattering angle, a spectrum of
outgoing protons with energies a few MeV less than the
elastically scattered protons. Because the resultant
neutron-proton system has only a few MeV in its center-
of-mass system, the amplitudes for the scattering of the
incident proton from the target neutron and proton
interfere, and so the slightly-inelastic cross section
cannot be related directly to the free nucleon-nucleon
cross sections.

In any inelastic proton-deuteron process the target
nucleons go from the deuteron ground state, which is a
triplet spin state, to a free scattering state in the con-
tinuum, which is a statistical mixture of triplet and
singlet states. However, for small scattering angles
where the momentum transfer, q, is small, ' the proba-
bility that the deuteron makes a transition to a free
triplet state is very small due to the orthogonality of the
spatial part of the deuteron wave function and all triplet
scattering state wave functions. This means that the
scattering will involve predominantly triplet-singlet
transitions in spite of the smaller a priori probability
of 6nding a singlet state. Such a triplet-singlet transition
involves only the spin-dependent parts of the nucleon-
nucleon scattering matrix and, as we sha0 see, brings in
the isotopic spin zero and one (T=O and T= 1) matrix
elements with equal weight. This latter fact opens the
possibility of using small-angle slightly-inelastic proton-
deuteron scattering measurements to obtain valuable
information about the T=O part of the nucleon-nucleon
scattering matrix. Ke discuss this in more detail in
Sec. IV.

Small-angle shghtly-Inelastic proton-deuteron scat-
tering is particularly suitable for theoretical treatment
since the conditions are such as to allow reasonably
accurate calculations to be made without highly in-
volved computation. Because the incident particle has
high energy the impulse approximation can be used to

' In the case of 158-MeV incident protons considered in this
paper, g is at most 1.0 F- at the maximum laboratory scattering
angle of 20'. (Here, and throughout this paper, we use a system
of units in which k=c=1.)
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relate the fundamental nucleon-nucleon interaction to
the free-particle scattering matrix. This approximation
is particularly good at small angles, where ofF-energy-
shell corrections are small. Also, since the resultant
neutron-proton system is left with only a small amount
of energy in its center of mass, the 6nal-state wave
functions can be described accurately using potentials
fitted to the low-energy nucleon-nucleon data. Further-
more, since the momentum transfer is small, the results
are not sensitive to the detailed structure of the hnal-
state wave functions at small distances.

The general theory of slightly-inelastic proton-deu-
teron scattering is presented in Sec. II. In Sec. III A
calculations are made assuming that only S-wave
neutron-proton scattering states are involved, using a
square well potential 6tted to the low-energy data. In
Sec. III 8 the scattering to higher angular momentum
states is considered. As the scattering angle increases
this contribution increases and is comparable to the
S-wave contribution at 15'.

The cross section for the reaction n+d —+ (n+n)+p
in which the 6nal proton has the high energy was calcu-
lated some years ago by Gluckstern and Bethe. ' Their
calculation used a particular form for the nucleon-
nucleon potential and neglected both the factor
exp(i ', r1 r) -in the form factor integrals and the transi-
tions to higher angular momentum states. Castillejo
and Singh~ have made calculations similar to those in
this paper, but they also neglected higher angular
momentum states. It is essential to include these states
in order to get detailed agreement with the experimental
data. The theory of slightly-inelastic electron-deuteron
scattering, which in many respects is similar to inelastic
proton-deuteron scattering, has been investigated by
Durand. His analysis is of experiments involving large
momentum transfer (1.8 to 2.8 F ') and its primary
purpose is to study the detailed structure of the low-
energy hnal-state wave functions. The purpose of the
present analysis is to study the high-energy proton-
neutron interaction.

The slightly-inelastic proton-deuteron cross section is
found to depend on (0„„+o»), the sum of the free
proton-neutron and proton-proton cross sections, and
on two other parameters, Z, and Z&, which are also
functions of the nucleon-nucleon scattering amplitudes.
These parameters are defined in Eqs. (3.9) and (3.10).
In impulse approximation Z& is also related to elastic
proton-deuteron scattering. However slight'. y-inelastic
scattering mainly depends on Z, . In Sec. IV the theory
is used to analyze the measurements of Stairs, Wilson,
and Cooper' at 158 MeV. The parameters (0„„+0»),

' R. Gluckstern and H. Bethe, Phys. Rev. 81, 761 (1951).
'L. Castillejo and L. Singh, in Nuclear Forces arId the Fez-

Xucleoe I'roblew, edited by T. C. Gri%th and E. A. Power
(Pergamon Press, New York, 1960).

L. Durand, III, Phys. Rev. 123, 1393 (1961).' D. Stairs, R.Wilson, and P. Cooper, Jr., preceding paper I Phys.
Rev. 12', 1672 (1963)g. This paper will be referred to as SWC.

5&, and Z, are found by making a least-squares adjust-
ment to the data. The experimental results in this way
are interpreted as yieMing a measurement of Z, at the
laboratory angles 5', 10', 15', and 20'. The values ob-
tained are found to differ by as much as 40%%uo from the
values predicted by the phase-shift solutions of Breit
el al "and others.

q= P—P'= k„'+k„'. (2.1)

The relative momentum in the center of mass of the
resultant neutron-proton system is

(2.2)

Experimentally the magnitude and direction of P' are
measured. Knowing P this determines q and the magni-
tude of k. The latter follows from energy conservation.
Assuming that k~", k„'"- and (P'- —P") are small com-
pared to m', a semirelativistic expression for the difFer-
ence between the final and initial energies is

Er—E = '(P" P')/E+—('q'+—k')/m+ Es—=0. (2.3)

Here E= (P'+m')"' is the total energy of the incident
proton, m is the mass of the proton, and e~ is the abso-
lute magnitude of the binding energy of the deuteron.

The momenta k„' and k„' are not determined indi-
vidually. They are given in terms of q and k by

k„'=-,'q+k,

k„=-,'q —k,

(2 4)

(2.5)

and so depend on the angle between q and k. In the
special case when k= ~q we have k„'=0 and k„'= q;
the neutron carries ofF all the momentum transferred
to the deuteron and the proton is left at rest. In the
case k= —2q the situation is reversed. These are just
the conditions for quasi-free proton-neutron and proton-
proton scattering, respectively. A broad peak is expected
in the di6erential cross section for values of E' corre-
sponding to k = -', q. For scattering angles &20' this peak
is largely masked, as we shall see, by a peak due to the
strong final-state interaction between the resultant

'0 G. Breit, M. Hull, K. Lassila, and K. Pyatt, Jr. , Phys. Rev.
120, 2227 (1960); M. Hull, K. Lassila, H. Ruppel, F. McDonald,
and G. Breit, ibuL 122, 1606 (1961).

II. THEORY OF INELASTIC PROTON-DEUTERON
SCATTERING

In this section we derive the difFerential cross section
do/dQQE' for the process in which a high-energy inci-
dent proton is scattered. from a deuteron into the solid
angle dQ„and transfers enough energy to disintegrate
the deuteron, coming out with a Anal energy E'. Let
P and P' be the initial and 6nal momenta of the incident
proton and let k„, k~' and k„, k„' be the initial and 6nal
momenta of the target proton and neutron, respectively.
Since initially the target nucleons are bound to form a
deuteron at rest, we have k„=—k~. Then, from mo-
mentum conservation the momentum transfer is
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target nucleons. However, for larger scattering angles
quasi-free processes play an important role. We shall
discuss them in more detail in a later paper.

We wish to relate the proton-deuteron scattering
matrix to the free nucleon-nucleon scattering matrix.
Chew and Goldberger" have shown in general that if
the T matrix for the total Hamiltonian is expanded in
terms of the two-body t matrices one gets T=t„+t„
plus terms which represent the multiple scattering of the
incident proton from the two target nucleons and the
effect of the binding of the target nucleons. Here t and
t„are the t matrices for free proton-neutron and proton-
proton scattering, respectively. In the spirit of the
impulse approximation we neglect the additional terms
in the expansion of T and so obtain the following for
the transition matrix between two states C and C~ of
the unperturbed system:

T,.=(C,&-&,t.e.)+(C,&-',t,e.). (2.6)

In the present problem the initial state is

@o=@o=(2w) 'expfi-,'K (r„+r~)j
Xexp(iP ro)4o(r. —r,), (2.7)

where qbo is the deuteron ground-state wave function.
Here ro, r„, and r„are the position vectors of the inci-
dent proton, the target proton, and the target neutron,
respectively. K is the initial momentum of the center
of mass of the deuteron (which is presumably zero). The
Anal-state wave functions is

eo&
—

& =4 „&
—&=(2n)—' exp fi-', K' (r„+r„)j

Xexp(iP' ro)@g& '(r r&), (2.8)

k and q are small, which is the condition for slightly-
inelastic scattering, or else k=-, q, which is the condition
for quasi-free scattering. In these two special cases it is
possible to use the free t matrix to describe t (q).

We get T~ by interchanging the labels "p" and "n"
everywhere in Eq. (2.9). Recalling Eq. (2.2) we get

T~= b'(K+P —K' —P')t, (q)F(q, —k)

and so

T= b'(K+P —K'—P')

X ft (q)F(q,k)+to(q)F(q, —k)j. (2.13)

The t matrices are related to the nucleon-nucleon
center-of-mass scattering matrix 3f by

t(q) = —(2n/m)(P/Po)M(q), (2.14)

where I' and I o are the laboratory and nucleon-nucleon
center-of-mass momenta, respectively. Since the deu-
teron is initially in a triplet spin state we must multiply
Eq. (2.13) on the right by A&, the triplet projection
operator, obtaining

T= —b'(P+K —P' —K')(2m/m)(P/Po)5K, (2.15)

where

OR= fM „(q)F(q,k)+M»(q)F(q, —k))A, . (2.16)

Here M„„and M» are the proton-neutron and proton-
proton scattering matrices.

The cross section then is

n
states. We write dk=k'dQidk and integrate with respect
to dk to remove the delta, function. Using (2.3) we get

Ta=(@'k )ta'o)
= bo(K+P —K' —P')t.(q)F(q, k). (2.9)

do/dQQE'=(do/dQQP')(dP'/dE')
= oD Tr(SRtSR)dQo,

Here

(2.18)

where p~& & is a neutron-proton incoming scattering do=(m/p)(P/mPo)'b(Et —E;)oTr(ORtOR)dp'dk (2.17)
state of relative momentum k. Using these wave
functions we get The trace averages over initial and sums over anal spi

F(q,k) = fy&&-&(r)j'po(r) exp(i-'q r)dr, (2.10) D=P P'k (/m2Po) (2.19)

t (q)b'(k +P—k.'—P') =(k„',P'it„ik„)P). (2.11)

That is, t„(q) is the nonsingular part of the t matrix.
In general the states

~
k,P) and

~
k ',P') do not have

the same energy, so that the t matrix in (2.11) does not
resemble the t matrix for free proton-neutron scattering.
Using Eq. (2.3) it is easily shown that DE, the energy
di8erence between these two states, is

ZE= —„—(k——,'q) o/m. (2.12)

Thus AE will be small under two conditions. Either both

"G. Chem and M. Goldberger, Phys. Rev. 98, 778 (1952).

is the kinematical factor. Finally we must integrate
with respect to dQ& since only the magnitude of k is
determined. Thus

d~/dQ, dE'= 'D Tr(ORtOE)dQ . (2-.20)

Since the neutron-proton potential is spin-dependent,
the 6nal-state wave function P~ and hence the form
factor F(q,k) will be spin dependent. It is necessary,
therefore, to write the scattering matrix as the sum of
two parts: one part describing transitions to a triplet
final state and the other transitions to a singlet 6nal
state. Using 4& and 4„ the triplet and singlet projection
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operators, we can write

Nt = A,[M„„(q)S,(q,k)+ M„„(q)r, (q, —k)]A,
+A, [M ~(q)r, (q,k)+M»(q)r, (q, —k)]A(, (2.21)

where 5, and 5'& are given by Eq. (2.10) with the ap-
propriate singlet and triplet wave functions, respec-
tively, inserted for @k( ).

Furthermore, if k, the relative momentum in the
center of mass of the resultant neutron-proton system,
is small, then only the 6nal-state interaction in the 5
state need be considered. The total wave function in the
singlet state can then be written

cross section:

do/dQQE'
= (4rD/6) (Tr[(M'„~t+M„~t)A, (M„„+M»)A,]

X lFil'+Tr[(M„~t+M»t)A,
X (M.„+M»)A(] l

F,
l

'
+Tr[(M„rtM„„+M»tM„„)A,]
X[M(k,q)

—
l Fo

l
']

+Tr[2 Re(M ~tM»}A&]

X [X(k,q)
—

l
Fo

l
']}. (3.1)

Here

4'k Xk+Pk)

where 'x~ is the singlet 5 wave function and

(2.22)
M (k,q}= (4n.)

—' [Fg (q,k}]'dn, , (3.2)

ltk=(2m) "'[e' '—sinkr/kr] (2.23}
Ã(k, q) = (4ir) ' Fs(q,k)Fii(q, —k)dQk. (3.3)

is the plane wave function for all. higher angular mo-
mentum states. Similarly, the triplet wave function is

Qk= Xk+fk.

The form factors can then be written

S,=I',+~a—Fp,

&&=~&+J"a—~o.

(2.24)

(2.25)

(2.26)

III. CALCULATION OF THE CROSS SECTION

The cross section is calculated by inserting the ex-
pression for 5K given by Eq. (2.28) into Eq. (2.20). Since
(FB FQ) represents that part of the final-state wave
function with angular momentum greater than zero,
the last term in Eq. (2.28) is orthogonal to the first two
terms upon integrating with respect to dpi, . Further-
more, since A,A~= 0 we see that the 6rst two terms give
no cross term. Finally we note that F&,, F„and Ii p are
independent of the direction of k and so integrating
these terms simply yields 4~. YVe get then for the

Here F, and F, are the form factors of Eq. (2.10)
evaluated with 'Xk& & and 'X~' ', respectively, in place
of pk( &, and Fg and Fp are the Born approximation
form factors evaluated with (2s.) "'e'"' and (2ir) "'
Xsinkr/kr, respectively.

For the 5-wave form factors we have

Fo(q,k) =F0(q, —k) (2.27)

and similarly for Il, and Ii&. Then the scattering matrix
can be written

5R=Ai(M „+M»)F((q,k}A,

+A.(M,+M „„)F,(q,k)Ai.
+(M„,[Fs(q, k) —Fp(q, k)]
+M»[Fii(q, —k) —Fo(q,k)]}A, (2.28)

In the next section we shall use these results to calculate
the cross section given by Eq. (2.20).

The cross section thus splits into four terms: one term
representing the contribution of the triplet 5 final state,
one the contribution of the singlet 5 state, and two the
contribution of all higher angular momentum states.
%e proceed to calculate these terms.

A. 8-State Terxns

In the case of slightly-inelastic proton-deuteron scat-
tering the relative momentum k in the center of mass of
the resultant neutron-proton system is small, so that
the main contribution to the cross section will come
from events which leave the anal-state neutron-proton
system in a relative 5 state. This contribution is given
by the first two terms in (3.1). The cross sections for
triplet and singlet 5-state scattering are

where

(do/d&QE'), = 4rrDl F,(q k) l

' Z, ,

(d~/dflAE'). =4~Dl F.(q, k) I' k ~.,

(3.4)

(3.5)

MT &r+&r(vari. n)(vari n)+C&(ei n+a'2'n)
+Er(~i q)(irp, q)+Fr(vari p)(arm p). . (3.8)

Here T, which is either 0 or 1, labels the two possible
isotopic spin states of the nucleon-nucleon system. The
subscripts 1 and 2 label the spin operators for the two
interacting nucleons, and n, p, q are unit vectors in the
directions PpXPp, Pp+Pp, and Pp' —Pp, respectively.
The proton-proton system is a pure isotopic spin 1 state
and the neutron-proton system is an equal mixture of

Zg=-', Tr[(M „t+M»t)Ag(M„„+M»)A, ], (3.6)

-', Z.= 6 Tr[(M„rt+Mr~t}A, (M„„+M»)A,]. (3.7)

Using the notation of Kerman, McManus and Thaler'
the nucleon-nucleon scattering matrix can be written
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TmLE I. Square-well parameters used for the singlet and
triplet state together with the scattering length, g, and the
effective range, ro, calculated from these potentials.

State

Triplet
Singlet

Well
depth
(Me@

34.5
14.54

Well
width

(F)

2.074
2.545

Scattering
length, a

(F)

5.39—23.74

Effectiv
range, b

(F)'

1.75
2.65

~ J. Friedman, H. Kendall, and P. Gram, Phys. Rev. 120, 992
(1960);J.McIntyre and G. Burleson, Phys. Rev. 112,2077 (1958).

T=O and T=1, so

N~„=My,

M„„=(%i+Mp)/2.

Then evaluating the traces in Eqs. (3.4) and (3.5)
we 6nd;

&i=,( [3&i+&0['+(5/3) [3&i+Co['
+3(l»i+&oI'+[3&i+&oI'+ [3Fi+Fol')) (3.9)

& =
q ( I

1"i—&o
I + I &i &o

I

+ IR—Eol + IFi—Fol j. (3 10)

There are a number of important features to be noted
about these results. In the 6rst place we see that the
triplet cross section depends on the nucleon-nucleon

amplitudes in the same way as does the elastic proton-
deuteron cross section, ' whereas the singlet cross section
has quite a different dependence. In fact, as already
noted, in the singlet cross section the T=O and T=1
amplitudes occur with the same statistical weight
factor. Secondly, since the deuteron ground-state wave
function is orthogonal to the triplet scattering states,
we see from Eq. (2.10) that Fi(O,k) =0. Hence for small

q the singlet cross section wiB be much larger than the
triplet cross section, in spite of the statistical weight
factor of 3 multiplying the singlet cross section. Thirdly,
since the Coulomb interaction between the two protons
is largely spin-independent, it occurs mostly as a modih-

cation of AI. Thus the Coulomb interaction does not
enter into Z,.

In evaluating F,(q,k) and F,(q,k) it is important to
use exact scattering state wave functions. To do this
we have used square well potentials to describe the
low-energy neutron-proton potential. The well param-
eters were chosen to 6t the effective range parameters.
The well parameters used for the singlet and triplet
potentials are given in Table I, together with the values
of the scattering length and effective range calculated
from these potentials. The tensor force has been
neglected.

The calculation should not be sensitive to the details
of the potential (or equivalently, to the structure of the
wave functions at small distances) because it is limited
to momentum transfer of at most 1.0 F '. Electron-
deuteron cross-section measurements, both elastic" and

70-

6.0—

5.0—

M—

2g—

LO-

0.995
l

0.985 0.980 0.975

Fro. 1.The S-wave contribution to the inelastic proton-deuteron
cross section at 10' for 158-MeV incident protons. The figure
shows the singlet-5 and the triplet-S contributions, their sum, and
also the S-wave contribution neglecting final-state interaction
{Born-S).

slightly-inelastic, " do show evidence of a hard core in
the neutron-proton potential. However these effects only
appear at momentum transfers of 1.6 F ' or more. For
q&1.0 F ' all reasonable deuteron wave functions give
essentially the same deuteron form factor. Furthermore,
Durand's calculation' of the slightly-inelastic electron-
deuteron cross section only shows the effect of a hard
core in the neutron-proton potential at a momentum
transfer greater than 1.5 F '. It is interesting to note
that in at least one case" the square well potential and
a repulsive core potential both give the same deuteron
form factor for momentum transfer up to 2.4 F '.

The normalized deuteron wave function calculated
from the triplet potential was used, together with the
scattered wave functions '&I, and '&j„calculated from
these potentials, to calculate the functions F,(q,k) and
F,(q,k). The results for 158-MeV incident protons
scattered through 10' are shown in Fig. 1. Here are
plotted the singlet and triplet cross sections separately,
their sum, and also the 5-wave "Born approximation"
cross section (that is, the 5-wave cross section calculated
neglecting final-state interaction). This latter quantity
is given by the sum of Eqs. (3.4) and (3.5) with F, and
F, replaced by Fo. The values of Z, and Z& used are
given in Table II. The cross sections are in millibarns/
steradian MeV. Along the abscissa we have plotted
P'/P, i where P, i is the momentum of an elastically
scattered proton; also along the abscissa, the energy in
the center of mass of the resultant neutron-proton
system, k'/m, is shown.

As expected the triplet cross section is nearly zero.
The singlet cross section is sharply peaked at the low-

"H. Kendall, J. Friedman, E. Erickson, and P. Gram, Phys.
Rev. 124, 1596 (1961)."J.McIntyre, Phys. Rev. 103, 1464 (1956). The remarkable
similarity between the form factors for a hard core and square
well potential up to q=2.4 F ' suggests that in other calculations
{such as those of references 8 and 13) the square well might be
indistinguishable from a hard core potential for g&2.0 F '.
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energy" end of the spectrum, falling to one half of its
peak value within 1 MeV of threshold. . This is due to
the strong 6nal-state interaction between the target
neutron and proton, %hen this interaction is neglected
the whole character of the spectrum is changed. A
broad maximum occurs at about 2.25 MeV above
threshold, which is just the binding energy of the
deuteron. The Born-approximation cross section in this
region is much larger than the exact cross sections, since
in Born approximation the triplet-state contribution,
instead of being small, is 3 times the singlet contribu-
tion, the factor 3 being just the statistical weight of
the triplet state.

At smaller angles the singlet peak increases; it is
13.6 mb/sr MeV at 5'. The triplet cross section de-
creases at smaller angles, being less than 1% of the
singlet cross section at 5'. At larger angles the singlet
peak decreases and the triplet cross section increases.
At 15' the singlet peak is only 3.4 mb/sr MeV; the
maximum of the triplet cross section is 10%%uz of the
singlet peak, but occurs at a somewhat higher energy.
The efI'ect of this is to lower and broaden the spectrum
with increasing angle.

3. Higher Angular Momentum States

The last two terms of Eq. (3.1) give the contribution
to the cross section of all states arith angular momentum
greater than zero. This contribution is expected to
increase with k; as we shall see, it also increases with q,
and hence with the scattering angle 8.

The form factors F~ and Iio are evaluated from
Eq. (2.10) using (2s.) "'e'"' and (2s) 'I'sinkr/kr, re-
spectively, for Q&. For $0, the deuteron ground-state
wave function, we use the simple Hulthen wave function
given by Moraviscik":

d a=0.26t exp( —nr) —exp( —Pr)]/r,
(3.11)

a.=0.232 F ', P=1.202 F '.

This enables us to perform the integrals with respect to
dQ» indicated in Eqs. (3.2) and (3.3).The results appear
in Durand's article' as Eqs. (29) and (30). The use of a
diBerent deuteron wave function to treat the higher
angular momentum states is justi6ed again because the
calculation is limited to small momentum transfer. The
traces in the last two terms of Eq. (3.1) are

ia Tr[(M„otM„o+M„otM„o)Ag]=o~„+a„o, (3.12)

-', TrL2 Re(M „tM„o)hi]=Zg+siZ, .a~„a„„(—3.13)— .

Here o. ~ and r» are the free neutron-proton and
proton-proton differential cross sections in the nucleon-
nucleon center-of-mass system and Z& and Z, are given

"When referring to the abscissa of the 6gures in this and the
accompanying article (SWC) we shall always mean the energy in
the center of mass of the resultant neutron-proton system. This
quantity increases to the right in the figures whereas the mo-
mentum and energy of the scattered proton decrease to the right.

'6 M. Moraviscik, Nuclear Phys. 7, 113 (1958).

70-

04
I

k jm —a
I.Q 2.0 4.0 MeV

4.0-

28-

0.995 0.990~ p/p, (

0.985 0.980 0.975

FIG. 2. The inelastic proton-deuteron cross section at 10' for
158-MeV incident protons. The 6gures show the total S-wave
contribution, the contribution from higher angular momentum
states t,

'L)0), and their sum.

X=(k q mhE)/kq, — (3.15)

where hE is given by (2.12). In the slightly-inelastic
region, kq~0 and X~aa. In this limit X/M —+ 1
and there is complete interference. In the quasi-free
region, k=aq and so X=1. In this limit Jq/M-+0
and the direct cross-section term dominates. In quasi-
free scattering the inelastic cross section is just propor-
tional to the free nucleon-nucleon cross sections.

It is a fundamental principle of quantum mechanics
that the probability amplitudes for two processes inter-
fere whenever these processes are indistinguishable.
Now it may at 6rst be thought that it is possible to
determine whether the incident proton scatters from a

by Eqs. (3.9) and (3.10). The trace in Eq. (3.13) is the
interference term between the scattering of the incident
proton from the target proton and from the target
neutron. From the last two terms of Eq. (3.1), we get
for the contribution to the cross section from higher
angular momentum states:

(do/dngE') 1.)o
=4vrD((o „+o„„)M(k,q)

+LZi+xaZ, —a „—o„„]$(k,q)
—LZc+xsZ. ]To') (3 14)

The total s1ightly-inelastic cross section is given by the
sum of Eqs. (3.4), (3.5), and (3.14).

In Eq. (3.14) the first term comes from the direct
scattering of the incident nucleon by the target nucleons.
The second term arises from interference of these two
events. The third term is the 8-wave contribution in
Born approximation which must be subtracted out.

From Eq. (3.14) we see that the ratio E/M is a
measure of the importance of the interference term
relative to the direct cross-section term. From the
explicit form of M and ¹,it is found that their ratio
depends on the parameter
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target neutron or a target proton by observing which

target particle carries off the recoil momentum. How-

ever, because of the internal momentum of the deuteron,
the recoil particle may not be the particle with which

the incident proton interacted. For example, the inci-
dent proton could interact with a target proton with

=0.9800. At 20' two distinct peaks appear, the slightly-
inelastic and the quasi-free peaks.

In the next section the theory will be used to analyze
the experimental measurements of Stairs et al. '

IV. ANALYSIS OF THE DATA

l4.0—

I20—

lGO—

8.0—

kz/m ~
0 2.0 40 6.0 8.0 lQO l2Q MeV

1 ) I /
I i & j

incident Energy l58 MeV

Stairs, Wilson, and Cooper' have measured the
proton-deuteron inelastic cross section at 158 MeV
using a high-resolution magnetic spectrometer. The
measurements were made at 5', 10', 15', and 20' for
values of E' ranging from threshold to about 10 MeV
above threshold. The results are shown in Figs. 5, 6, 7,
and 8 of S%C.

Combining Kqs. (3.4), (3.5), and (3.14) we find that
the cross section can be written

2.0—

LOO

I I 1

Q980 Q970 Q960 0950 0+40~ P&pa~

where

da/dQadE'= ,'uZ, +PE-,+y(o „„+o„,), (4.1)

a =4rrD(F, '+N Fo'), — (4.2)

P=4rrD(F g'+N Fo'), — (4 3)

(4 4)
I'zG. 3. The inelastic proton-deuteron cross section at 5', 10,

15', and 20' for 158-MeV incident protons, calculated using the
parameters in Table II.

internal momentum k„=—q; the target neutron has
h„=q. Then the incident proton transfers momentum

q to the target proton, bringing it to rest in the labora-
tory system, and the target neutron carries oR the recoil
momentum q. The probability of finding a target proton
with internal momentum q decreases rapidly for

q& (moo)"', so for large q the recoil particle will in fact
be the particle with which the incident proton inter-
acted, and so the interference term disappears; slightly-
inelastic scattering changes continuously into quasi-free
scattering. %e shall discuss quasi-free scattering in a
subsequent article.

Figure 2 gives the results at 10 . The exact S-wave
contribution is plotted together with (da/dQodE')I. »
and their sum. The contribution of the higher angular
momentum states peaks at a smaller value of P' (larger
value of k) than does the S-wave contribution. Hence
the main eRect of this contribution is to broaden out the
peak in the spectrum. Also, since the S-wave cross
section falls oA rapidly at smaller I", the higher angular
momentum states give the dominant contribution to
the tail of the spectrum.

Figure 3 compares the total cross sections at 5', 10',
15, and 20, again using the parameters in Table II.
The spectrum at 5' is due almost entirely to the singlet
S state. At 10' the singlet S state still dominates, but
the other terms in the cross section somewhat modify
the spectrum. At 15 the singlet-5 contributes still less
to the cross section. While it accounts for nearly 97%
of the cross section right at the peak, it falls oG rapidly
while the other terms increase with decreasing P'; it
accounts for only 50% of the cross section at P'/P, i

ALE II.The values of the parameters ~~„Zc, and {0„~+cy.»)
obtained from a least-squares analysis of the 158-MeV slightly
inelastic proton-deuteron scattering data of Stairs et a/. ' The
number of points 6tted and the value of g' obtained are also given.

Labora-
tory
angle

50
50

10'
15
20'

Z.
(mb)

12.17 &0.25
(12.01 &0.12)
11.50&0.70
10.32 ~0.54
6.70&0.45

&c
(mb)

—30.7 ~48.2
(7.17)

10.0 ~ 6.9
7.2 + 1.8
8.09+ 0.74

o'&si +~'pu
(mb)

0.2 &21.6
(17.1)

10.8 & 2.5
8.71~ 0.44
9.17& 0.15

No. of
points
fitted

9 98
9 10.5

15 140
10 15.9
8 14.2

' See reference 9.

The coefficients a, p, and y are functions of q and k but
do not depend upon the nucleon-nucleon scattering
matrix. The parameters Z„Z&, 0-„~, and 0» are assumed
to depend only on q, which, for a given scattering angle,
is nearly constant over the range of k under considera-
tion. These parameters are functions of the nucleon-
nucleon scattering amplitudes. Assuming these param-
eters are constant at a given angle, the data at any
angle can be fitted by adjusting only three parameters,
Z., Z„and (o„+o.,)

To analyze the data, the coefficients n, P, and y were
calculated at each angle as functions of P'/P. ~. The
experimental momentum resolution curve was then
folded into these coeKcients to correct them for finite
resolution. Using the corrected coefficients in Kq. (4.1)
a least-squares fit was made to the data at each angle.
The best its obtained are shown in Figs. 5, 6, 7, and 8
of SAC and the values of the parameters found are
given in Table II. Table II also lists the number of
data fitted at each angle and the value of y' obtained.

At 5' the singlet S state so dominates that efFectively
only Z, is determined. The Gt is shown in Fig. 5 of SAC.
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TABLE III. Comparison of the values of Z~ obtained from the
analysis of inelastic proton-deuteron scattering, from elastic
proton-deuteron scattering, and from the phase-shift solutions of
Breit et A. ,a Prenowitz b and Kerman, McManus, and Thaler. '

Labora-
tory
angle

Inelastic
p-d

(mb)

Elastic
p-d

(mb)

YLAM Prenomitz
YLAN3M YLAN3M

(mb) (mb)
KMT
(mb)

50
10'
15
20'

10.0 %6.9
7.2 &1.8
8.09 +0.74

7.82 &0.35
11.52 &0.70
9.79 ~0.37
8.59~0.80

6.92
10.89
11.32
10.11

7.18
11.49
11.94
11.02

6.82
11.54
11.59
9.76

I See reference 10.
b See reference 18.
e See reference 2.

The indeterminateness of Z& and (s„„+o») is even

greater than indicated by the large errors, since these
errors have, in addition, a large positive correlation. If
the values of Z, and (a ~+0») are constrained to have
values near those indicated by other considerations
(see Tables III and IV), x' increased by only 7%. The
~alue of Z~ and (0 ~+0») used and the resulting value
of Z, are given in parentheses in TaMe II. The actual
points 6tted are plotted as black circles. A x' of 9.8 was
obtained for a 6t to 9 points. The two points at the
lowest energy were not 6tted since they actually occur
below threshold and so the fit is very sensitive to the
exact manner in which the resolution is folded in. The
two points at the higher energy could not be 6tted
adequately and so were not included in the 6nal deter-
mination of Z, . No good reason is known why these
two points cannot be 6tted.

The situation is better at 10'. Here all but the very
6rst point was 6tted, a total of 14 points, with a result-
ing y of 14.0. The 6t is shown in Fig. 6 of SAC. As is
expected the errors on Z& and (~ „+0») are smaller
now, since the triplet-5 and higher angular momentum
states are more important than at 5'. However, there
is still a large positive correlation between these
parameters.

The 15' results are shown in Fig. 7 of QVC. An indi-
cation of the quasi-free peak is seen in the broadening
of the slightly-inelastic peak. In 6tting these data the
6rst point and the last three points were omitted. The
selection of the points to be 6tted is somewhat arbitrary.
However, no other choice of points gave a reasonable
6t. It is hard to understand why the last points cannot
be 6tted better than they are.

Figure 8 of SAC shows that two peaks are dearly
resolved at 20'. The singlet-5 peak is now just a bump
on the lower energy end of the broad quasi-free peak.
In the least-square 6t, two points near threshoM were
excluded because they are not consistent with neighbor-
ing points. The two points at the high-energy end were
also excluded because they could under no circumstance
be fitted and their inclusion distorted the rest of the 6t.
The complete disagreement here at high energy is even
more serious than at 15'. At energies where these dis-
crepancies occur the effective range theory used to
calculate F& and F, is certainly not valid. However, the

TABLE IV. Comparison of various values of the neutron-proton
cross section, o„„,at 158 MeV. The values in the column labeled
"inelastic p-d" are obtained from the values of a &+u» given in
Table II by subtracting the value of a» measured by Caverzasio
et a/. ' The values obtained from the phase-shift solutions of
Breit et al.b and Kerman, McManus, and Thalero are also given.

Laboratory
angle

50
10'
15'
20'

Inelastic
p-d

(mb)

7.1 a2.5
4.84&0.44
5.29+0.15

VLAM
YLAN3M

{mb)

7.92
6.64
5.51
4.56

KMT
(mb)

6.42
5.31
4.42
3.52

a See reference 19.
b See reference 10.
4 See reference 2.

values of Ii& and Ii, in this region are so small that even
large percentage errors in them could not affect the cross
section appreciably, the important contributions coming
from the higher angular momentum states. The most
reasonable guess, apart from experimental error, is that
the discrepancy is due to effects arising from 6nal-state
interaction in I' or D states.

The values found for the parameters in Table II can
be compared to those found from different considera-
tions. For instance, in impulse approximation Z& is
related to the elastic proton-deuteron center-of-mass
cross section by'

d(r/d0 = (PD/Po) 'F'(q)Z „
where F(q) is the deuteron form factor,

F(q)= ~&0~'exp(i-,'Z r)dr,

(4.5)

(4.6)

"The author wishes to thank Professor Breit for making availa-
ble the relevant computer results.' E. Prenowitz (private communication). The author wishes to
thank E. Prenowitz for magic his results available to him.

and I'~ is the momentum in the proton-deuteron center-
of-mass system. The elastic cross section was also meas-
ured in SWC from which one obtains experimental
values of Z„using Eq. (4.5). In Table III these values
of Z& are compared with those from Table II and also
with the predictions of various nucleon-nucleon phase-
shift solutions. The column labeled YLAM-YLAN3M
gives the predictions of the phase-shift solutions of
Breit and his collaborators'0 at 140 MeV. These are the
best solutions of their energy-dependent phase-shift
analysis. "The column labeled Prenowitz-YLAN3M is
the prediction obtained by combining the T=1 phase
shifts of Prenowitz' and the 7=0 phase shifts
(YLAN3M) of Breit. The column labeled KMT is the
predictions using the nucleon-nucleon amplitudes given
by Kerman, McManus and Thaler. ' The inelastic and
elastic values of Z& are seen to agree within the rather
bad statistics. However these experimental values seem
to be de6nitely smaller than the phase-shift predictions
at 15' and 20.



ALA iN H.

TAmz V. Comparison of the values of Z, found from the
analysis of inelastic proton-deuteron scattering with the predic-
tions of the phase-shift solutions of Breit et al. , Prenowitz, and
Kerman, McManus, and Thaler. '

Laboratory
angle

Inelastic
p-d

(mb}

YLAM VLAM
YLAN3M Prenowitz

(mb} (mb}
KMT
(mb}

50
10'
15'
20'

12,17~0.25
11.50a0,70
10.32~0.54
6.70&0.45

10.11
8.02
6.16
4.96

10.36
7.78
6.26
5.43

10.5
7.59
5.70
4.91

+ See reference 10.
b See reference 18.
e See reference 2.

'I C. Caverzasio, K. Kuroda, and A. Michalowicz, J. Phys.
Radium 21, 319 (1960}.

The proton-proton cross section, 0», has been meas-
ured at 158 MeV by Caverzasio et ul. ' at the relevant
angles. Using these values and the values of o„„+cr»
found in the present analysis, we get the values of o„„
given in Table IV, These values are compared with the
values of cr„„predicted by the above phase-shift
analyses. At 10 and 15' the values of 0„„found here
are consistent with the phase-shift predictions. At 20'
we 6nd a value of cr„„larger than the predicted values,
though the predicted values diGer considerably between
themselves. No reliable value of 0. ~ is obtainable at 5'.

There are no independent measurements of Z,.
Table V compares the values of Z, found in the present
analysis with the phase-shift predictions. In all cases
the experimental values are considerably larger than
the phase-shift values. A closer look at the amplitudes
which go into Z, [Eq. (3.10)j shows that it is largeiy

dominated by the T=O amplitudes, particularly the
real parts of Bo, Ep, and Fo. It is, of course, just the
T=0 phase shifts for which we have the least informa-
tion, resulting in signi6cant statistical uncertainties in
the phase-shift solutions. '0 It would be of great interest
to see if the present T=O phase-shift solution could be
modified so as to 6t the vah&es of Z, found here, without
doing violence to the rest of the neutron-proton data.

In conclusion it can be said that the small-angle
slightly-inelastic proton-deuteron scattering data can
be quantitatively understood in terms of the basic
nucleon-nucleon interaction and neutron-proton 6nal-
state interaction in S states only. Three nucleon-nucleon
parameters are needed to dt the data at a given angle.
T~vo of these, Z& and (o»+0 „) are found to have
values generally consistent with the values obtained
from other considerations. However the most important
parameter, Z„ is found to have a value much larger
than that predicted from phase-shift solutions. The
values of Z, found here may be of value in future
searches for T=O phase shifts.
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~ The second article in reference 10 lists the standard deviations
of the T=O phase shifts in solution YLAN3M. However, it is
difhcult to estimate the eGect of such uncertainties on the pre-
dicted values of Z„since there could be strong correlations among
the phase shifts.


