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Self-Consistent Wave Functions for Ytterbium
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Wave functions for the thirteen electron groups of ytterbium have been calculated in the nonrelativistic
approximation without exchange, Certain innovations in the numerical procedures are described and dis-
cussed. In particular, the use of backward integrations is essentially eliminated from the procedure for
determining the energy-related eigenparameters. Wave functions are tabulated for the outermost four
subshells, and Slater integrals for the 4f group. The 4f'4 6s' con6guration is assumed.

INTRODUCTION
7„(r)=P Z„'(nl; r) =P q(nl) P '(nl; s)ds.

ni ni „(5)HE growing interest in the lanthanides has
prompted the undertaking of a program to

calculate the radial wave functions and atomic form
factors of these elements. ' The initial phase aims at
obtaining reasonably good values as rapidly as possible.
Thus, these 6rst calculations are nonrelativistic and
do not include exchange eBects. Better approximations
will be attempted in a subsequent phase of this work.

This paper describes the methods employed in making
these calculations and presents the results obtained for
ytterbium. The choice of this element as a starting
point was dictated to some extent by the fact that all of
its electron groups are complete. Further, since its
atomic number does not difI'er too greatly from those of
other heavy elements whose wave functions have
already been calculated, it was hoped that reasonably
good initial approximations to the contributions to Z(r)
could be made and the calculations launched without
undue di%culty.

The terminology is substantially that of Hartree save
for the substitution of Y'(nl; r) and Z'(nl; r), respec-
tively, for Yo(nl; r) and Zo(nl; r) to avoid subscripted
subscripts. In what follows, the zero superscripts are
dropped since the arguments indicate clearly which
functions are intended.

Thus, Z(nl; r) is the contribution to Z(r) arising
from the electrons in the nl subshell; q(nl) is the number
of electrons occupying this subshell; e(nl) is an eigen-
parameter related to the energy; P(nl; r) is the radial
wave function sought; r is in Bohr units; m denotes the
iteration in progress.

NUMERICar. PROCEDURES

The zero-order approximations to the contributions
to Z, Zo(nl; r), and their sum ZD(r) were obtained from
data on mercury published by 3Iayers' and using a
method described by Ridley. 4 These values constituted
the input data to Eqs. (3) and (4) for the first iteration.
Runge-Kutta integrations starting with large values of
r and vorking back to essentially r=o gave the func-
tions Yi(r) and Yi(nl; r), the first input data to Eq. (1).
Solutions of Eq. (1) then provided the first approxima-
tions to the wave functions P, (rd; r), the input data
for Eq. (4). Solution of Eq. (4) completes one stage or
iteration. Basically, the problem from this point on is
merely to repeat the cycle outlined above until the
output contributions to Z at some stage do not difI'er

from the input values by more than some small, pre-
determined number (ideally zero). The wave functions
are then self-consistent and constitute the best repre-
sentation of the true wave functions possible with the
given model and numerical methods.

Equation (1) is frequently broken down into two
erst-order equations which are then solved sirnul-
taneously. However, since there is no erst derivative
term, there are Runge-Yutta type algorithmss (and

THEORY

The calculations follow essentially the scheme
described by Hartree' and involve repeated solution of
the equations

P' («;«)P„(nl;r)=O,
where the operator 8' is given by

There is one such equation for each electron group in
the atom under consideration. These equations are
coupled through the relations

1—Y-(r) =-EY-(r)—7-i(r) j,
dr r

(3)

d 1 Z '(nl; r)—Y„o(nl; r) =- Y„o(nl; r)+
' —1, (4)

dr r 20(nl; 0)
'For the atomic scattering factors for ytterbium, see E. L.

Eichhorn and M. W. Holm, Acta Cryst. 15, 294 (1962).
«D. R. Hartree, The Calculation of Atomic Structures (John

Wiley k Sons, Inc. , New York, 1957).

'D. F. Mayers, Proc. Roy. Soc. (London) 241, 93 (1957).
Slightly faster convergence would probably have been obtained
using the values for Tm'+ reported by Ridley. (See reference 6).

4 E. C. Ridley, Proc. Cambridge Phil. Soc. 51, 693 (1955).
~ See, for example, J. B. Scarborough, Numerical mathematical

Analysis (Johns Hopkins t, niversity Press, Baltimore, 1958), 4th
ed. , pp. 316—7.
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2
W (nl; r)= + LY (r)+Y '(nl—; r)]-

dr —«(nl) l (l+1)/r' (2)— -.
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others) which will solve the equation as it stands. Such
a method was used in this study. The primary problem
at this point, however, is not the solution of Eq. (1)
per ss, but rather the determination of a value of e(nl)
which possesses a wave function with the number of
nodes appropriate to the given values of n and l.

Commonly, Eq. (1) is solved by integrating back-
wards from a large value of r (where the wave function
is effectively zero) to some intermediate value; inte-
grating forward from r=0 to this same value; then
adjusting e and the starting slopes until continuity is
achieved at the intermediate point. By taking advan-
tage of a pathological feature of the behavior of
numerical solutions to the wave equation, however, it
is possible to eliminate the backward integration and
simplify the procedure for determining the eigenvalues
e(et). Figure 1 illustrates the instability just referred
to. Here are shown the numerical approximations to
the solution of Eq. (1) for the 2s subshell at the fifth
stage for two values of e(2s) differing by only unity in
the least significant digit of an eight-digit representa-
tion. The solution may be divided conveniently into
four sections: (i) a region in which the behavior of the
solution is that of a traveling wave; (ii) a region in
which the behavior is that of a damped wave with a
near-exponential approach to the r axis; (iii) a region
where the solution is essentially zero; (iv) a region in
which the solution tends to plus or minus infinity.

The computer was programmed to take an initial
estimate of e and, by observing the behavior of the
fourth region as test changes in ~ are made, to refine
this value until a change of unity in the least significant
digit resulted in a change of sign of the infinity-seeking
tail. Satisfactory approximations to the wave functions
at that stage of the calculations could then be obtained
by discarding the third and fourth regions of those
solutions in which the infinity-seeking tail had the same
algebraic sign as the last maximum (or minimum) in
the first region.

Where the approach to zero in the third region. was
not sufBciently close, an exponential tail-oB was
substituted for the extreme right portion of the second
region. Numerically,

where
P(nl; r;+g) =P(el; r, )R(k)~&»,

p(j ) =r;+, r, ,
—

(6)

(the jth abscissal increment) and

R(k)=PP(nl;r&)/P( f r»)7'~&' '~

By starting this tail-o6 at that radius value for which
R(k) is a minimum (in the second region), wave func-
tions at only those points not in agreement with values
which would be obtained with a backward integration
are calculated. An exception is provided by the 4f wave
function where a starting point midway between that
of the 4d and Ss functions must be used to obtain a
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Fro. 1.Behavior of numerical solution to wave equation.

tail-og which is a satisfactory approximation to that of
a backward integration.

To facilitate comparison with the values obtained
by Ridley' for Pr'+ and Tm'+, Slater integrals were
calculated for the 4f subshell using the relations

Fg(4f,4f) =F"(4f,4f)/DI„

where, in particular, D2= 225, D4= 1089, and
D6 = 7361.64.

RESULTS

Values of e(el) for the 13 subshells are listed in
Table I. The calculated wave functions for the four
outermost subshells are given in Table II.' Values of

TABLE I. Values of (nl).

Subshell Subshell

2$
2P

3$
3P
34

4204.89

677.95
650.55

151.23
237.70
113.22

4$
4P
4d
4f
S$
Sp

6$

28.575
23.052
13.166
0.6707

3.3792
1.9330

0.33906

6 E. C. Ridley, Proc. Cambridge Phil. Soc. 56, 41 (2960).' Space limitations make it impractical to include full tables of
values of the @rave functions (Table II) and contributions to Z
(Table IV) for all of the 13 subshells. These have been deposited
as Document No. 7384 with the ADI Auxiliary Publications
Project, Photoduplication Service, Library of Congress,
Washington 2S, D. C. A copy may be secured by citing the
Document number and by remitting $2.50 for photoprints, or
$2.75 for 35 mm micro6lm. Advance payment is required. Make
checks or money orders payable to: Chief, Photoduplication
Service, Library of Congress.

aO aa

F"(4f,4f) = P' (4f; rg)P (4f; r2)drgdr2, (7).
Is+1
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TABLE II. Radial vrave functions for ytterbium.

0.0000
0.0005
0.001
0.002
0.003

0.004
0.005
0.006
0.007
0.008

0.009
0.010
0.012
0.014
0.016

0.018
0.020
0.022
0.024
0.026

0.028
0.030
0.032
0.034
0.036

0.038
0.040
0.045
0.050
0.055

0.060
0.065
0.070
0.075
0.080

0.085
0.090
0.095
0.100
0.110

0.12
0.13
0.14
0.15
0.16

0.17
0.18
0.19
0.20
0.22

0.24
0.26

4j'

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
Q.ooi
0.001
0.001
0.002

0.002
0.003
0.003
0.004
0.005

0.006
0.007
0.010
0.014
0.019

0.025
0.032
0.041
0.050
0.060

0.071
0.084
0.097
0.111
0.142

0.177
0.214
0.253
0.294
0337

0.381
0.425
0.469
0.514
0.600

0.683
Q.760

0.0000
0.0157
0.0303
0.0565
0.0787

0.0973
0.1126
0.1248
0.1342
0.1411

0.1456
0.1480
o.a471
0.1398
0.1274

0.1109
0.0913
0.0694
0.0460
0.0216

—0.0032—0.0279—0.0522—0.0758
—0.0983

—0.1196—0.1394—0.1819
—0.2134
—0.2336

—0.2426—0.2413—0.2306—0.2120—0.1865

—0.1555—0.1203
—Q.0821—0.0419

0.0000
0.0001
0.0005
0.0021
0.0045

0.0078
0.0117
0.0163
0.021.4
0.0270

0.0330
0.0393
0.0527
0.0667
0.0810

0.0953
0.1093
0.1227
0.1354
0.1473

0.1581
0.1679
0.1765
0.1840
0.1902

0.1951
0.1988
0.2027
0.1992
0.1890

0.1729
0.1519
0.1267
0.0985
0.0679

0.0358
0.0031—0.0298—0.0621

0.1195
0.1909
0.2509
0.2977
0.3302

0.3483
0.3527
0.3443
0.3245
0.2569

0.1625
0.0533

—0.1770—0.2215—0.2554—0.2782—0.2902

—0.2917—0.2837—0.2671—0.2431

—0.0965—0.0077

0.0402 —0.1232

0.0000
0.0038
0.0073
0.0137
0.0190

0.0236
0.0273
0.0302
0.0325
0.0342

0.0353
0.0358
O.Q356
0.0339
0.0308

0.0268
0.0221
0.0168
0.0111
0.0052

—0.0008—0.0068
—0.0127—0.0184—0.0238

—0.0290—0.0338—0.0441—0.0517—0.0565

—0.0587—0.0584—0.0558—0.0513—0.045 a

—0.0376—0.0290—0.0198—0.0100
0.0099

0.0291
0.0463
0.0609
0.0721
0.0799

0.0843
0.0852
0.0831
0.0782
0.0617

0.0386
0.0120

0.28
0.30
0.32

0.34
0.36
0.38
0.40
0.45

0.50
0.55
0.60
0.65
0.70

0.75
0.80
0.85
0.90
0.95

1.00
1.10
1.20
1.30
1.40

1.50
1.60
1.70
1.80
1.90

2.0
2.2
2.4
2.6
2.8

3.0
3.5
4.0
4.5
5.0

6.0
7.0
8.0
9.0

10.0

12.0
14.0
16.0
18.0
20.0

22
24
26

0,995
1.034
a.o65
1.090
1.127

1.133
1.120
1.092
1.055
1.013

0.968
0.921
0.874
0.828
0.783

0.740
0.658
0.585
0.519
0.462

0.411
0367
0.328
0.295
0.265

0.238
0.195
0.160
0.132
0.110

0.092
0.059
0.039
0.025
0.017

0.008
0.003
0.002
Q.001
0.000

—0.3546—0.4230—0.4735
—0.5061—O.S152

—0.4401—0.3082—0.1445
0.0316
0.2059

0.3692
0.5157
0.6423
0.7482
0.8334

0.8991
0.9789
1.0027
0.9859
0.9414

0.8798
0.8088
0.7341
0.6596
0.5878

0.5202
0.4009
0.3039
0.2274
0.1685

0.1238
0.0559
0.0246
0.0106
0.0045

0.0008
Q.0001
0.0000

4f Ss

0.830 —0.0603
0.893 —0.1699
0.948 —0.2694

0.0816
0.1663
0.2424

0.3074
0.3598
0.3990
0.4251
0.4375

0.3878
0.2947
0.1752
0.0429—0.0921

—0.2229—0.3449—0.4552—0,5525—0.6362

—0.7065—0.8097—0.8697—0.8950—0.8941

—0.8740—0.8405—0.7981—0.7503—0.6997

—0.6482—0.5475—0.4549—0.3/33—0.3033

—0.2445—0.1389—0.0768—0.0416—0.0223

—0.0063—0.0017—0.0005—0.0001—0.0000

—0.0156—0.0421—0.0662

—0,0866—0.1029—0.1148
-0.1222
—0.1229

—0.1030—0.0694—0.0282
0.0156
0.0583

0.0976
0.1320
0.1607
0.1833
0.2000

0.2111
0.2178
0.2077
0.1847
0.1526

0.1143
0.0721
0.0280—0.0169—0.0614

—0.1049—0.1867—0.2597—0.3228—0.3755

—0.4182—0.4855—0.5073—0.4971—0.4668

—0.3786—0.2857—0.2056—0.1431—0.0971

—0.0423—0.0174—0.0069—0.0027—0.0010

—0.0004—0.0001—0.0000

TaaLE III. Values of the Slater intern, rais.

0.5465
0.3398
0.2436

0.002429
0.0003120
0.00003309

F4jF2 0.1284
Fe/F2 0.01362

the Siater integrals for the 4f subshell will be found in

Table IIl. The degree of self-consistency achieved was
such that the largest difference between the input and
output contributions to Z at the last iteration was less
than 0.0005 for the 4f subshell, and less than 0.0001 for
all other subshells. This means that these calculations
were carried farther than the nonrelativistic approxi-
mation without exchange would normally justify.

Most of the wave functions of the remaining rare-
earth elements are not being calculated with this
accuracy. However, as indicated in the 6rst paragraph
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of this report, calculations of these wave functions using
better approximations will be attempted when, shortly,
a more powerful computer becomes available. In the
case of ytterbium, at least, it will then be possible to
determine with considerable accuracy the magnitudes
of the relativistic and exchange sects. Further, it
becomes possible to study in some detail certain fairly
simple transformations which when applied to the
corresponding hydrogen-like wave functions produce

remarkably good approximations to the self-consistent
field (SCF) functions.

The calculations reported on in this paper were
carried out on a Burroughs 220 10K computer equipped
with card input and output for data handling, and an
IB3I 407 for printed output. In addition, two magnetic
tape units were required to accommodate the ALGOL
compiler. Compile and running times for a typical
iteration on 13 subshells total a little under three hours.
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Hyperfirte-Structure Measurements on Silver-lOSt

%. BRUcE EwBANK* AND HowARD A. SHUGART

I'hysics Department and La7IIrence Radiation Laboratory, University of California, Berkeley, California

(Received 4 October 1962)

The hyperfine-structure separation in the '5»2 electronic ground state of Ag"' (40 day; I=)) has been
measured by atomic-beam methods. The result is 5v= 1529.057(20) Mc/sec, assuming either a positive or a
negative nuclear moment. Combining this measurement with the known constants of Ag'o~ gives a nuclear
magnetic moment of magnitude t p, I

~ „„,,&q
——0.1009(10) nuclear magneton.

I. INTRODUCTION

A TOMIC —BEAM measurements on the "6eld-
independent" DF=1 hyperfine transition have

given a new precision to the measured value of the
hyperfine-structure (hfs) separation of 40-day Ag"'.
Preliminary work was done at several 6elds up to
about 380 6, using the AIi=0 "standard transition. "
When the hfs separation was known well enough, a
search for direct (AF= 1) transitions was made success-
fully. Both Al = 1 lines were measured at low 6elds.

II. THEORY OF THE EXPERIMENT

The theory of atomic-beam magnetic-resonance
experiments has been developed in some detail since
the method was introduced by Rabi. ' Measurements
of transition frequencies between pairs of hyperfine
sublevels as split by a known magnetic field lead
directly to a calculated value of the zero-field hfs
separation. The hfs splitting, in turn, is a measure of
the strength of the interaction between the electro-
magnetic moments of the nucleus and the electrons.
If the electronic moments are known, the nuclear
moments can be calculated. The results can then be
compared with the predictions of various nuclear
models.

For the alkali and alkali-like elements of Column I
in the periodic table, the electronic ground state is 'S1/2.
The only electron-nuclear interaction is then the contact

t This work was supported in part by the OfBce of Naval
Research and the U. S. Atomic Energy Commission.

*Present address: Nuclear Data Group, National Research
Council, Washington, D. C.' I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, Phys.
Rev. 53, 318 {1938}.

interaction between the magnetic moments of the
single-valence electron and the nucleus. The behavior
of such a coupled spin system when a magnetic 6eld is
applied has been described by Breit and Rabi. ' At low
6elds the two spins are tightly coupled and their
resultants F=I~2' behave like single dipoles, whose
magnetic sublevels are split linearly by the 6eld. At
higher fields, the two spins are gradually decoupled
until their magnetic splittings are virtually independent.
The Breit-Rabi equation is an analytic description of
this 6eld behavior when J= ~. If the nuclear moment
Izz gzlzoI and the——electronic moment pz= gzpoJ (where
po is the magnitude of the Bohr magneton), then the
energy of a magnetic sublevel is given by

with

po—gI HtÃ
4(I+ ', ) h-

~2L(»)'+2(»)pf+f'j" (&)

f= (—gz+gz)(po/h)II and p=zzz/F ..=I+1
where tv= Wz+z/2(0) —Wz»2(0) is the zero-field hfs
splitting between the two levels for F=I&2z and f is a
field parameter. The sign of the root is chosen positive
or negative, respectively, depending on whether the
level belongs to the group having larger or smaller Ii.
Figure 1 illustrates this 6eM dependence of the hyper6ne
sublevels for an isotope with I=- —', and a negative
nuclear moment. (The assumption of a negative nuclear
moment is proper for the stable silver isotopes Ag' '
and Ag'w, and is probably correct for Ag"' as well. )

' G. Breit and I. I. Rabi, Phys. Rev. 38, 2082 (1931}.


