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Using a model originally constructed to deal with the theory of dielectric constants of alkali halide crys-
tals, a theory of the elastic constants of these crystals is developed. Exchange charges arising from the
requirements of the exclusion principle are approximated as point charges appropriately placed in a Born-
Mayer model ionic crystal. The presence of these exchange charges and the manner in which their magnitude
and position change in a strained crystal give rise to interionic forces of a many-body character. As a conse-
quence the model predicts deviations from the Cauchy relation @12

——c44. c~l, c12, and c44 are calculated for 16
NaCl structured alkali-halides. In those cases where the method of calculation is expected to be valid the
calculated valves indicate that the exchange charge mechanism can account quantitatively for much of the
observed deviation of c»—c« from zero for these crystals.

I. INTRODUCTION

HK most general crystalline solid requires 21
independent elastic constants c;, (i, j=1,

6; c;,=c,;) to describe its elastic behavior. ' Crystal
symmetry frequently reduces this number greatly.
Under certain circumstances the maximum number of
independent constants may reduce to 15.' ' These
conditions are:

(1) The interatomic forces in the crystal are of a
central, single-body character;

(2) Each atom in the crystal occupies a center of
inversion symmetry;

(3) The crystal is free from initial strains. In this
case it follows that

C23 C44) C31 C55) C12 C66)

C14 C56) C25 C64) C36 C45 ~

Equations (1) are called the Cauchy relations. For a
crystal of cubic symmetry the number of independent
elastic constants reduces to three: c11, c12, and c44. If,
in addition, the above conditions for the validity of the
Cauchy relations are satisfied, then c12=c44.

The success of the Born-Mayer (BM) model in
relating the cohesive energy of alkali halide crystals to
their observed lattice constants and compressibilities
is v ell knov n.' In its simplest form, this model contains
only Coulomb, overlap repulsion, and van der Waals
forces, all of them of central, single-body character, at
least as employed in the model. 4 The alkali halides are
cubic and the ions occupy centers of inversion symmetry
so that the BM model leads one to expect that for
these crystals c12 will equal c44. The data shown in
Table V show that this expectation is not born out by
experiment.
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Foundation.

' M. Born and K. Huang, Dynamica/ 1 heory of Crystal Lattices
(Oxford University Press, New York, 1954).' I. Stakgold, Quart. Appl. Math. 8, 169 (1950).

P. O. Lowdin, in Advawces ie Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1956), Vol. 5, p. 1.

See, however, L. I. Podlubnyi, Soviet Phys. —JETP 37, 633
(1960).

Three mechanisms have been proposed to account
for the failure of the Cauchy relations in the alkali
halides. Leibfried' ' and Hahn' have considered the
role of the anharmonic contributions to the zero-point
vibrations. Herpin' has pointed out that in a strained
cubic crystal, ions are no longer at points of cubic
symmetry and 6nd themselves in inhomogeneous electric
fields. These induce quadrupole moments on the ions
which interact electrostatically with the ion monopoles
and with one another in a non-single body manner. This
leads to an expected failure of the Cauchy relation the
magnitude of which Herpin has estimated. Lowdin'
and Lundqvist' have shown that forces of a many-body
character crising from nonorthogonality of Heitler-
London crystal wave functions can account for a
failure of the Cauchy relation. These three mechanisms
have been treated distinctly but concurrently by Lothe'
who finds that the contribution to the difFerence c1~—c44

(which is referred to as A hereafter) due to the zero-
point vibration energy is small. Lothe also re-
estimates the contribution from Herpin's mechanism
and finds that Herpin somewhat underestimated this
contribution to A. In this paper contributions to A which
are qualitatively related to the mechanism of Lowdin
and Lundqvist are investigated by means of a simple
model which is an elaboration of the model of Born
and Mayer.

Lowdin's quantum mechanical treatment of the
cohesion and elastic constants of alkali halide crystals
is far more fundamental than the semiempirical method
of BM. Lowdin' points out that there is an important
qualitative difFerence between the two approaches as
well. This lies in the many-body forces which arise in
the quantum mechanical treatment but, not in the BM
treatment. These many-body forces lead to deviations
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from the Cauchy relations while the BM model predicts
A =0. As well as being more fundamental, the quantum
mechanical treatment is also very much more com-
plicated. than the BM treatment. The great services
rendered by the BM model in understanding properties
of ionic crystals have been possible because of its
appealing simplicity. Two of the most conspicuous
shortcomings of the BM model have been its inability
to deal with the failure of the Cauchy relations and
its dehciencies with regard to the predicted dielectric
behavior of the alkali halides. '~" These two failures
are to some extent related. Using an approach originally
designed to deal with the dielectric theory'~ it is the
purpose of this paper to show how a simple modiication
of the BM model can be made to introduce many-body
forces and to account for the observed values of A with
reasonable quantitative success. It is hoped that
modihcations of the BM model of this sort will enhance
both its usefulness and that of the insights gained by
the extensive work of Lowdin and his co-workers.

In Sec. II the model is described and in III the method
of calculation is presented. Sections IV and V discuss
the two stages of the calculation, the numerical results
of which are presented in VI. The results are discussed
in Sec. VII and VIII is a brief summary of principal
conclusions.

The idea of the BM model modi6cations to be
introduced can be given briefly as follows: In order for
ions to repel in a crystal they must overlap. In the
region of overlap the Pauli exclusion principle acts to
reduce the electron charge density and (in the Heitler-
London approximation) to distribute the removed
charge with spherical symmetry on the ions. The region
of reduced charge density may be considered electro-
statically like a region of superposed positive charge
and will be to some extent localized between neighboring
ions. As a model incorporating this feature we consider
small positive point charges, "exchange charges, "
located between neighboring ions on the line of centers.
(see Fig. 1). Total electrical neutrality is maintained
by a slight enhancement of electron charge on the ions.
When the crystal is strained the magnitude and position
of these exchange charges will change. Since the magni-
tude and position of the exchange charges depend on the
positions of the ions nearest to these charges the inter-
action of two exchange charges with one anotherdepends
on the positions of four ions. Thus, exchange-charge in-
teractions have a many-body character and their intro-
duction into the BM model leads to a predicted A. which
is not zero. We now proceed to work out these ideas
in detail.

' B, Szigeti, Trans. Faraday Soc. 45, 155 (1945)."B.Szigeti, Proc. Roy. Soc. {Iondon) A204, 51 {1950)."B. G. Dick and A. W. Overhauser, Phys. Rev. 112,90 (1958)."J. E. Hanlon and A. %.Larson, Phys. Rev. 113,472 (1959)."E. E. Havinga, Phys. Rev. 119, 1193 {1960).
'ii J. R. Hardy, Phil. Nag. 6, 27 (1961).

Fro. 1. Positions of exchange
charges about a central nega-
tive ion in an unstrained
crystal. The large and small
spheres are negative and posi-
tive ions; the 6lled black
circles are exchange charges.
The positive ions have charge
e—3qo and the negative ion
has a charge —e—Bqo.

q
=aB' exp( —o/p)/yc. (2)

Here 8' and p are the BM short-range repulsion
parameters of the crystal, a is the nearest-neighbor ion
separation, e is the electron charge, and y is a dimension-
less parameter estimated for the various alkali halide
crystals in DO.

(2) The position of these point charges is taken to
be on the hne of centers of the ions and at a distance
r+a/ao from the positive ion. r+ is the positive ion radius;
a and ao are the nearest-neighbor separations in the
strained and unstrained crystals, respectively.

This assumption about the positions of the exchange
charges is a plausible one only when the positive
ion-negative ion overlap is the most significant. It is
not expected to be a reasonable supposition for the
lithium salts in which the negative ions overlap with
one another more than with the small lithium ion.

(3) The positive (negative) ions have modified
charges

(3)

where q; is the exchange charge located on the line con-
necting the positive (negative) ion to its nearest neigh-
bor i. The sum over i is over these nearest neighbors.

In DO an additional ion deformation mechanism is
discussed which allows relative displacements of ion
cores and shells. This mechanism is ignored here; it leads
to contributions to A corresponding to the induced
quadrupole mechanism of Herpin. This contribution
is discussed in Sec. VII.

III. METHOD OF CALCULATION

The method used for calculating the elastic constants
uses the relations

c~&==8'U/Be„', c~2=8'U/Be gc„„, c44=8'U/Be, „', (4)

The exchange charges are treated here exactly as in
reference 12 (hereafter referred to as DO) to which
the reader is referred for a detailed discussion. The
important features of this treatment are:

(1) The regions of appreciable exchange charge
density are approximated as point charges of magnitude

q where
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where U is the energy density of strained crystal and

e„, e», e „are strain tensor components. " Energy
densities for a strained crystal model in which exchange
charges have been included are calculated here for
NaCl structure alkali halides by treating the ionic and
exchange charges as multipoles. The exchange charges
have been associated with the positive ions. The
resulting multipole expansion is most rapidly convergent
for those cases in which the positive ions are smallest
compared with the negative ions. As noted above,
however, the positive ions should not be too small.
The clusters of exchange charges near the positive sites
give rise to monopoles, quadrupoles, hexadecapoles,
etc., at these sites. For the strains considered dipole
and all odd order multipole components are zero. The
monopole-monopole (M3f), monopole-quadrupole

(MQ), and quadrupole-quadrupole (QQ) interactions
along with nearest-neighbor repulsive interactions have
been included in calculating U. Since octupole compo-
nents vanish we may say that multipole interactions up
to and including octupole-octupole interactions have
been included. Next-nearest neighbor repulsive interac-
tions and van der Kaals interactions have been omitted.
Since they are central, one expects the contribution of
these omit ted interactions to the quantity A = c~2—t."44 to
be small, but not in general zero. Lothe' has pointed out
that the presence of many-body forces can cause central
forces to contribute through the presence of both kinds of
forces in the equilibrium condition, the crystal not being
in equilibrium under central forces alone.

The calculation has been carried out in two stages.
In stage one, discussed in Sec. IV, U is calculated
ignoring the fact that certain exchange charge interac-
tions are counted more than once in the multipole
expansion procedure just outlined. This situation arises
from the fact, discussed in DO that the monopole-
exchange charge interactions of nearest neighbors are
already included in the BM repulsive interaction and
are, in fact, responsible for it. In stage two, discussed
in Sec. V, a correction is made to allow for the exclusion
of these redundant interactions included in stage one.

It is convenient to dehne a dimensionless notation:

x= ao/p,

r = r+/ao,

x= qp/e,

qpr+'/eap'= Q= xr',

8'ap/e'= 8,
where qo=aoB' exp( —ap/p)/ye is the exchange charge
magnitude in the unstrained crystal.

Three diferent cases of stain have been considered:

Case I. Hydrostatic compression; among the strain
components on1y

e =e»= e„= (a—ao)/ap nonzero.
"See, for example, C. Kittel, Introduction to Solid State Physics

(John %iley R Sons, Inc. , New Vork, j.956), 2nd ed.

Q;, = p(r)x;x, dr.

In a strained crystal the ions and hence the multipoles
are not in general at the sites of a cubic lattice. To
calculate U, the positions as well as the magnitudes
[Eqs. (6), (7), (8)$ of the multipoles are needed. If we
denote the position vector of an ion in a strained crystal
by ap(li', Ip', tp') then the following array gives fi', I&', fp'

for the three strain cases:

Case I
Case II
Case III

Gli/ap
l1(i+e, )
l1+-,'l e,„

al2/ap
l2(1+ey„)
l9+ gl lexy

al8/ap
l3
l3

Here l~, l2, l3 are positive or negative integers or zero.
In calculating the strain energy density it will be

convenient to separate the short-range repulsive (SE),
31M, MQ, and QQ interaction contributions. To find
the elastic constants it is necessary to calculate, to
second order in the strain components, the following
quantities:

Vsn=Z; 8 exp( —r;/p)

Case II. Only e, and e» nonzero.
Case III. Only e „nonzero.

Under the assumptions about the exchange and
ionic charges outlined in Sec. II the monopoles and
nonzero quadrupole components at the positive ion
sites for the three cases of strain, to second order in
strain components are as follows:

Case I.
e'=1+3x(a/ap) exp[(ao —a)/pj,

Q»= Q»= Q»= 2Q(a/ao)' exp[(a —a)/i j
Case II.

e'= I+3x+x(1—x) (e„+e„„)+xx(ox—1)(e„+e» ),
Q„=2Q[1+(3—x)e„+(3—3x+-', x')e, 'j,
Q» ——2Q[1+ (3—x)e»+ (3—3x+xpx')e„'j

Qo,
——2Q.

Case III.
e'= 1+3~+-',x(1—x)e,„',

Q„=Qop ——2Q[1+s(3 *)e* 3
Q»= 2Q

Q)i ——2Qe,„.
In Eqs. (6), (7), and (8) the monopole charges, e',

are in units of t.he electronic charge e. Although the
modified monopole charges given by Eq. (3) are
not equal, the grouping of the exchange charges with
the positive ion makes the negative-ion monopole and
positive ion-exchange charge aggregate monopole equal
in magnitude, the magnitude being e . Negative ions
have only monopoles. The quadrupole components
have been calculated from the definition
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(where t.he sum is over nearest neighbors r;),

U =-,'( ')' P (—1) (l')—',
l112le

0 = l1+lZ+ l„.„

11—(l l2+l, ,i2+l l2)1/2
(14)

and the sums over lil~l3 are to be taken over all positive
and negative integers excluding li= l2 ——l3 ——0 except for
the sum marked fcc where only those sets of lil2/3 are
taken for which (l is even. Equa, tions (10)—(13) are
derived by summing the energies of interaction of a
positive-ion multipole aggrega, te with all the other ions
in an infinite crystal. In this way the energ~ per
positive ion aggregate is found. This is then divided by
the volume per ion, 2ao', to give the energy density
which is written as the sum of the several contributions,
Eqs. (10)—(13),

~'= ~''su+& J{I,iI+&,~rq+~ qq (15)

U)rq= —4(e') 2 Z (—1)'Q»(3l'"—l")(l') ', (12)
&=1 lll2l3

fee 3 3

Uqq=p E 2 2 Q;,Q.p
l1l2lS i,j 1 a, P=l

X {L(351.Vp'/l") —(Sb.p/l")](3l l,' l"b;—)

(5/l—2)(;3(b;,l. +b,.l, )l,'
+3(b,pl '+b, Ip')l„' 4l '—lp'b;;]

+ (1/1")(3b,,b,,+3b,.b;p 2b.pb;,—)), (13)

where the U's are energy densities in units of e'-/'ao4.

Also

and then differentiating according to Eq. (4), we fin&,
after lengthy calculations, the following expressions for
the various contributions to the elastic constants
(expressed in units e'/(2(&4):

(cll) e&2
= Be *x,

(cll) v(4 -'2S 1'&l&1+2 &((5+4 x 3x—"-)

+3&(2(5+12x—8x')]—-' S,&'-& (1+32)-'

(c») )1q= 2 [5S;"'—S2"&]Q(1+3&()(3—x),

(el)) q q = (21/2) $5S2 &'& —52&»]Q'(3 —x)-'

(c)2)sa=0,

(c12)vM .281 1((1 x) (2+5((+x(()
——', (1+3&()2S,&' '&

(C12)1(eq 2 (Cll)MQ)

(C12) qq 2 (Cll) QQ

Similarly Case II strains give

(18)

(19)

(c,4) e(4
—— Be 'x-

,
-

(c44) )141
——-', Sl&"&K (x—1)(1+3(()

+ 1
LS (o& —18S «»](1+3K)2 (2&))

(c ). =-,'L57S &-"&+9S &""'+-',39S &'&]Q(1+3 ),
(c,4) qq

——0.

Equa, tions (18), (19), and (20) have been simplitied to
a considerable extent through the use of identities such
as Eq. (23).

I'irst notice that the MQ and QQ terms make no
contribution to S= 2(cll+2c)2) as we have argued
above should be the case. Notice also that (c44)a&2

+ (C44)2124 may be considerably simplified by use of the
equilibrium condition Eq. (16):

This L: yields the results of stage one of the calcula-
tion when the differentiations of Eqs. (4) are performed. (c(4) s&2+ (C44) )rr)r =

2 S2 ' (1+3(() (21)

IV. STAGE ONE

First consider the Case I strain, the hydrostatic
compression. In this case L ~q= Uqq=O because of
the cubic symmetry of the quadrupoles (a cubically
symmetric charge distribution has a zero external
quadrupole field), and so U=U2&2+6&(i,&r The tel.m.
in U linear in the strain component must vanish if zero
strain is to be an equilibrium state. This equilibrium
condition is

6Be—*x—S,«& (1+3(()(1—3((+6&(x) =0. (16)

The quadratic term yields the bulk modulus

(8= (e2/(2()') (1/3) )Be *x"-—2sl &'& (1+3&(:)~)]. (17)

S, ' & is defined in Eq. (22) and is (fadelung's constant.
Equations (N) and (17) are of use later.

From a consideration of Case II expressions for the
various contributions to cia ancl c12 can be derived.
Substituting the quantities of Eq. (7) into Eqs. (10)
to (13), expanding to second order in strain parameters,

Finally, notice that if ~= 0, c» ——c44,. the Cauchy relation
is satisfied if the exchange charge magnitude were zero.

ln Eqs. (18), (19), and (20) the sums appearing are
defined as

S (P) —P ( 1)es ll 2P(l 2+l 2+l 2)—ta

S (P 2) =Q (—1)~+If 28l 22(i 2+l 2+ l 2)
—-', a.

S (P I 4) =Q (—l )r+ll 2Pl 221 24(l '1+l 2+i 2)
—t(g

(22)

where (1 is given in Eq. (14) and the summations are
over all positive and negative integers (l, , l2, l2) excluding
(0,0,0). The 5 sums are the same except that the factor
(—1) ' is absent in their definitions and the summ;1-
tions are to be taken over those sets (l, ,l, ,l2) for whicl) a.

is even, (000) excluded.
The 5 sums have been calculated by Born and

4fisra. " Of the S sums needed Si&" is 41adelung's
constant for the NaC1 structure, " S5('~ is given by
I.o~vdin, ' and $3'"' has been calculated by Cohen and

"M. Born an(l R. D. AIisra, Proc. Cambric lge Phil. Soc. 36,
4u~ (~940~.
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Keffer. ""- 5 ("-' and Sg"" were calculated b~ dirc(. t

summation using a digital computer and were carried
to 2196 and 3374 terms, respectively. Incidentally it
was found that these sums may be obtained to a few

percent accuracy by use of Evjen's method" going to
only two shells. The remaining sums may be deduced
from S;I(") $~(') S7(') and Sg(' "by use of the identities

8 ("=38 ('-'+6S

$ J (2 ) 2$g
(2 I )+$9

(3)

(l,l) 2g (2,1)+g (l,i, l)
(23)

which may be easily verified from the definitions

Eq. (22).
The required lattice sums are:

Sg("=0.5460,

$~(0) 2 999»

s, «) =1.748,

Sg(")=3.239,

S,('-) =1.046,

Sg" ') ———0.232,

S,(-")=1.4Zr,

8 (")= —0.115,

Sg" "'——0.0459

Sg(» =1.661.

This completes stage one of the calculation.

V. STAGE TWO

It is now ncccssal y to 1cDlovc ccl tain 1 cdundallt
terms included in the energy densit~' f . Alt. hough an
expression for U in the stage one approximation was
not given in Sec. IV, it may be casi)x constructed from
Eqs. (18), (19), and (20). In si age one I

'
was calculated

by multipole interactions and nearest-neighbor rcpu1-
sions. In DO it is shown that the interaction of t.he ex-

change charge between nearest-neighboring ions with
these ions is in fact responsible for their repulsion. To
include the exchange-charge Coulomb interactions and
the repulsion is for near neighbors redundant. The
analysis in DO was carried through only for a single
pair of ions. In an actual XaCl structure alkali halide
each ion has six nearest neighbors. In removing redund-
ant terms from U we make the following assumptions.

(a) The Coulomb interactions with one another of
exchange charges which have an adjacent ion in
common have already been included in the respulsive
energy and hence must be removed from the stage
one energy density expression (exchange-exchange
redundancy).

(b) An ion monopole interaction with an exchange
charge adjacent to a nearest neighbor to this ion
is to be removed as redundant (exchange-monopole
redundancy) .

(c) In the stage one calcula, tion the monopoles have
the charges given by Eq. (3). In addition the positive
ions have exchange charges lumped with them so that
the both positive and negative ions have monopolcs of

' M. H, Cohen and F. KeGer, Phys. Rev. 99, 1128 t,'1955'.

FIG. 2. A pair of second-nearest-neighbor positive ions with
their associated exchange charges indicated by small filled circles.
The interaction of exchange charges n and P with the monopole
and quadrupole of ion A must be removed according to criteria
(a) and (b). The modi6ed charge on 8 must also be altered.

absolute magnitude e' given in Eqs. (6), (7), and (8).
For ions not too far apart there are exchange charges
which are to be removed from the model according to
the above criteria (a) and (b). AVe suppose, to be
consistent v ith DO, that those exchange charges which
are not to be considered explicitly are returned to their
two adjacent ions, one-half the exchange charge going
to each. This alters the monopole-monopole interaction
of near neighbors from the stage one value of & (e')'/r,
and the correction can be expressed as t.erms to be
removed from f' of stage one (monopole-monopole
r edundancy).

AVC now list the redundancies and exclude them
systematically. Consider a positive ion and its six
associated exchange charges to be located at and
about the origin and consider the interaction of this
monopole and quadrupole (referrerl t.o as "central" )
with successively distant neighbors.

(1) First nearest-neighbor (negative) ions. '1'herc

are six such ions. The interact. ion of the cent. ral mono-
pole and quadrupole with the modi6ed monopole of
these ions has been included in stage one. According t.o
(b) and (c) above the central quadrupole-modified
monopole interaction should be removed and the central
monopole-modified monopole interaction —(e')'/r
should be replaced by —e'/r. In doing this the strained
ion separations must be taken into account so that
strain cases I, II, and III must be considered separately.

(2) Second nearest-neighbor (positive) ions. There
are 12 such ions one of which is shown in Fig. 2. Accord-
ing to criteria (a) and (b) the interaction of the central
monopole and quadrupole of ion .3 with the exchange
charges marked n and P are to be removed. Further,
according to (c), the interaction of the central monopole
and quadrupole wit. h the monopole at 8 should not be
with a monopole e'= (e—2+q;)+P q; but, rather, with
e' ——,'n —-.';P, a, di6erently modified monopole. Each of

t

5

tc

I' IG. 3. A pair of fourth-nearest neighbors with associated
exchange charges indicated by ulled circles. The interaction of the
exchange charge y the monopole and quadrupole of ion A must
be removed according to criteria (a) and (b). The modified
charge on C must also be altered.



TmxK I. Redundant terms to be renloved from U, Strain Case II. Energy density units e'juo'. e„—=$; e» =—g.

First-nearest neighbors

Second-rlearest neighbors

I'ourth-nearest neighbors

Q3f'
QD'
QQ'

MM'
~VD'

AIQ'
QM'
QD'
QQ'

Constant terms

—9»(2 13»)

3'» (1+3»)

3@2»r (1+3»)

-"&0Q(1+3»)

—,'»(1+3»)
—,'Kr (1+3»)
—,'Q(1+3»)

0
0
0

I.inear terms'

—3» {3»+2x—6»X) (q+rI)

V2» {3»—x—6»x) (&+q)

V2af (3»—X —C)KX) ((+q)

v2Q(3» —x—6»x) (q+q}

—,'»(3» —x—6»x) (g+q)
-,'-»r (3»—x—6ax) (p+q)
&Q(3.—x—6 x) (g+&)

0
0
0

Quadratic terms

—LK(4—4x+3X2)+6»2(1—3x+2x') j(P+g2)

6(1+3.)Q(3 —x) {P+q2—g)
2-& {X2—x——,

' ——,'3 —11 x+8 X2) (g +„)
+2-«»(-', +-,'3»+x —»x+4»x2} (q

2 &Kr (x2—3x—~—(9K—17»x+8»x2} (P--I-g2)
+2 «»( —$+3x—4»x+4»x2) &rl

2 «Q(x —9x+g37+y99» —26ax+5»x2) (p+q2)
+2 «Q( —x&39—&i117K+9X+&3»x+4»x2)

2 'Q»(4 —x) {3—) (8+v' —"~)
2-«Q»r(3 —x) (2+x) ()2+~2—g~)
2-4Q'{13x2—83x+132)(/+~2 —g)
1-K (I-X2 4XK+4KX2) ($2+~2) L»2X(1 —X)
-',-ar (-',x' —2x»+3ax2) (p+vp) —,K'rx(1 —x)gq

)Q()X2—2x»+3ax2) (/+A) ——,'Qax(1 —x) gg

-k Q(2+.) (3-x)(8+4-e)
—k Q(2+ }(3—)(8+~'—e)- lQ2(2+x) (3-»(8+~'-S.)

a The sum oF the linear terms vanishes because oi' the equilibrium condition (27).

the twelve second-nearest neighbors will be at a diferent
position and have different n and P charges to be
removed. The Coulomb interactions to be removed
could easily be written down exactly and subtracted
from Li. However, this procedure would calculate the
redundant interactions to a higher degree of accuracy
than they were given when originally included in. stage
one. To be consistent the interaction of the central
multipoles with the removed charges should be cal-
culated by considering the multipole components of
n and P about the second-nearest neighbor sites. These
include monopole (M), dipole (D), and quadrupole (Q)
components. The terms to be removed are designated
by MM', MD', MQ', QM', QD', and QQ' where the
unprimed letter refers to the multipole of the central
ion and the primed letter to that of the neighbor under
consideration.

(3) Third-nearest-neighbor (negative) ions. There are
8 such ions. The exchange charges adjacent to third-
nearest neighbors do not share an adjacent ion with
any of the exchange charges associated ~ ith the
central positive ion and so no redundancies occur in
the interaction of the thinI-nearest. neighbors with the
central ion.

(4) Fourth-nearest neighbor (posilive) ions. There
are six such neighbors. In Fig. 3 it. is seen that the
exchange charge marked p shares an adjacent ion with
exchange charges on ion A. Just as with second nearest
neighbors there will be MM', MD', MQ', QM', QD',
and QQ' removals.

(5) Fifth nearest and all more distant neighbors
involve no redundancies.

In Table I and II the terms which must be subtracted
from U to remove the redundancies are listed for the

TmLz II. Redundant terms to be removed from U, Strain Case III. Energy density in units e /u4. qe,„=6.

First-nearest neighbors

Second-nearest neighbors

Fourth-nearest neighbors

MM'
QM'

uM'
uD'
MQ'
Q3f'
QD'
QQ'

3f4I'
.VD'
3fQ'
QM'
QD'
QQ'

Constant terms

—9» {2+3»)
0

3'» (1+3a)
3'»r {1+3»)
~4&Q(1+3»)

0
0
0

— (1+3 )
+4»r (1+3a')
—,'Q(1+3 )

0
0
0

Quadratic terms

—3» (3a+2x—6»x) 82

12Q(1+3»)52

2 '12»(3+15»—2x—12»x)y
2 '12»r (11+39»—2x —12»x}P
—2 'I'Q(21+57»+2x+12»x) P
—342QKb'
—9&Q»re
-'93(2-»2) Q2~2

—,'a (3»—x—6»x) 82

——,'Kr (4+9»+x+6»x) P
-)Q(12+33»+X+6»X)~2
-'3»QP
—2'15Q»rP
21Q'P
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Strain Cases II and III. The calculations are long and
tedious. For convenience the strain parameters e...
c», and 226 „have been denoted by (, 21, and 8, respec-
tively, in these tables.

Notice 6rst the constant terms in Tables I and II.
They are, of course, the same in both tables, They are
terms which must be removed from the energy density
of the unstrained crystal as calculated in stage one.
These constant terms may be used to find the new

equilibrium condition appropriate to stage two of the
calculation. The equilibrium condition expresses the
fact that the derivative with respect to u of the energy
per ion pair is zero. The constant terms of Table I or
II times 2e2/px give the energy per ion pair which is to
be subtracted from the energy per ion pair calculated
in stage one. DiHerentiation of these correction terms
with respect to x and combination of these terms with

Eq. (16) gives the stage-two equilibrium condition

6Bxe * (1+3K)—S2&pi(1 —3K+6Kx)

+6i3K(6Kx+2x —3K)+ (3K—x—6Kx)

&&L(v2+-', ) (I+r)+-', (v2+-,')Q]) =0. (M')

Use of Eq. (l6') eliminates all terms in L7 (sta, ge two)
which are linear in the strain components.

Kith the aid of the second-order terms of Tables I
and II correction terms which must be subtracted from
the stage-one elastic constants, Eqs. (18), (19),and (20),
may be found. Expressions for c11, c1~, c44, and A in
which the redundancies have been removed may all
he written in the same form

TABLE III. c; coeKcients for Kq. (25).

1
2
3

5
6
7
8
9

10
11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27

CII

—1.278
0
1.000
2.206

—4.255
2.588
4.370

—7.956
3.694
2.121
4.243—1.664
6.364

25.042—12.814
—24.693

9.233
—0.479

—150.945
33,045—3.475—8.228—1.371

1.371—90.973
61.747—10.474

CI2

0.348
0
0—1.101
2.128
0

—2.181
1.207
0.924
1.061

—2.121
0
0
3.328—3.328

12.523
—4.616

0
41.063—15.492—0.478
4.114
0.686

—0.686
45.486

—30.873
5.237

C44

0.348
0
0
1.027
0
0

—0.050
0
0—3.389
0
0—10.17
0
0
9.730
0
0

29.812
0
0
2.614
0
0—21.690
0
0

0
0
0—2, 128
2,128
0—2.131
1.207
0.924
4.450—2.121
0

10.17
3.328—3.328
2.793—4.616
0

11.251—15.492
—0.478

1.500
0.686—0.686

67.176—30.873
5.237

0.291—1.000
0
0—2.588
0
1.385

—2.771
0
0
1.664
0

—4.826
—9.985

0
0
0.479
0—1.436
2.496
0
0
0
0
0
0
0

VI. NUMERICAL RESULTS

left-hand side of Eq. (16'). This pressure, I', is cal-
culated in Sec. VI; coefficients for Eq. (25) when
X=I' are also tabulated in Table III.

X=ci+C2Be 'x+cpBe *x'+K(c4+cpx+cpx')

+K (c2+cpx+ cpx )+Kr (c16+c11x+c12x )
+ ' (c„+c,x+c x')+Q(c +c; + x')

+QK(C12+C2PX+C21X )+QKr(C22+C22+C24X )
+Q (c26+c26x+c26x ) ~ (25)

The quantities cII, c12, c44, A, and I' have been
calculated from Eq. (25) and Tables III and IV. In
principle one might attempt to evaluate x, 8, r, ~

from the equilibrium condition and cii, cia, c44. One
could then calculate the binding energy of the crystal
for comparison with the experimental value. This

X may be c», c», c44, or A depending on the values «
the c's. Numerical values of the constants c1 to c27

which are characteristic of the NaCl structure but
independent of lattice constant are given in Table III
for these cases. The elastic constants calculated from
Eq. (25) are in units of e'/ap4.

Just as Eq. (20) for c44 could be greatly simpli6ed
by use of the equilibrium condition Eq. (16) the
Stage-Two version of c44 has been similarly simplified

by use of the Stage-Two equilibrium condition Eq.
(16'). The coef5cients, c;, for c44 which appear in Table
III are those for the c44 which has been simplified in
this way. '6'hether or not c44 is treated in this way
makes no difference, of course, so long as the equilibrium
condition Eq. (16) is satished. As is seen in Sec. VI,
our choice of parameters does not satisfy Eq. (16')
exactly. Such a choice of parameters corresponds to a
crystal in which violation of Eq. (16') is maintained
by the application of a pressure. This pressure, in units
of e2/4264, is given by one-sixth the negative of the

«X10 ' QX10 3b
(e'/a4) Be *

X10 I'' X10''
LiF
LiC1
LiBr
LiI
XaF
NaC1
NaBr
NaI
KF
KCl
KBr
KI
RbF
RbC1
RbBr
RbI

0.837
0.889
0.879
0.862
2.578
2.397
2.320
2328
2.351
2.134
2.107
2.057
2.345
2.141
2.120
1.997

1.917
1.243
1.078
0.894
9.288
5.838
5.015
4.269

11.699
7.646
6.875
5.862

12.955
8.764
7.890
6.518

8.25 0.338 1.413 3.530
7.75 0.264 0.5270 3.747
7.88 0.248 0.4062 3.690
8.02 0.227 0.2847 3.629
8.03 0.424 0.8099 3.626
8.57 0.348 0.3678 3.392
8.95 0.329 0.2920 3.257
8.90 0303 0.2116 3.262
8.82 0.499 0.4572 3.293
9.71 0.424 0.2372 3.000
9.85 0.404 0.1961 2.956

10.10 0.377 0.1492 2.890
8.85 0.526 0.3673 3.296
9.70 0.453 0.2017 3.006
9.7 I 0.432 0.1672 2.972

10.40 0.404 0.1281 2.796

& From Dick and Overhauser, reference 12.bQ~~.
e From Born and Huang, reference 1.
4 Zachariesen radii from Kittel, reference 13.

TAsLE IV. Choices of parameters de6ned in Eq. (15).
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TA.BLE V. Experimental and calculated elastic constants. All elastic constants and E' are in units of 10" dyn jcm'.

Exp'
t 11

Theory Theoryb
Cl2

Theory Exp
c'44

Theory Theory
P

Theory

LlF

LiC1

LiBr

LiI

NRF

XaCl

NaBr

KF

KCl

RbF

RbC'1

Rb81

11.35

3.94

2.85

4.93

3.035

5.7

3.645

3.185

29.68

10.06

5.85

30.08

15.45

13.28

11.51

9.78

9.62

8.11

6.86

14.29

2.43

7.81

1.90

3..32

3.17

2.12

2.26

2.43

1.31

0.90

0.58

2.21

1.73

1.23

2.67

1.64

0.868

0.584

0.511

0.535

0.505

6.35

1.35

1.275

0.72

1.28

0.51

0.38

0.475

0.385

0.281

1.90

1.46

1.02

3.49

1.48

2.05

0.985

0.599

1.69

0.856

0.698

0.520

—1.24—2.18
—0.11
—0.35

0.07
—0.13

0.13—0.03—0.24—0.50
0.12

—0.34
0.24—0.02
0.23
0.13
0.28
0.13
0.095

—0.064
0.105
0.04
0.11
0.009
0.40
0.28
0.165
0.105
0.115
0.075
0.114
0.074

0.309

0.269

0.212

—0.813

0.154

0.225

0.253

—1.18

—0.233

—0.118

—0.014

—1.18

—0.321

—0.193

—0.077

—1.86

—0.750

—0.593

—0.425

—2.77

—1.41

—1.16

—0.87

—1.36

—0.821

—0.699

—0.556

—1.04

—0.663

—0.567

—0.457

a Spangenberg and HaussOhl, reference 19. Estimated errors cia &0.35%, cia &5'Pc, c44 &0.4%.
b c»* is calculated by eliminating Be & from Fq. (25) for cit by use of the equilibrium condition Eq. (16'}.
e The t~vo values given are extreme values of A from room-temperature and O'K extrapolated data of several investigators.

would put the exchange charge model to the same test
which the 83l model passes so well. Our present
concern, however, is in learning to what extent the
exchange charge model can help explain the violation
of the Cauchy relation. Consequently v,.e have chosen
reasonable values for the parameters f:, r, x, 8, and

g(= r') rThese .choices are tabulated in Table IV.
8 and x, Eq. (5), have been taken from the tabulation
of Born and Huang'. r, Eqs. (2) and (5), has been
evaluated from these same Inborn-Huang data, and the
values of the parameter y estimated in DO. Q and r
have been calculated from the above data and the
Zachariesen radii tabulated in Kittel. " It should be
emphasized that all of these parameters have been
estimated in advance; none were adjusted to the
purposes of the present theory.

In Table V are listed experimental values and cal-
culated values for c11, ci~, c44, 4, and I' the pressure
which indicates the degree of failure of Eq. (16').
For convenience, these results are shown graphically
ln Figs. 4—7.

The experimental values in Table V are taken from
the room-temperature data of Spangenberg and
Haussuhl" except for A. In ending extreme values for 3,
values for c1. and c44 from Spangenberg and Haussuhl

"K.Spangenberg and S. Haussuhl, Z. Krist. 109, 4 (l957).

and the compilations of Huntington" and l.othe' were
used. Some of these are extrapolated to O'K. and some
are not. In ascribing ext.reme values to A, the extremes
of c1 and c~~ among these experimental data have been
used. It should be pointed out that our calculation is
only for O'K. while most of the data are taken at room
temperature. Huntington" has pointed out that A

may increase with decreasing temperature.

VII. DISCUSSION

The most important results are the calculated values
of A. . In those cases where the method of calculation is
expected to be valid, this difference should be more
accurate than the separate values of c12 and c~4. Neg-
lected central force contributions (second-nearest-
neighbor repulsions, van der Waals interactions), should
tend to cancel in the difference. As mentioned in Secs.
II and III, the method of calculation is expected to be
valid when

(1) The positive-ion radius is small compared with
the negative-ion radius; for then the multipole expan-
sions should be rapidly convergent.

(2) The positive ion is still not so small as to cause
the negative ions to overlap.

~ H, B.Huntington, in Solid Stffte Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , Neer York, 1961), Vo1. 7.
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FIG. 6. Experimental and theoretical values of c44. The exper-
imental values are those of Spangenberg and Haussuhl, reference
19 {room temperature). Born-Mayer values are calculated from
Eq. {27) and Table IV.

FIG. 4. Experimental and theoretical values of cl&. The exper-
imental values are those of Spangenberg and Haussuhl reference
19 {room temperature). The theoretical values cl~* differ from cll
in that the parameter 8 has been adjusted to satisfy the equi-
librium condition Eq. (16) in calculating cl~, while the Born-
Mayer value of B from reference 1 has been used for c». The Born-
Mayer values are calculated from Eq. {27) and Table IV.

According to these criteria it can be anticipated. that
the present calculation will yield poor results for the
lithium halides because of the failure of (2) and for
KF and RbF because of the failure of (1)." The cal-
culated values of A for the K and Rb salts should
improve as one follows the sequence chloride, bromide,
iodide because of the consequent improvement in
satisfying criterion (1).The whole method of calculation
fails where criterion (1) is not met, but the failure of
criterion (2) could be remedied within the method of
calculation by relocating the exchange charges between
the negative ions. This has not been done here.

Table V shows that these expectations are born out

by the results of the calculation. The chief justi6cation
for carrying out the calculations for the lithium salts,
KF, and RbF is to be assured of their expected failure.
In the remaining cases where there is some hope of
success it is seen, as expected, that the sodium salts
offer the best agreement with experiment. The A

calculated for K and Rb chlorides, bromides, and
iodides although coming closer to the experimental
values in the expected order are incorrect in sign. Also
included in Fig. 1 are points giving the theoretical
values for A of Lowdin, ' Lundqvist, ' Lothe, ' and
estimates of that part of A, AH, arising from Herpin's
mechanism. This latter is estimated from Lothe's'
recalculated version of Herpin's formula

An=2. 37(a,'Z&~+n 'E, )(l/a') (26)

in which the n s are ion polarizabilities, and I'+ and E
are the positive-ion 6rst ionization potential and
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FIG. 5. Experimental and theoretical values of cl2. The exper-
imental values are those of Spangenberg and Haussuhl reference
19 {room temperature). Born-Mayer values are calculated from
Eq. {27)and Table IV.

2'These features are immediately apparent in Fig. 45-2 of
L. Pauling, The Nature of The Chemicar Bond {Cornell University
Press, Tthaca, New York, 1945), 2nd ed. , p. 353.

I I I I
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CL 0 Ct CL

FIG. 7. Experimental and theoretical values of A=c~2 —c44.
Experimental extremes are from the data of references 19, 20,
and 9. The present theory values are those of Table V. Other
theoretical values due to Lowdin reference 3 {"multiplier tech-
nique"), Lundqvist {reference 8), Lothe {reference 9), and
Herpin's mechanism as recalculated by Lothe {reference 9) are
also shown.
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predicts a c&& closer to experiment than Eq. (25) does.

t Setting «=Q=O in Eqs. (18), (19), and (20) yields

Eq. (27).]This fact is not surprising; it arises from the
presence of the Bs 'x term in Eq. (25) for c~~. The B
and x used in our calculation are those evaluated from
the B4I theory which gives'

t ae-.x= S,«),

61=S,«~(x—2)/18.

(28)

Equation (28) is the equilibrium condition and Eq. (29)
relates the bulk modulus, I, in units e'/ao' to the
parameters of the 83I theory. Both these equations
must be augmented by additional terms if the exchange
charge contributions to crystal energy density are
included. For instance, Eq. (28) must be replaced by
Eq. (16'). Let h and e represent these additional terms:

6Be x= SI(")+6,

a= 8,&»(x—2)/18+ ~.

From Eqs. (28') and (29') it follows that

(28')

(29')

B=-'8 &o~(8 &'~yr)(18((8 —~)+28 ~'&1-'

XexpL2+ (18/8&'o') (6l —e)j, (30)

so that 8 is very sensitive to ~ through the exponential
and the BBI value of 8 used is quite poor.

Since there are no Be terms in c~2 or c~4 they are
free from this source of error. That this analysis of the
origin of error in the calculated values is essentially
correct can be seen as follows. Let us satisfy the
equilibrium condition by adjusting 8 until I'=0. By
the remark at the end of Sec. V

P= 'L 6Bxe '+Ej-—
0=-,'f 6B*xe *+8j, — (31)

where E denotes the negative of all terms but the first
on the left-hand side of Eq. (16') and B*is the adjusted

~ J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev.
92, 890 (1953).

negative-ion affinity. In using Eq. (26) the Tessman,
Kahn, and Shockley~ polarizabilities and the electron
amenities from the tabulation of Born and Huang' were
used.

Turning now to c~~, it is noticed that the calculated
values of this elastic constant that appear in the second
column of Table V are in very poor agreement with
experiment. In Fig. 4 it is seen, in fact, that the B~I
theory which gives

c„=(e'/ao') LBe—'x'+-', 80"'——,'Sg'"-'),

ci2=c44= (s'/oo')L —28'""], (27)

c11 c11+&~) (33)

where c» and P are given by Eq. (25) using the BAI
value of B. This procedure is simply one of eliminating
Be * from Eq. (25) for c~~ by use of Eq. (16'). Values
of c~I are listed in Table V and appear in Fig. 4. The
considerable improvement over the calculated c» which
c»* exhibits supports the view that an erroneous value
of IS is in large part responsible for the poor agreement
of c» with experiment. This is not the whole story,
however, for using Eq. (32) to evaluate B* yields in
many case negative values of 8*which are inadmissible.
This means that other of the parameters must also be
adjusted from their estimated values in a consistent
theory which satisfies the equilibrium condition
Eq. (16').

As mentioned in the introduction, exchange charges
play a role in the dielectric theory. It is tempting to
seek a relationship between the deviation from unity
of Szigeti'sm e*/e and the deviation of A from zero.
In DO it is shown that the exchange charges are at
least in part responsible for the deviation of e*/e from
unity and we have just seen that they may be used to
account in large part for the deviation of A from zero.
If the exchange charge parameter y in Eq. (2) be so
chosen as to force the exchange charge polarization
mechanism of DO to account alone and fully for the
observed values of e*/e and if these values of y be used
to calculate values of «and Q for use in the elastic
constant theory of this paper, then all agreement with
experiment is lost. The resulting exchange charges are
much too large. Although the theories of e* and A share
a mechanism they also separately invoke mechanisms
in addition which they do not share so that there
appears to be no simple relation between e* and A.

VIG. SUMMARY

Exchange charges arising from the requirements of
the exclusion principle may be included in a Born-A layer
like model of ionic crystals. Their presence leads to
many-body forces and resulting predicted deviations
from the Cauchy relation. In those cases where the
method of calculation is expected to be valid, the model
has some success in quantitative prediction.
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value of B. From Eqs. (31)

B*e x=I'+Be x.

Denote by cI~ the value of c~I calculated with the aid
of Eq. (25) (for c&r) with B replaced by B*, then


