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Instabilities in a Plasma-Beam System Immersed in a Magnetic Field
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The interaction of an electron or an ion beam moving with velocity Pc through a stationary plasma in
the presence of a static magnetic Geld is investigated theoretically under the assumption that the plasma
is cold, the intensity of the beam is very small, and that the beam, as well as the waves resulting from the
interaction, are aligned along the direction of the magnetic Geld. It is well known that an electron beam
moving with velocity exceeding the phase velocity of electromagnetic waves in a stationary plasma is
capable of exciting such waves and these waves (circularly polarized) rotate in the same direction and at
the same angular frequency as the gyroelectrons of the beam. It is shown in this investigation that there
is an apparent reversal in the direction of rotation of these gyroelectrons as seen by the stationary observer.
Consequently, the excited wave has a circular motion in the same direction as perturbed stationary ions.
The frequency au of the excited wave satisfies the inequality ~cu~ (0;, where 0; is the gyrofrequency of
perturbed stationary ions. Similarly, a wave excited by an ion beam has a circular motion in the same
direction as perturbed stationary electrons. The frequency cu' of the latter wave satisfies the inequality

~

&P'
~
&Q„where 0, is the gyrofrequency of perturbed stationary electrons. It is shown that an electron (ion)

beam moving in the direction of the magnetic Geld can excite only a wave having negative (positive) helicity.
The reverse situation occurs for a beam moving against the magnetic field. General relationships are formu-
lated and illustrated graphically for determining the frequency and growth rate of waves which can be ex-
cited by an electron or an ion beam in any magnetized cold plasma. A particular case is illustrated in which
an incident ion beam interacts with a relative dense plasma such as occurring in thermonuclear discharges,
ionosphere, and interstellar space. It is shown that in such cases there is an excitation of hydromagnetic waves
for a wide range of velocities of the ion beam.

INTRODUCTION

'HIS investigation deals with instabilities resulting
from the interaction of a beam of charged par-

ticles with plasma. These interactions are generally
classi6ed as electrostatic and electromagnetic. The
electromagnetic interactions result in two oscillatory
modes. One of these is transverse, i.e., the electric 6eld
intensity K is perpendicular to the wave vector k. The
other mode is hybrid, i.e., the electric Geld intensity E
has components which are parallel and components
which are perpendicular to the wave vector k. In the
absence of a static magnetic 6eld, the transverse mode
is stable and the hybrid mode is unstable.

%hen a plasma beam system is immersed in a static
magnetic Geld having induction So, the transverse
mode is unstable. According to Dawson and Bernstein,
and Bernstein and Trehan, ' the instability produced by
an electron beam occurs in the presence of a resonance
between the cyclotron frequency of the electrons in the
beam and the frequency of the circularly polarized
wave. There exists also an analogy between this plasma-
beam instability and the anomalous Doppler effect.e

This analogy has been investigated by Zhelezniakov. 4

There is extensive literature dealing with transverse

* Operated by Union Carbide Corporation for the U. S. Atomic
Energy Commission.

' Jacob Neufeld and P. H. Doyle, Phys. Rev. 121, 654 (1961).' J. Dawson and I. B. Bernstein, Paper presented at the Con-
trolled Thermonuclear Conference, Washington, D. C.;TID-7558,
360 (1958}.I. B. Bernstein and K. Trehan, Nuclear Fusion 1, 3
(2960).

'For a discussion on anomalous Doppler effect, see V. L.
Ginzberg and I. M. Frank, Doklady Akad. Nauk. S.S.S.R. 56,
583 {1947).' V. V. Zhelezniakov, Izv. Vys~h Uchebn. Zavedenii, Radiofiz.
2, 24 (1959};3, 57 (1960).

plasma-beam instabilities in the presence of a magnetic
6eld. It includes contributions of Weibel, ' Harris, ~

Kovner, ~ Stepanov and Kitzenko, ' Dokuchaev, ' Tzintz-
adze and Lominadze, " Ginzburg, " and a number of
other investigations.

This investigation deals with a simple formulation of
the plasma-beam problem, and such factors as tempera-
ture, close collisions, nonuniform density distribution,
etc. , are not taken into account. The plasma is cold, the
intensity of the beam is very small, and the wave vector
it, the beam velocity V= gc, and the magnetic induction
80 are assumed to be parallel one to the other. The
term c designates the velocity of light. It is assumed
that the beam and the stationary plasma are of uniform
density and in6nite in extent.

In this investigation relationships are formulated for
determining the frequency and the rate of growth of
transverse waves which may be excited by an electron
or an ion beam. These relationships are expressed in
both analytical and graphical form. Some of the gen-
eral results have been tabulated and classified in ac-
cordance with a system introduced by Denisse and

' K. S. Weibel, Phys. Rev. Letters 2, 83 (1959).
s K. G. Harris, Plasma Phys. 2, 138 (1961).
'M. S. Kovner, Zh. Eksperim. i Teor. Fiz. 40, 527 (1962)

I translation: Soviet Phys. —JETP 13, 369 (1961)j.
K. N. Stepanov and A. B. Kitzenko, Zh. Tekh. Fiz. 31, 167

(1961) (translation: Soviet Phys. —Tech. Phys. 6, 220 (1961)j;
A. B. Kitzenko and K. N. Stepanov, ibid. 31, 176 (1961) t trans-
lation: ibid. 6, 127 (1961)j.

9 V. P. Dokuchaev, Zh. Kksperim. i Teor. Fiz. N, 413 (2961)
I translation: Soviet Phys. —JKTP 12, 294 {1961}j.' N. L. Tzintzadze and D. G. Lominadze, Zh. Tekh. Fiz. 31,
1039 (2961) t translation: Soviet Phys. —Tech. Phys. 6, 759
(1962}j."M. A. Gintsburg, Zh. Eksperim. i Teor. Fiz. 41, 752 (1961)
)translation: Soviet Phys. —JETP 14, 542 (1962)j; Phys. Rev.
Letters 7, 399 (1961).
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Delcroix. ~ It has been found that an ion beam of any
velocity within a wide velocity range incident on a
"dense plasma" (such as the ionosphere, interstellar
clouds, and thermonuclear plasma) excites hydromag-
netic waves. The term "hydromagnetic waves" is
applied in this investigation to circularly polarized waves,
whereas Alfven waves designate plane polarized waves.
Both hydromagnetic and Alfven waves have frequency
co&&Q;, where 0; is the ion gyrofrequency of the station-
ary plasma. These waves are propagated with Alfven
velocity Vz= (Bo'/4n. nM, )'", where n is the plasma
density and M; the mass of an ion.

There is a de6nite relationship between the direction
of the magnetic Geld, the direction of the beam, the
direction of propagation, and the sense of rotation of an
unstable circularly polarized wave. This relationship is
described in this investigation.

1. PASSAGE OF AN ELECTRON SEAM
THROUGH PLASMA

I. Dispersion Equation

Consider a charge equilibrated system composed of
electrons and singly charged ions. Assume that the ions
and the fraction (1—o) of the electrons are at rest while
the fraction 0 of the electrons are moving with velocity
v= ge in the direction of the external magnetic 6eM $0.
It is assumed that the beam is very weak, i.e., o.(&i.Let

co;= (4rne'/M, )", M g
——(4sne'/rn)".

y (1-1)

where n is the density of ions, M; is the mass of an ion,
and t, and m are the charge and mass of an electron.
Let the term

0;= ~e)BO/3f, c

represent the ion gyrofrequency and the term

0.= je[BO/me (1-3)

represent the electron gyrofrequency. It is assumed that
the positive linear direction is the direction of 80.

The dispersion equation for circularly polarized trans-
verse waves propagating along the external magnetic
6eld 80 can be written as follows":

o (1 P')'"ca,—'(a) ckP)—
P—=P(ar, k) =F— =0, (1-4)

u) —ckP —Q.(1—P')'"

where, taking into account the inequality o&&1,

COs M COet MF—=F(co,k) =aP —e'k'—
~+0; co —0,

(1-5)

The term ~'—e2k2 in (1-5) represents the contribution
to the dispersion equation of Maxwell's equations in

~ J. F. Denisse and J. L. Delcroix, Theoric des Ondes dans les
Plazas (Dunod, Paris, 1961).The quantity A used by Denisse
and Delcroix is approximately the square of the quantity A de-
Qned in this investigation.

'3 See, for instance, reference 2. A similar dispersion equation
for a multibeam system was formulated by V. A. Bailey, Phys.
Rev. 83, 439 (1951).

vacuum. The term co,2'/(ra+0;) results from the plasma
ions, the term co,'s&/(co —0„) results from the plasma
electrons, and the term

o (1 P—')'"cv,'((a c—kP)/((u c—kP Q—,(1 P—')'"5
in (1-4) results from the beam.

In expressions (1-4) and (1-5) the quantity co repre-
sents the angular frequency of a field vector associated
with a circularly polarized wave, and k is the wave
number. Both ~ and k may be positive or negative.
Thus co is positive if a held vector such as the electric
intensity rotates clockwise when the observer is looking
in the positive direction (i.e., in the direction of the
magnetic Geld). The phase velocity of the wave is repre-
sented by the quantity ~/k. The sign of this quantity
indicates the direction of propagation of the wave, i.e.,
if ca/k&0, the wave is propagated in the direction of
L and if ~/k (0 the wave is propagated in the direction
opposite to that of 80.

A circularly polarized wave has a positive or a nega-
tive helicity. The term positive helicity designates a
wave in which the electric vector rotates clockwise as
the wave moves away from the observer. For such a
wave designated as an H+ wave, one has co&0 and
a&/k&0 or ~ (0 and co/k 0. On the other hand, for an
H wave having negative helicity, one has co&0 and
a&/k &0 or &o (0 and &a/k&0. Hence the sign of the wave
number k determines the helicity of the wave. For k&0
one has a wave of positive helicity or an H+ wave, and
for k &0 the wave has negative helicity or an H wave.
The wave having positive helicity is often designated as
"left-handed polarized wave. ""

II. Solution of the Dispersion Equation

f. Characteristic Frequency and Rate of Growth

Consider the dispersion equation (1-4). The term F
in this equation is independent of the parameters of
the beam so that the equation Ii =0 represents the dis-
persion equation for waves in the stationary plasma.

A comparison will be made between the solutions of
Eq. (1-4), where F is given in (1-5). Following the
customary procedure, one solves these equations for co
assuming that k is real. The values of co obtained from
Ii =0 represent the frequencies of waves in a stationary
plasma. Since the stationary plasma is transparent, the
values of ~ are real and are represented as

M=07 ) (1-6)"It seems appropriate to identify an H+ wave with the advance
of a right-handed screw. There is some confusion in the existing
literature. Thus the 8'+ wave is sometimes designated as left-
handed polarized wave. See, for instance, J. D. Jackson, Classical
Electrodynamics (John Wiley R Sons, Inc. , New York, 1962),
p. 206; or J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc. , New York, 1941), p. 280; I. B. Bernstein
and K. Trehan, Nucl. Fusion 1, 3 (1960).The same wave is also
designated as "right wave" or "right-handed polarized wave. "
See, for instance, V. N. Kessenikh, "Rasposlvanienie Radiovoln, "
GITTL, 1952, p. 228; or V. L. Ginzburg, Propagation of Electro-
magnetic Waves in Plasm&a, translated by Royer and Roger
{Gordon and Breach, New York, N. Y., 1960), p. 180.
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where &o' is real. The presence of the beam $i.e., the
last term in Eq. (1-4)j produces a perturbation of the
roots of the equation F=O. The roots of (1—4) can thus
be expressed

A wave is resonant with the beam if the electro-
magnetic field rotates with the same angular frequency
co as the perturbed electron. Thus, using equality
(1-10), one has

%=GO +6 ~ (1-7) Gl (Qe) ay= Cd. (1-16)
where"

limb'=0.
a~

If 5' is complex, then Imb, if positive, represents the
growth rate of the excited wave. The value a&' in (1-6)
shall be designated as the "characteristic frequency"
and the term Re5' as the frequency shift of the excited
wave.

Z. Resonant and Eonresonant TVuees

In order to clarify some of the characteristic features
of a plasma-beam instability, one may differentiate
between waves that are "resonant" and waves that are
"nonresonant" with the beam. The frequency of a
resonant wave will be expressed as

The frequency of a wave which is resonant with the
beam is determined by the properties of the beam and
is always expressed by a real quantity. However, if
the beam passes through a plasma, the resonant wave
is perturbed. The frequency of such a perturbed wave
may be expressed in the form

M= M+5& (1-17)

where the term 5 represents the perturbation produced
by the plasma. If Imb) 0, expression (1-16) represents
an "excited resonant wave. "

Similarly, the frequency of a perturbed nonresonant
wave passing through a plasma may be expressed as
follows:

co= 1V+5",

where
(1-10)

where the term 5" represents the perturbation produced
by the plasma.

The frequency of a nonresonant wave will be expressed
as

where

WWckii+0, (1—P')'" (1-12)

The designation "resonant" and "nonresonant" is
based on a resonance between the cyclotron frequency
of the electrons in the beam and the frequency of the
wave. ' The existence of such a resonance can be ascer-
tained by means of the following considerations.

The electrons moving with the beam, when per-
turbed by an external electromagnetic field, rotate in
a plane perpendicular to the motion of the beam. The
gyrofrequency as measured by an observer moving with
the beam can be expressed as

3. Relationship between the Angular Frequency co of a
Resonant Wave and the linear Velocity c8 of a.

Relati~~stic Beam

A discussion will be given on the relationship co= ckP
+Q, (1—P')'" between the frequency of a resonant wave
and the velocity of the beam. The discussion will be
confined to the case shown in Fig. 1 which covers an
H+ wave, i.e., k constant and positive. A similar discus-
sion could be given for an H wave, i.e., for k constant
and negative. In the latter case the corresponding
graph would be obtained by reQecting the curve in
Fig. 1 about the vertical axis. The beam velocities P,
represented by abscissas, vary within the range from

eBO(1—P ')'I'
(1-13)

where P& represents the peripheral velocity acquired by
the electron as a result of the perturbation. Since the
perturbation is small, one has P&«1, and, therefore, it
is assumed that

0,= e80/mc. (1-14)

By applying I orentz transformation to (1-13) it can
be shown that the electron gyrofrequency as seen by a
stationary observer has a value (0,),& which may be
expressed as

(0,)„=ckP+0, (1—P')'t'.

&I See, for instance, A. I. Akhiezer and Ia. B. Fainberg, Zhur.
Eksp. Teoret. Fiz. 21, 1262 (1951).

WAVE MOVES
lN THE OIRECTION
OPPOSITE TO THAT
OF THE SEAM

FrG. 1. Relationship between the angular frequency cu of a
resonant wave and the linear velocity P of the electron beam. 0B&=—081=ck; 084= (c'k'+0 ')'"' OA 4=ck/(c'k'+0 ')'"; OA &= —0,/ck; OBB=Q,.
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P= —1 to /=+1, and the corresponding values of co

are plotted as ordinates.
For a "stationary beam, " i.e. , when P=O, one has

co=086——-Q, . When the beam moves in the direction of
the magnetic field, i.e., for P) 0, the resonant frequency
remains positive. When the direction of the beam is
reversed, i.e., for P &0, the resonant frequency decreases
and for

p =OA 2= —0,/ck,

one has co= (fI.),c
——0. Furthermore, for

(1-19)

—1&p& —II,/ck, (1-20)

the quantity 9 is negative.
It will be shown subsequently that an electron beam

may excite an H+ or an H wave only if the following
two conditions are satisfied: (1) the wave is resonant
with the beam, and (2) the characteristic frequency of
the wave is negative. Therefore, negative frequencies
are of primary interest in this investigation. It can be
seen from Fig. 1 that in the regions in which the in-
stability may occur, i.e., for co&0, the resonant H+
wave moves in the same direction as the beam. It can
also be shown that for 4&0 in the region for which
~ &0 the resonant H wave moves in the same direction
as the beam.

4. Subluncinous and Superluncinous VelociIies"

The phase velocity of a resonant wave is represented
by a quantity

V,s= co/k. (1-21)

Consider an expression R representing the ratio of
the velocity cp of the beam to the phase velocity V~h
of a wave resonant with the beam. One has

R= cP/Vi, s= ckP/co.

Using (1-15) and (1-16), one obtains

(I gi)1/2
R=1—

(1-22)

(1-23)

"Some time ago it was found expedient to introduce into the
scientific language such terms as "subsonic" and "supersonic"
velocities in order to designate velocities which are, respectively,
lower and higher than the velocities of sound. There appears to
be a need for a similar terminology to designate velocities that are
respectively lower and higher than the velocity of an electro-
magnetic wave moving in the same direction as the wave in a
given medium. It is hoped that the suggested terms "subluminous
velocities" and "superluminous velocities" will be accepted by
others.

Expression (1-23) represents the relationship between
R s,nd co for a axed value of P. This relationship is
illustrated graphically in Fig. 2. [The scales in all
figures except Figs. 6, 7, 13(a), 13(b), and 14 are con-
siderably distorted in order to show the qualitative
features of the graphs. $

Consider separately in the above representation posi-
tive frequencies (co)0) and negative frequencies (co ~0).

WAVE MOVES IN
THE DIRECTION

OF THE SEAM

(REGION OF
SUPERLUMINOUS
VELOCITIES )

FIG. 2. Relationship between the beam velocity cP and the
phase velocity (Vi,h) of a wave resonant with the beam.
081=Pa+ (1—P'}'"j/a, 082 ——1.

R=cp/Vugh&0. (1-25)

Consequently, the beam moves in the direction opposite
to that of the wave.

Of particular interest is the case for which co is nega-
tive since it is only in this case that an instability may
occur. For co&0 one has

R=cp/V pi,)1. (1-26)

Consequently, the velocity of the beam is "super-
luminous. " The beam moves in the same direction as
the wave and its velocity is higher than that of the
wave.

5. "IVormal" and "Anomalous" AnguLar Velocities

Consider a stationary plasma immersed in a static
magnetic 6eld and perturbed by an incident electro-
magnetic wave. The electrons and ions which were
initially stationary acquire, as a result of the perturba-
tion, circular motions in the plane perpendicular to Bp.
If the magnetic field is directed away from the observer,
then the electrons turn clockwise with the angular fre-
quency Q„and the ions turn counterclockwise with the
angular frequency Q;."These rotational velocities are
designated as "normal. " Thus Fig. 3(a) shows the
"normal" circular motion of a perturbed electron and a

' See, for instance, H. Alfven, Cosmica/ Ekctrodynamk's
(Clarendon Press, Oxford, j.953}.

For values of co satisfying the inequality c™o&Q„one
obtains from (1-23)

0&R= cp/V„&1. (1-24)

Consequently, the velocity of the beam is "sub-
luminous. " The beam moves in the same direction as
the wave, and its velocity is lower than that of the wave.

For frequencies satisfying the inequality 0&~&Q.,
one obtains from (1-23)
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perturbed ion. This figure also shows the circular mo-

tion of a wave in resonance with the perturbed electron.
Such a wave may be either an H+ wave propagating
away from the observer or an H wave propagating
towards the observer. It is assumed in Fig. 3(a) and

also in Figs. 3(b) and 3(c) that the resonant wave is

an H+ wave. The discussion will be limited to this case.
Assume that an electron beam aligned along the

magnetic fieM moves with a velocity Pc and consider
the circular motion which an electron in such a beam
acquires as a result of perturbation. If a beam moves

with subluminous velocity, the rotational velocity of
perturbed electrons in the beam is normal. However,
when the beam is superluminous, there is a reversal in

the rotational velocity in the framework of a stationary
observer. Such a reversal may be observed by comparing
Figs. 3(b) and 3(c), Figure 3(b) illustrates the case for
which P satisfies the inequality

—Q. /ck &P &1, (1-27)

and Fig. 3(c) illustrates the case for which P satisfies
the inequality

—1&P&—Q,/ck. (1-28)

Consider now Fig. 3(b). In the range 0&P&1 the
beam moves in the direction of the magnetic 6eld with
subluminous velocity. In the range for which —Q,/ck

&P&0, the direction of the beam is opposite to that
of the wave. This direction is also opposite to that of
the magnetic 6eld. Both the perturbed electron and the
wave have "normal" clockwise motions similar to those
shown in Fig. 3(a).

Consider now Fig. 3(c). For values of P satisfying
inequality (1-28) the beam moves with superluminous

velocity in the direction which is opposite to that of
the magnetic 6eld. One obtains here an apparently
paradoxical situation in which the angular velocity of
an electron moving with the beam as seen by the sta-
tionary observer is reversed. This "anomalous rota-
tional velocity" is shown in Fig. 3(c). Both the per-
turbed electron and the electromagnetic field, as seen by
the stationary observer, rotate counterclockwise. There-
fore, the H+ wave rotates in the same direction as the
stationary ion and moves in the upward direction
against the magnetic field.

ELECTRON ION RESONANT ( H+} WAVE

OX MAGNETIC INDUCTION Bo

OX DIRECTION OF PROPAGATION
OF THE ( H+) WAVE

ELECTRON RESONANT ( H+) WAVE

(b)

OX MAGNETIC INDUCTION 8

OX DIRECTION OF PROPAGATION
OF THE ( H~} NAVE

ELECTRON RESONANT (Hi) WAVE

(c)

OX MAGNETIC INDUCTION Bo

O VELOCITY OF THE
UNPERTURBED ELECTRON

O DIRECTION OF PROPAGATION
OF THE (H+} WAVE

Fro. 3. (a} Circular motion of a perturbed electron, perturbed
ion, and of a resonant H+ wave. In the absence of the perturba-
tion, the electron and the ion are at rest. Both the magnetic
induction B0 and the II+ wave are directed downward through
the paper. (b} Circular motion of a perturbed electron and a
resonant H+ wave. In the absence of the perturbation t;he elec-
tron moves with subluminous velocity. Both the magnetic induc-
tion 80 and the H+ wave are directed downward through the
paper. (c}Circular motion of a perturbed electron and a resonant
H+ wave. In the absence of the perturbation, the electron moves
with superluminous velocity. The magnetic induction B0 is di-
rected downward through the paper. The H+ wave and the elec-
tron, when unperturbed, are directed upward through the paper.

6. Criterion for an Instability

In describing a plasma-beam instability, one may
differentiate between the effects which are directly
dependent on the character of the stationary plasma
and the effects dependent on the characteristics of
the beam.

Waves in a stationary plasma are characterized by
the quantities co and k which satisfy the dispersion
equation F(ra, k) =0.These waves may be resonant with
the beam ti.e., satisfy the relationship co=co where io

is given by (1-10)]or nonresonant with the beam Li.e.,
satisfy the relationship co =W where W satisfies (1-12)].

In the 6rst-order approximation the nonresonant
waves cannot be excited by the beam. This can be seen
by substituting co= W+5", where 5"~ 0 as 0. —+ 0, into
the dispersion equation (1-4). Assuming (5"~&&~ W~,

~

b")« ~
W—ckP —Q, (1—P')'12~, and approximating F in

the neighborhood of ~=W by a Taylor series, the
solution

(F) w[w ckp Q, (1 p')—"] I—Tld,'(1 —p')' '(w— ckp)— —
/II

(BF/Boi)„s)w ckP Q, (1 —P)U —] ac@,—m (1 P) '—~2— (1-29)

can be obtained which is seen to be real. Consequently,
the nonresonant waves neither grow nor decay and are
of no interest in this investigation.

Consider a resonant wave in a plasma-beam system.
The frequency of this wave is co=~+5. Furthermore,
it is assumed that for su%ciently small values of 0 one
has j 5

~
&& (

~
)
. In order to determine whether a resonant

wave may be excited by a beam, one needs to substitute

a&=co+5 in Eq. (1-4) and determine whether or not
this equation gives complex roots for 5 having Imb&0.

Approximating Ii in the neighborhood of co=co by
Taylor series and retaining the first two terms in the
series, one obtains

(F) --+&= (F) - +5(ctF/ct(a) = . (-1-30)-
Applying the above expression and cv = co+5 to the dis-
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(BF/BM)au=a) 0. (1-33)

Consequently, when the inequality (1-33) is satisfied,
there is no instability.

Consider now the inequality

(BF/Boi) = (0- (1-34)

Expression (1-32) is negative provided one has the
inequality (1-34) and the additional inequality

(4oco,2Q, (1—P'). (1-35)

If o is very small, the inequality (1-35) is satisfied
only when

(F) =- 0. (1-36)

Therefore, there is always an instability when inequality
(1-34) and condition (1-36) are satisfied. The expression
(1-36) shows that the frequency has to be in the im-
mediate neighborhood of the roots of the equation
F(cv,k) =0.

Taking into account the relationship (1-36), the
following expression is obtained from (1-31):

(no,2Q, (1—P')
$2—

(BF/Boi) ~ a
(1-37)

Thus the rate of growth, ~I', may be expressed as

ooi 2Q (1 P2) 1/2

(BF/Bid)ro
(1-38)

The above derivations are based on the assumption
that ~b(((~ co~. Therefore, the values of co which satisfy

0 should be excluded.
The behavior of an excited resonant wave may also

be characterized by a nondimensional parameter

X= ImB/(v. (1-39)

This parameter represents the relative rate of growth
of the wave expressed in decibels per cycle. The quan-
tity 0 has to be sufIiciently small so as to satisfy the
inequality

(1-40)

7. Graphicat Representation of Excited Resonant Wanes

A graphical representation of plasma-beam insta-
bilities is given in Figs. 4 and 5. Two diferent assump-
tions are made.

persion equation (1-4), one obtains

B2(BF/Boi)~- +B-(F)~=a oo—), Q, (1 P—)=0. (1-31)

The discriminant of (1-31) is

6= [(F) - $'+-4ooi,2(1 P')—(BF/Boi)~ = . (-1-32)

Expression (1-32) is positive if

Figure 4 is based on an assumption that k is given.
The problem consists in determining the frequencies co

of waves which may be excited by beams having various
velocities P. To each value of P corresponds one or
more values of m.

Figure 5 is based on an assumption that the velocity
p of the beam is given. The problem consists in fmding
waves which may be excited by such a beam. Each of
these waves is characterized by de6nite values co and k.

A. Excited uawes characterised by a gioen salle of k.
Consider a function

(1-41)

which is illustrated graphically in Fig. 4 under the
assumption that k is fixed. The zeros of this function
satisfy the equation (F) „=0an-d are labeled Ai, A2,
A4, and A6.

It is noted that the values for co in Fig. 4 extend from
—~ to + ~. However, not all of these values are
physically signi6cant since co is bounded and comprised
within the range —ck(~((c2k2+Q,2)'~'. Therefore,
some portions of the graph of Fig. 4 are not applicable
to the present problem, and some of the zeros of the
function (1-41) should be disregarded.

It can be shown by substituting the maximum and
minimum values for ie obtained from Fig. 1 into (1-41)
and comparing the results with Fig. 4 that the root
labeled A& must be disregarded, and the only negative
root which has physical signi6cance is labeled A3.
Similarly, it can be shown that under some conditions
there are two positive roots labeled A4 and A6 which
are physically signi6cant. It can be shown that in such
a case two diferent values of P yield the same fre-
quency A6. Under other conditions there is only one
positive root labeled as A4 which is physically signi6-
cant, i.e., the point A6 has to be discarded.

Thus, for a given value of k there are two (or three)
values of ro representing the frequencies of resonant
waves which may be transmitted through the stationary
plasma. One of these frequencies, labeled by the point
A3, is negative while the remaining two are positive.
In order to ascertain which of these waves may be
excited, one needs to apply the criterion (1-34). Since
the slope of the curve shown in Fig. 4 is positive at
points A4 and A6, there is no instability for waves
having frequencies labeled by these points. However,
the slope is negative at the point A3 and, therefore,
there is an instability represented by this point.

The curve in Fig. 4 applies to either k& 0 or A &0 and
therefore is applicable to either H+ waves or H waves.
Thus it is seen that the instability occurs for negative
values of cu for either an H~ or II wave. It was pointed
out in the discussion of Fig. 2 that negative frequencies
correspond to a superluminous beam. Consequently,
an instability occurs only when the beam has super-
luminous velocity. Referring now to Fig. 3, it is seen
that there is a reversal in the direction of rotation of a
wave which is in resonance with an electron beam
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Fro. 4. Graphical representation of
y = (F)~ =~ for a fixed value of k.
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having superluminous velocity. This is in agreement
with Fig. 4 which also shows that at resonance the
frequency of the wave satisfies an inequality

—0;(u &0. (1-42)

Consequently, the magnitude of the frequency of the
excited wave is always below the ion gyrofrequency 0;.
Thus one cannot obtain a resonance between an excited
wave and the ion gyrofrequency. However, one can
achieve a condition near resonance, i.e., the wave fre-
quency may approach the ion gyrofrequency from below
and the difference 0;—co may be relatively small. One
can also have a relationship !co!((Q;. It is shown in
Sec. 3 of this investigation that, in such case, the
electron beam excites a hydromagnetic wave.

The abscissas in Fig. 4 may represent either the values
of co or the corresponding values of P. The variables co

and P are related by the equality co= ckP+Q, (1—P')'"
in which k is fixed. Thus, when P =0, one obtains co= Q.
which is represented by the point As. The regions in
which the beam velocity is in the direction of the
magnetic 6eld and against this direction are correspond-

ingly marked in Fig. 4 for an H+ wave (k) 0). For an
H wave (k &0), the directions of th= beam and wave
would be the reverse of those shown. It is noted that the
instability occurs only when the wave and the beam
have the same direction (opposite the direction of $0
for an H+ wave and in the direction of $0 for an H
wave).

B. Waves excited by a beam movilg with velocity p. In
various practical applications the velocity cp of the
beam is given. Therefore, in exploring the instabilities,
one assumes that cu varies with k in accordance with the
expression cv=ckP+Q, (1—P')'" while P remains fixed.
Consider now expression (1-5).Assuming that

co=co, k=L(o—Q, (1—P')'"j/cP, (1-43)

and substituting the above values of ~ and k, one obtains

(F) =, & =t- —o.(~ e')'~3/~e—=k(~)
Q (1 P2)u2 2 ~.2~2(1+~)= co' ——(u — —,(1-44)

p' A (co+Q;) (neo Q~)—
where 0.=m/M;.

y*Q( l

FIG. 5. Graphical representation of
y =It!' (9) for a 6xed value of p.
033=0,{1—P')'".
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Depending on the values of the parameters of the
system, one may obtain a graph of the function y =f (pp)

as given in Fig. 5 or a similar graph (not shown) where
the branch to the right of the point As intersects the
axis of abscissas. Thus there are two or four points of
intersection of the graph y=f(pp) with the axis of ab-
scissas. The graph of Fig. 5 shows two such points
which are labeled as A2 and A4. In order to determine
which of these points represents an instability, one
should consider the expression (1-37) for b and ascer-
tain whether this quantity is real or complex. Using
(1-5) and (1-37), one can represent b' as follows:

ocuPQ, (1—PP)
(1-45)

n'cu[2+coPQ;(co+ 20,)/((o+ft, )'(mo —a)']
It can be seen that no positive value of co will make the
expression (1-45) negative and, therefore, no positive
solution for co can give rise to an instability. On the
other hand, any negative value of au such that

velocity the "Doppler radiation" emitted by any single
electron will be ampli6ed by the emission of a photon
and will induce other electrons to effect transitions into
higher energy states. Consequently, there is a conver-
sion of the kinetic energy of the beam into the energy
of a growing electromagnetic wave.

The instability represented by the point A3 in Fig. 4
or by the point A2 in Fig. 5 is characterized by a nega-
tive frequency co. On the other hand, in the conventional
representation of the Doppler effect (both normal and
anomalous) the frequency radiated by the moving
oscillator is always positive. Nevertheless, there is
formal analogy between the representation in Figs. 4
and 5 and the conventional representation.

In order to point out the above analogy, consider
the conventional representation of the Doppler effect.
Assume that an oscillator having proper frequency Np

moves with subluminous velocity P in a dispersive
medium characterized by a refraction coeKcient e,.
One has then

fee[(2n; (1-46)
(1-47)

will correspond to an instability. Therefore, there is an
instability for any solution for co satisfying the in-
equality —0;&~&0.

Figure 5 shows the frequency ranges for which the
resonant wave moves with or against the magnetic
6eld under the assumption that P&0, i.e., the beam
is directed against the magnetic 6eld.

8. Quantitative Study of Instabilities

A. Anomalous Dopp/er effect. A plasma-beam insta-
bility occurs when the beam moves with superluminous
velocity. There is a de6nite relationship between the
instability produced by a beam and the behavior of a
single particle moving with superluminous velocity.
In the case of a thermal plasma with no external mag-
netic field, a formal analogy has been established be-
tween the longitudinal instability produced by the beam
and the longitudinal Vavilov-Cerenkov effect produced
by a particle moving with the same velocity as the
beam. "A similar analogy exists when the plasma-beam
system is immersed in a static magnetic 6eld. In such
case the beam effect is expressed by a transverse in-
stability and the particle effect by the anomalous
Doppler radiation. 4

The instability of the "Doppler wave" has been
accounted for by Zhelezniakov4 by the quantum theory
of radiation. The perturbed electrons moving with the
beam perform oscillatory motions at electron gyro-
frequency, and, therefore, these electrons may be
considered as oscillators having proper frequency ~p= 0,.
For an electron beam moving with subluminous ve-
locity, the "Doppler radiation" emitted by any single
electron will be absorbed by the beam itself. On the
other hand, for a beam moving with superluminous

"Jacob Neufeld, Phys. Rev. 127, 346 (1962).

and the frequency co radiated by the oscillator along
the direction of its motion is expressed as

Expression (1-48) represents the normal Doppler eifect.
Assume now that the velocity of the oscillator is super-
luminous. Then

Pn„&1,

and the frequency radiated by the oscillator along the
direction of its motion is expressed as

»(1 —0')"'/(—1 Pn ) — (1-5o)

Expression (1-50) represents the anomalous Doppler
effect.

Equations (1-48) and (1-50) are generally derived
from the microscopic description of the emission of a
photon by a moving oscillator. Assume that fico is the
energy of the emitted photon, AE is the change in the
kinetic energy of the oscillator which results from the
emission, and hoop is the change in the internal energy
of the oscillator. One has

(1-51)

In the normal Doppler eifect, as expressed by (1-48),
the oscillator effects a transition from a higher energy
state to a lower energy state. In such case the energy
Atop of the emitted photon is compensated at least partly
by the excitation energy h~p of the oscillator. Thus the
sign "minus" must be assigned in (1-51) to the term
Acop. By combining (1-51) with the equation for the
conservation of momentum, one obtains the expression
(1-48). On the other hand, in case of an anomalous
Doppler effect, the kinetic energy of the moving oscil-
lator is converted into the energy Ace of the emitted
photon and into the excitation energy Scop. Thus by
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assigning "plus" to the term hcue, and combining (1-51)
with the equation for the conservation of momentum,
the expression (1-50) is obtained.

Consider now the formulation of radiative effects
contained in this investigation and particularly ex-
pression (1-17) representing the frequency of a resonant
wave in a plasma-beam system. It is assumed that 0. is
suSciently small so that the inequality ~b~&&~&o~ is
satisfied. Let

n, „=ck/co (1-52)

represent the index of refraction of the plasma-beam
medium. Substituting (1-52) in (1-17) and assuming
5=0, one obtains

~=0,(1—P')»'/(1 —n,P). (1-53)

The above expression has a formal resemblance to
expressions (1-48) and (1-50) representing the normal
and anomalous Doppler effect associated with an oscil-
lator having proper frequency coo equal to the electron
gyrofrequency 0,. It should be pointed out, however,
that Eq. (1-53) is based on classical electromagnetic
theory, i.e., no consideration was given to the micro-
scopic behavior of a single oscillator. Thus, the quantity
0, is always positive and there is no reversal in the sign
of 0, when subluminous velocity is replaced by super-
luminous velocity. There is, however, a reversal in the
sign of the term co. The quantity co is positive for sub-
luminous velocities and negative for superluminous
velocities. The considerations leading to this reversal
of sign for superluminous velocities have been set
forth in connection with Fig. 3(a—c).

B. Velocity range for beams which are effective inex.
citing elecfromagnetm muses. When 0 is 6xed, excitation
is obtained when the beam velocities are contained
within a determined range. The extent of this range will
now be established. Taking into account the in-
equality —0;(co&0 representing the range of fre-
quencies that may be excited, and the relationship
co=ckP+0, (1—P')»', it can be ascertained that for
k) 0 the velocity p of a beam that causes the excitation
is comprised within the range

can be represented as

1 (1—P2)» A X2(1/n)
X'——X— — =0, (1-58)

P2 n (X+1)(nX—1)

where

A = co,/0; and X= co/0, . (1-59)

It can be seen from Eq. (1-58) that for X(0 (i.e.,

when the velocity of the beam is superluminous), the
equality (1-58) can be satisaed only if

—1(X(0. (1-60)

—A'P'X'= 0. (1-61)

IXI

I.O
Ip2

e4

This inequality is identical to the inequality (1-42)
resulting from the graphical methods of Figs. 4 and 5.

Expression (1-58) represents a functional relation-
ship between three nondimensional quantities: X, A,
and P. This relationship speci6es conditions under
which an instability may occur. Thus, for a given
stationary plasma (A and ca, are known), one can deter-
mine the frequencies co that may be excited by beams
having various velocities P. Similarly, if the velocity P
of the beam is known, one can ascertain the values of
A for which the excitation may occur and the corre-
sponding values of X. Various graphs representing the
behavior of the relationship (1-58) are given in Fig. 6.

Taking into account n«1, the terms n or O,X may be
neglected when either is added to 1 and thus (1-58)
can be represented in the following form:

2X(1—P2)»2 (1—P2)-
X'(1—P') — + (X+1)

where

(1-54) .e

P,= —Q./ (0,'+ c'k')
X(ckn+[cek +Q,e(1—n )7»s} (1-55)

Pe ———0,/(Q. '+c'k')"'.

Assuming that n'((1, (1-55) becomes

(1-56) .2

P = —
t 0,/(0 '+cek')»'7 —LckQ~/(0 'peek')7 (1-57)

C. Frequencies of excited waves Consider the equ. ation
P(~)=0 where f(co) is given by (1-44). This equation

.4 .e .e .r .e .e I.o P
FIG. 6. Graphical representation of the relationship between X,

A, and p {for an electron beam).
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Since, o,&&1 and —1(X&0, it is clear that

I
X'(1—0')

I
«(1—02)/a' (1-62)

Therefore, taking into account (1-62), the expression

(1-61) can be represented in the form

! 1—P2 —2Xa(1—P2)'"](X+1)
(1-63)

~2 2X2

Using the equality (1-61), the quantity X can be

expressed explicitly as a function of the parameters .4
and P of the plasma-beam system.

Using (1-62), Eq. (1-61) becomes

-2 (1—P2)1/2 — -2(1—P2)1/2 1—P2

X' +A2p2 +X
CL Q A2

J32
=0. (1-64)

The solution of (1-64) can be expressed in the fol-

lowing form:

(1-W"/2 -1~L(1+(1-~')'"i2 )'+A'e']'"
X=

2+A2P2a2/(1 P2)1/2

(1-65)

a~"(1—P') (X+1)'
Imb = (1-66)

a2XL2 (X+1)'+A'(X+2)]

In deriving the above expression, the terms n and nX
have been neglected when added to or subtracted from 1.

Consider now the relative rate of growth S repre-
sented by (1-39).This quantity can be expressed as

where

x= /x„ (1-67)

A'(1 —P2) (X+1)'
(1-68)

a2X2[2 (X+1)'+ A2 (X+2)]

Taking into account the inequality E«1, one obtains

The only values of X which can yield an instability
satisfy inequality (1-60) and, therefore, the solution

corresponding to the (+) sign in front of the radical
should be discarded.

D R. ate Of gro/I/th. The rate of growth Imb is obtained
from (1-37) or (1-45). Using the nondimensional quan-
tities X and A as given by (1-59), the growth rate can
be represented as

o'/2«1/X1. (1-69)

KP
/

,d /
I

Expression (1-69) indicates the restriction which the
inequality (1-40) places upon the permissible density
of the beam.

Substituting X as given by (1-65) into (1-68), one
obtains

(1—P')A'T'(U+ T—S)'

a'(U S)2[2(U+T —S)'+A'T(U+—2T S)]—
(1-70)

where

T=4a (1—P2)'"+2a2A2P2, (1-71)

and

(1 p2)1/2 2 -1/2

S=2a(1—P')'" 1— +A2P', (1-72)
20.'

U 1 P2 2a (1 P2)1/2 (1-73)

FIG. 7. Graphical representation of the relationship between E1,
A, and P (for an electron beam).

Expression (1-70) describes a functional relationship
between three nondimensional quantities: X1, A, and p.
This relationship is illustrated graphically in Fig. 7.

Figures 6 and 7 describe the quantitative behavior
of a plasma-beam system under various specific condi-
tions. Assume that the stationary plasma is known, i.e.,
the value of the parameter A is given. One selects in
Fig. 6 a graph corresponding to this value and repre-
senting a relationship between X and P. Since 0; is
also known, one can ascertain from this graph the fre-
quencies ~ of resonant waves which may be excited by
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a beam of any given velocity P. The corresponding
value of X~ may be obtained from the graph in Fig. 7
which corresponds to the same value of A. AVhen S~
is known, the permissible value of 0. can be determined
by taking into account the inequality 0«1 and ex-

pressions (1-30) and (1-69).The relative rate of growth
of the wave can then be determined from (1-67).

The quantity X& may also be expressed explicitly as
a function of X and P. Thus, substituting 3'- as given
by (1-63) in (1-68), one obtains

(1 P2)3/2[(1 P2)1/2 2xa](X+ 1)2 c/z

Vg ——

a'X'[2a2PX2(X/1)+ (1—P )'/ [(1—P )' ' —2Xa](X+2)]

A simplified form of relationship (1-68) will be de-
rived for each of the two extreme cases A)&1 (i.e. ,

co;»Q~) and A&&1 (i.e., o/,((Q;). When A))1, the pa-
rameter S~ can be expressed as follows:

(1—P') (x+1)' "
Eg ——

a'X'(X+ 2)
(1-75)

When Ical((Q; (i.e., when lx~((1), (1-68) yields the
following expression:

ii' —
I (1—P2)/2a2XS

I

'/2 (1-76)

It is shown in Sec. 3 of this investigation that for

lco I «Q, one has a hydromagnetic wave and, therefore,
expression (1-76) is applicable to such a wave.

When A«1, the parameter E~ can be expressed as

I (1—P')A—'—/2a'X'I '" (1-77)

Q,,I
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FIG. 8. Graph of y=p for p=p» OC7=ckpI —Q, (1—p')'2
OC =ckp —Q, (1—p')'"+B.

are fixed. On the other hand, in Fig. 4 an assumption
was made that k is fixed and the variable quantities
co and P are related to each other by the expression

a'/'&&&2a/A (1 p')"— (1-78)

It is shown in Sec. 3 of this investigation that when
A« i, the frequency of the excited wave is close to the
ion cyclotron frequency and expression (1-77) applies
to such a case. %hen the excited wave is close to the
ion cyclotron frequency, expression (1-77) yields the
following form for the expression (1-69):

~l

I

l

l

I

jCT I

g. Graphieat Method of Bermsteirs ar/d Trehar/,

In a recent investigation, Bernstein and Trehan' ex-
plored various plasma-beam instabilities by means of a
graphical procedure. Thus the quantity y=P as de-
fined by (1-4) was plotted as a function of &o (see Figs.
8, 9, and 10). In order to conform to the notation used
by Bernstein and Trehan, the sign of the variable on
each axis has been reversed.

There are several distinctive features which are differ-
ent in the Bernstein and Trehan graphs from those
shown in Figs. 4 and 5, which illustrate the behavior
of functions y= (F)„„- and y=f(/o ), respectively.
These functions represent a stationary plasma, whereas
in the Bernstein-Trehan representation the function
y=P represents the plasma-beam system. The inde-
pendent variable in Figs. 4 and 5 represents the fre-
quency co of resonant waves, whereas in the Bernstein-
Trehan graphs the independent variable oo may not be
in resonance with the beam. The Bernstein-Trehan
representation is based on an assumption that h and p

FIG. 9. Graph of y=& for p= p2&pI, OC7=ckp2 —Q, {1—p')'"

Cl
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F&G. 10. Graph of y=p for p=p»p» OC7 ckp3 Qa{1 p ) j
OCI0= ckp3 —Q, (1—p) "2—6
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~ =ck8+Q, (1 —P')'" I.n Fig. 5 an assumption was made

that P is 6xed and the variable quantities ~ and L

are related to each other by the same expression.
It has been shown by Bernstein and Trehan that by

varying the velocity of the beam, one changes the
character of the graphs in such a manner that for
critical values of P some of the points of intersection of
the curve y= —P with axis of abscissas "disappear. "The
real roots of the dispersion equation @=0 are then
replaced by complex roots which indicate an instability.
The graphs of Figs. 8, 9, and 10 illustrate certain addi-
tional features of the Bernstein-Trehan representation.
It is shown that if one increases the beam velocity P
beyond the values considered by Bernstein and Trehan,
some of the points of intersection may "reappear, " and
the system becomes stable again.

Assume that the value of P is given, i.e., P=Pi, and
consider Fig. 8 representing the graph y= —y corre-
sponding to this value. There are five points of inter-
section of the graph y= —

qb with the co axis. These
points are designated as CI C~ and represent all the
roots of the dispersion equation (1-4). Since these roots
are real, there is no instability.

A similar graph is given in Fig. 9. However, in this
figure the beam velocity P=P2 is larger than the beam
velocity P=Pi represented in Fig. S. This increase intro-
duced qualitative changes in the behavior of the graph
y= —@. Thus in Fig. 9 the point CY representing the
quantity ckP2 —Q, (1—8')'" has moved toward the
point Cs representing 0,. The portion of the curve
contained between points C7 and C8 has been com-
pressed and its maximum has become lower. There
exists a limiting value of P above which this portion
does not intersect the axis of abscissas. %hen this
happens, the dispersion equation "loses" two real roots
such as C3 and C4 and gains two complex conjugate
roots. This is shown in Fig. 9. In this 6gure there are
only three points of intersection of the rurve y= —p
with the axis of abscissas. The two lost roots become
complex and represent an instability.

By increasing the beam velocity again, the portion
of the curve between the points C~ and Cs is compressed
further and the maximum of this portion continues to
go down. It is interesting to note, however, that for
sufliciently small values of 0. the instability disappears
although there are no points of intersections within the
compressed portion of C~Cs. This is shown in Fig. 10
for which P=P3 where P3&P2. The points of intersection
which disappeared in the compressed portion as shown
in Fig. 9 reappear in Fig. 10 in the portion of the curve
between the points 0 and C7. Consequently, the graph
of Fig. 10 provides 6ve real roots for ~, and there is
no instability.

The "transition" from Fig. 8 to Fig. 9 is similar to
the one illustrated by Bernstein and Trehan. It shows
that for increasing values of the velocity P, an initially
stable system may become unstable. One should observe,
however, that if the velocity is increased further, one

Pro. 11. Relationship between the angular frequency ~' of a
resonant wave and the linear velocity P of the ion beam.

may obtain an additional "transition" from Fig. 9 to
Fig. 10. In this additional transition the two points of
intersection that previously vanished appear again, and,
therefore, there is no instability. This additional transi-
tion is signi6cant since it shows that the beam velocity
associated with an instability is contained within a
range having an upper and a lower bound.

where F is given by (1-5). It is assumed that 0,&(1. As
in the case of the electron beam k&0 represents an
B+ wave and k &0 represents an 8 wave.

It can be shown that the ion beam is capable of ex-
citing only those waves which are in resonance with the
ion beam. The frequency co of the resonant wave can be
expressed as

where

o)=~'+8

(o'= ckP —Q, (1—P')"'.

(2-2)

(2-3)

The relationship (2-3) is represented graphically in
Fig. 11 for an H+ wave.

The solution of the dispersion equation (2-1) can be

2. PASSAGE OF AN ION BEAM THROUGH PLASMA

I. General Considerations

Consider now a charge equilibrated system in which
the fraction cr; of the ions are moving with velocity
v=pc through a stationary plasma immersed in a
magnetic 6eld Bo!!g. The stationary plasma consists of
electrons and a fraction 1—0, of the ions. The assump-
tions made here are the same as in the case of an electron
beam passing through plasma. It is assumed that the
plasma is cold, the intensity of the beam is very small,
and the wave resulting from the plasma-beam inter-
action is aligned along the direction of the magnetic
6eld.

The dispersion equation may be represented as"

0;(1—P')'"(u P ((o—ckP)
P, ((u,k) =F — —,(2-1)

(a—ckP+Q;(1 —P )'~2
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written as
ac» xQ .(1 Ps)1/2- 1/2

5=
(ciF/Bc»). =

subject to the conditions

(F).= =0, (2-5)

TA)ILITY

and also that a valid approximation is obtained by re-
taining two terms of the series expansion for (F)~=a'+/:

F= (F) - '+f'/(B-F/chic») - +.. . (2-6)

Consider the waves which may be excited in a plasma
by an ion beam of a known velocity p. Substituting in
the dispersion equation F=O the values for ~ and k
which correspond to resonant waves, i.e.,

Ic=
t c»'+Q, (1—P')"']/cP, (2-7)

ygf (n/I

A5 AB

(b)

ISTAB ILI T Y

AIP

4) +Qe CGl Q|
=0. (2-8)

one obtains the following equation for waves excited
by an ion beam:

1
4'(~*)= (~')'—L~'+Q (1—P')'"j'

2
AII~ I, Alp

I

j

t

I

1)ILITIES

I

l4 I5 I 6

l

e j
I

Figure 12(a—c) shows three different forms of the
graph of the function y=P;(c»'). These graphs corre-
spond to three sets of values of P and A. The points of
intersection of each graph with the axis of abscissas
represent the roots of the equation f;(c»') =0. In order
to determine which of these roots represents an in-
stability, one should consider the expression (2-4) for
5 and ascertain whether this quantity is real or complex.
Substituting (1-5) in (2-4), one obtains

m», 2(1—p')
p— (2-9)

2F+A'/(a V—1)'—A'/(7+1)'
where

F'= c»'/Q; and A =c;,/Q;. (2-10)

It can be seen from expression (2-9) that fi' is nega-
tive and, consequently, there is an instability only if
co'&0. By applying arguments similar to those used for
an electron beam, it can be shown that co'&0 corre-
sponds to a superluminous velocity of the ion beam
both for H+ and H waves.

The graph of Fig. 12(a) shows only one point of
intersection with the axis of abscissas for which co'&0.
This point, labeled A3, represents the only wave that
may be excited by the ion beam. A similar situation is
represented in Fig. 12(b) in which the ion beam pro-
duces a single instability labeled A9. It should be noted,
however, that there are values of the parameters A and
p for which the graphical representation of y=f, (c»')
shows some distinctive qualitative changes. This is
shown in Fig. 12(c) in which one obtains three points of
intersection characterized by co'&0. These points,
labeled A~3, A~4, and A~5, represent three resonant

(c}

Fro. 12. (a)—(c) Graphical representation of y=P;{co') for
three different values of P.

waves which may be excited by an ion beam. The
occurrence of three resonant waves was pointed out by
Ginzburg "

It can be seen from Figs. 12(a), 12(b), and 12(c)
that the frequencies co' characterizing the ion beam in-
stabilities satisfy the following relationship:

0(c»'(Q. =Q;M;/m =Q;/a. (2-11)

Consequently, the frequency of an excited wave may
extend from very low frequencies for which ro'(&0; up
to the electron gyrofrequency. One can achieve a con-
dition near resonance in which the wave frequency may
approach the electron gyrofrequency from below and
the diiference (Q.—c»') may be relatively small.

By applying a method similar to the one used for the
electron beani, it can be shown that the excitation of
H+ wave occurs only if the beam moves with super-
luminous velocity in the direction of the magnetic field.
The angular velocity of the H+ wave has the same
direction as the angular velocity of the perturbed sta-
tionary electrons in the plasma.

II. Frequencies of Excited Vfaves

Using Y=c»'/Q. ; and A=c»;/Q;, Fq. (2-8) may be
expressed as

1 A' Y'(1+a)F' LF+ (1 P—')—"j- =0. (2-12)
(7+1)(aF—1)
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III. Rate of Growth

N l cting in (2-9) a when compared to 1, the rateeg ec
of growth for a wave excited by an ion earn
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FIG. 13. (a) Graphical representation of the relationship be-
tvreen F, A, and p (for an ion beam). (b) Enlarged portion of
the graph of (a).

&r,a—),2 (1 P')—(a Y 1)—'(Y+1)~

2Y(a Y—1)'(Y+1)'+A'Y(Y+2)

—(1—P') (a Y—1)'(Y+1)' '"
Y'( Y+2)

(2-16)

The relative rate of growth X=1mb/~' can be ex-

pressed in the form cV =0-; ~ where.1/2

—A'(1 —P') (a Y—1)'(Y+1)'

Y'L2(a Y—1)'(Y+1)'+A'(Y+2)j
The assumption E«1 places the restriction &r,'"«1/Xi
on the permissible density of the beam.

Combining Eqs. (2-12) and (2-15), the term Y can
be eliminated, yielding an expression which describes a

X, A d P This relationship is analogous
to the expression (1-70) obtained for an electron beam
and is illustrated graphically in Fig. 14.

Th b h of instabilities under various conditions
can be ascertained by means of Figs. 13 a, , an
14. Thus, if the parameter A of the plasma is known,
one obtains from Fig. 13(a) or (b) a graph representing
a relationship between Y' and 48. Since 0, is known, one
can ascertain from this graph the frequencies of excited
resonant waves and the corresponding velocities of t e

b B cans of Fig. 14 one obtains the vaues
of E& corresponding to these frequencies an ve oci ies.
Taking into account a,&&1, a,«1/Ei,
permissible values of fT; and the relative rates of growth
can be determined.

im lifiedIf A))1, the term S~ can be expressed in the simpli e
form:

4It be seen that when Y)0 (i.e., when the velocity
of the ion beam is superluminous), the equali y ( .

can

may be satis6ed only if

0(Y(1/a. (2-13)

This inequality is identical with the inequahty (2-11
resulting from the graphical method of Figs. 12(a),

The expression (2-12) describes a functional relation-
s ~

s ip e weeh' b t en three nondimensional quantities, A, an
P. This expression is analogous to the expression ( - )
obtained for an electron beam. Various graphs repre-

3. COMPARISON OF THE EXCITATION MECHANISMS
PRODUCED BY ELECTRON AND ION BEAMS

I. General Considerations

Both an electron beam and an ion beam are capable
of exciting electromagnetic waves when the following
three conditions are satis6ed: (a) the waves move in

with superluminous velocity, and (c) the waves are
"resonant" with the beam.

Resonant waves excited by an electron beam are
diferent from those excited by an ion beam. For an
electron beam the frequency of the excited wave is in
resonance with the gyrofrequency of the electrons in
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I'Io. 14. Graphical representation of the relationship between &1,
A, and P (for an ion beam).

the beam, whereas for an ion beam the frequency of the
excited wave is in resonance with the gyrofrequency of
the ions in the beam.

Both H+ and H waves may be excited by a beam.
A beam of electrons moving in the direction of the
magnetic 6eld is capable of exciting H waves only,
whereas only H+ waves are excited when the beam
moves in the direction opposite to the magnetic field.

Due to the resonance effect, both H+ and H waves
excited by an electron beam rotate in the same direc-
tion and with the saxne angular frequency as the
gyroelectrons of the beam. There occurs, however, an
"anomalous effect" represented by a reversal in the
direction of rotation caused by the superluminous ve-
locity of the beam. Consequently, an excited H or
H wave has a circular niotion in the same direction
as the gyrofrequency of the stationary ions. Further-
more, the frequency of such a wave is contained within
the range —0;&co&0.

An ion beam moving in the direction of the magnetic
held is capable of exciting H+ waves only, whereas
only H waves may be excited when the ion beam
moves in the direction opposite to the magnetic 6eld.
The excited H+ and H waves rotate inthe same
direction as the perturbed electrons in the stationary

plasma. The frequency of a wave excited by an ion
beam is always below the frequency of the perturbed
stationary electrons. Thus the ion beam may excite
waves having frequencies ~' within the range 0 & co &0,.
This range is considerably wider than the range of fre-

quencies —0;&~&0 excited by an electron beam.
It may be of interest to point out that an ion beam

is capable of exciting a wave having frequency ~' which
is numerically equal to the ion gyrofrequency 0;. How-
ever, this inequality does not have any particular
physical signi6cance since it does not represent an
ionic resonance. While the frequencies of the excited
wave and of the perturbed ion are the same, the direc-
tions of rotation are opposite to each other.

There are significant qualitative differences in the
behavior of the instabilities produced by an electron
beam and those produced by an ion beam. These dif-
ferences may be readily observed from Figs. 6, and
13(a) and (b). Thus, it is seen from Figs. 13(a) and (b)
that for certain values of the parameters A and P an
ion beam may excite simultaneously three waves. This
effect has already been noted by M. A. Ginzburg. "
However, it can be seen from Fig. 6 that an electron
beam may excite only one wave for a given set of
values of A and P.

The quantity A=co;/0, = (47rnM;)"c/Bo which de-
pends upon the strength of the magnetic 6eld and the
density of the medium is very important in determining
the behavior of a plasma. A very useful classification of
various types of plasma was recently introduced by
Denisse and Delcroix. " Thus a plasma is "very rare-
6ed" when A &.07 and "rarefied" when .07&A &1.
Both rarefied and very rare6ed plasma occurs in evacu-
ated vessels having pressure of the order of 10 ' mm of
Hg in the presence of a very strong magnetic field
(cyclotrons, vacuum gauges, etc.). For the ionosphere,
one has A 1.5)&10', and in such a case the plasma is
"dense. " The dense plasma is characterized by A &50
and therefore there are other examples of dense plasma
such as thermonuclear discharges, interstellar clouds,
etc. A plasma of small density is characterized by
1 &A &50. Various air-discharges and solar corona may
be represented by a dense plasma or by a plasma of
small density.

Figure 15 illustrates the typical behavior of various
plasmas as classi6ed above. The effect of electron beams
on various types of plasma is based on Fig. 6, whereas
the eGect of ion beams is based on Figs. 13(a) and 13(b).

II. Excitation of Waves by an Electron Beam

Consider now the graphs of Figs. 6 and 7. Figure 6
shows the frequencies which may be excited for various
values of A and P. A separate curve has been plotted
of X as a function of P for each of the several values of
A. The values of A extend from A=10' to A=106. For
each A the appropriate curve shows a one to one corre-
spondence between X and P. Thus a beam characterized
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co/k = c. (2-21)

The above expression represents a low-frequency wave
propagated with the velocity of light.

~ See, for instance, I. B. Bernstein and K. Trehan, Nucl.
Fusion 1, 3 (1960).

by a given value of P is capable of exciting only one
wave determined by the corresponding value of X.

The values X 1 and X«1 are of particular interest
and the conditions under which frequencies represented
by these values can be excited shall be determined.
%hen X 1, one has ~ 0; and the excited wave has a
frequency which is very close to the ion gyrofrequency
(but somewhat below the ion gyrofrequency). When
X«1, one has co&&Q;. One may obtain then a hydro-
magnetic wave if certain other conditions are also
satisied. The criterion for the occurrence of a hydro-
magnetic wave in an undisturbed stationary plasma
may be obtained from the dispersion equation F= Q.

Using the inequality co= co&&0;, one obtains"

~2 c2$2/(]+c2/V~2) (2-17)

Vg =B0/(4wlM;)"'. (2-18)

Applying the relationships (1-1) and. (1-2), and using
the term A =co;/O;, (2-17) can be expressed as

co'/k'= c'/(1+A'). (2-19)

Expression (2-19) represents the dispersion equation
for a low-frequency wave which may be propagated in
an undisturbed plasma described by the dispersion
equation (1-5). Of particular interest are two limiting
forms of this wave. Thus assuming A)&1, one obtains
from (2-19)

co/k c/A = Vg. (2-20)

Expression (2-20) represents a low-frequency wave
moving with Alfven velocity V~. On the other hand,
when A«1, one obtains

One can ascertain now which one of the two low-
frequency waves may be excited by an electron beam-
the slowly moving hydromagnetic wave represented
by (2-20) or the wave (2-21) moving with the velocity
of light.

Consider 6rst the wave represented by (2-21). A
necessary condition for the occurrence of such a wave
is given by the inequality A«1. lt is noted that the
curves plotted in Fig. 6 correspond to various values
of A for which this inequality is not satis6ed since these
curves correspond to A))1. The curves satisfying the
inequality A« 1 cannot be conveniently represented on
the scale of Fig. 6. All of these curves would be approxi-
mated very closely by a straight line parallel to the P
axis and corresponding to X 1. Thus the graphs for
A«1 represent loci of points for which u Q;. Therefore,
for A«1 the beam is capable of exciting only waves
having frequencies close to the ion gyrofrequency and
one may assume that there are no low-frequency waves
excited by the beam. Consequently, excited waves of
the type (2-21) are nonexistent in the plasma-beam
system.

One can, however, excite a hydromagnetic wave since
each of the graphs plotted in Fig. 6 corresponds to A))1.
lt is noted that for each A there is a diferent range of
values of P which is needed for the excitation of a hydro-
magnetic wave. Thus for A = 10' one may excite a
hydromagnetic wave when the velocity of the beam
occupies a relatively wide range extending from very
low values of P up to P approaching 1. Thus, assuming
tkat the excited hydromagnetic wave corresponds to
X=001, one obtains for P a range 0.17&P&1. If A
is smaller, the corresponding range for P is considerably
shortened and the low velocity region is eliminated.
Thus when A = 10' one has 0.87 (P &1 and for a some-
what smaller value of A such as A =5X 10', one may
excite a hydrornagnetic wave (corresponding to
X=0.01) if the beam has a velocity in the relativistic
range (P 0.99).
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Consider now the conditions which are necessary for
exciting waves close to the ion gyrofrequency. These
conditions are strongly dependent on the parameter A.
The case of A((1 was discussed above, and it has been
pointed out that the frequency co 0; would be excited
for nearly all values of P. This situation remains sub-
stantially the same when 3 1 and even when A is
considerably larger than 1. One can assume from Fig. 6
that for any value of A comprised within the range
1&3&10 the waves excited by the beam have fre-
quency id 0; for all nonrelativistic values of p. This
situation changes rapidly, however, for increasing
values of A. Assume that the excited wave in the neigh-
borhood of the ion gyrofrequency satis6es the relation-
ship X=0.99. Thus when 3= 10', the beam may excite
the wave if its velocity is comprised within the range

P &0.19. When A assumes still larger values, i.e., for
3 = 10' one may excite a wave corresponding to X=0.99
only if the velocity of the beam is extremely small

(P 0.02).
Figure 7 together with Eq. (1-69) shows the rela-

tionship between the relative growth rate X and various
values of 3 and p for a suKciently small value of 0.
As in Fig. 6, a separate curve has been plotted for XI
[as expressed by the equation (1-70)]as a function of p
for several values of A. An examination of Fig. 7 reveals
at once that the relative growth rate increases with
increasing values of 3 for a 6xed value of P and in-
creases with increasing values of P if A is fixed.

HI. Excitation of Waves by an Ion Beam

Consider now the graphs of Figs. 13(a), (b), and 14.
Figure 13(a) shows the frequencies which can be ex-
cited for various values of A and p. A separate curve
has been plotted for Y as a function of p for each of
several values of A. The value Y=1/a=1837 corre-
sponds to a resonance between the frequency cv' of the
excited wave and the electron gyrofrequency 0,. Figure
13(b) has been drawn in order to show more clearly
the behavior of the curves in Fig. 13(a) for small

frequencies.
The set of curves shown in Figs. 13(a) and (b) corre-

spond to the values of 9 from A =1 to .4=10".These
curves have two common points. One of these is repre-
sented by 8= 0, Y= 1/n, and the other by P= 1, Y=0.

In order to point out the qualitative differences be-
tween the curves in Figs. 13(a) and (b) and those of
Fig. 6, one can choose a particular numerical value for

and examine the relationship between V and P.
Assume, for instance, that A =10 and consider the cor-
responding graph shown in Figs. 13(a) and (b). When
P is very small, the corresponding values of Y shown in
this graph are in the neighborhood of Y= 1/a, There-
fore, for ~1 = 10, a very slowly moving ion beam excites
frequencies which are close to the electron gyro-
frequency. Consider now the values of p within the
range 0&/&OF&, where OF& 0.25. There is a one to
one relationship between p and Y within this range,

i.e., for each value of p there is only one frequency cu'

excited by the beam. One can also note a very slight
decrease in Y (or co') for increasing values of p. There-
fore, it can be stated that within the range 0 (p (OFi,
the beam excites only the waves for which c™o' Q.. When

p reaches the value p=OFi and, furthermore, when p
exceeds the value P=OFi, a significant qualitative
change can be observed in the behavior of the plasma-
beam system. Thus when P =OFi, the beam is capable
of exciting simultaneously two diferent waves having
two different frequencies. One of these has a value

0, and the other a value co=OBi. When p) OF&,

the beam is capable of exciting simultaneously three
different waves having three diferent frequencies. One
of these frequencies is in the neighborhood of the elec-
tron gyrofrequency and the other two are generally
considerably below the electron gyrofrequency. If the
other condition is satisfied, i.e., A&&1, one obtains one
or sometimes two hydromagnetic waves. Thus, when

Q=OF2 ——0.3, the two low-frequency hydromagnetic
waves are represented by Y=O'82' and by V=082",
and the high-frequency waves are represented by
Y=OB&"' If a lar. ger value of P such as P=OF3=06.
is considered, then one of the two low frequencies has
an increased value and the other has a decreased value.
These correspond to V=OB3' and Y=OB3".The three
excited waves occur simultaneously for all values of P
comprised within the range OPi p(OF4 where OF4

0.91. For P exceeding the value P=OF4, another
qualitative change in the behavior of the plasma-beam
system is observed. Instead of three excited waves there
is only one, and the excited wave is hydromagnetic.
Thus for p=OFS, the frequency of the hydromagnetic
wave is represented by 7=085'.

Similar considerations can be applied to other graphs
corresponding to other values of A. Each of these
graphs is characterized by two threshold values for the
beam velocity P: the lower threshold Pi and the upper
threshold P . Thus for 2=10, one has Pi OFi and——
P„=OF4. These threshold values define three diferent
ranges for the beam velocity P: the lower, the inter-
mediate, and the upper range. The lower range corre-
sponds to P (Pi. In this range the ion beam excites one
wave only. This wave has a relatively high frequency
which is often close to the electron gyrofrequency. In
the intermediate range covering the values pi p p„,
the beam excites three waves. In the upper range for
which P&P the beam excites a single wave which is
hydromagnetic.

Figure 14 represents the graph of Xi [as given by
(2-13)]as a function of P for each of several fixed values
of 3. Figure 14 corresponds to an ion beam and is
analogous to Fig. 7 corresponding to an electron beam.

It has been previously noted that for a given 3, the
graphs of Fig. 13(a) and (b) may yield three values of
V for a single beam velocity g. Each of these values of
Y represents an excited frequency which is characterized
by the corresponding value of X&. Therefore, a similar
situation is obtained in the representation of Fig. 14,



J. NEUFELD AND H. WRIGHT

i.e., the graph of Fig. 14 corresponding to the given
value of A yields three values of iVI for the same beam
velocity. Therefore, a one to one correspondence needs
to be established between the three values of F ob-
tained from Figs. 13(a) and (b) and the three values
of X~ obtained from Fig. 14 (assuming that 2 and P
are the same). A comparison of Fig. 14 with Figs. 13(a)
and (b) shows that points toward the top of the curves
in Fig. 14 represent values of XI which correspond to
points toward the bottom of the curves in Figs. 13(a)
and (b).

In order to illustrate the above relationship, consider
again the value 2 =10. If P is less than OF~, then X~
is less than 10 '. This value for E& is relatively small
and it has not been represented in Fig. 14. If p=OFI,
then the frequency F=OB& in Fig. 13(b) would yield
in Fig. 14 the value OC~ for X~. For P=OF3, the values
OC3', OC3", and OC3"' for E& correspond, respectively,
to the frequencies OB3', OB3", and OB3"'.As P increases
toward the value OF4, the two values OC3" and OC3'"
approach the value OC4 which is the value of E~ corre-
sponding to the frequency OB4 on Fig. 13(a).

Thus it can be seen that E& increases as the frequency
Y represented in Figs. 13(a) and (b) decreases.

It should be noted, however, that higher values of X~
place more stringent conditions on the permissible
values of 0 since the condition rr'~'&(1/E, must be
satisfied.

finite at each point. In a nonconvective instability a
disturbance which originated in a limited region of space
at any instance of time grows indefinitely for t ~~ in
this region.

In investigating the plasma-beam instabilities it
may be useful to represent the dispersion equation of a
stationary plasma in the form of a "co-k" diagram and
then ascertain how the character of such a diagram is
modified by the presence of a beam. Consider in that
connection the "co-k" diagram of Fig. 16. This diagram
represents the dispersion equation F(&u,k)=0 where F
is given by (1-5), and it describes, therefore, the be-
havior of the medium in the absence of a beam. One
can observe that for any real value of k there are four
real values of ~ which satisfy the equation F(~,k) =0.

Figure 17 represents the "co-k" diagram resulting
from an interaction of an electron beam with a sta-
tionary plasma, and Figs. 18(a), (b), and (c) illustrate
the interaction of an ion beam with a stationary plasma.
It is noted again that Figs. 16 through 18(c) have not
been drawn to scale in order to show more clearly the
qualitative behavior of the functions represented by the
corresponding graphs.

l. Ins/ability Produced by an Flectron Beam

The presence of an electron beam gives rise to an
additional term in the dispersion equation. This equa-
tion is given by P(co,k) =0 in (1-4). The term

IV. Graphical Representation of the
Dispersion Equation

~~ '(1 P')"(~—rkP)—
(u ckp —0,(1—p2) '~2—

(4-1)

According to Sturrock, '0 one can ascertain from the
graphical representation of the dispersion equation in
the ro-k plane whether an instability is convective or
nonconvective. In a convective instability a disturbance
increases as it is carried along the system, and it remains

results from the presence of the beam. If fT is very small,
the only portions of the graph in Fig. 15 which will be
appreciably affected are in the neighborhood of the line
cu=ckp+Q, (1—p')'". The "co-k" diagram representing
the dispersion equation P(co,k) =0 is given in Fig. 16.

The rectangle labeled R in the third quadrant of
Fig. 16 represents a region of convective instability

FIG. 16. "c -k" diagram for a stationary plasma.

~ P. A. Sturrock, Phys. Rev, 112, 1488 I'1958). See also addi-
tional remarks in Jacob Neufeld and Harvel Wright, Phys. Rev.
124, 3-4 (1961).

FIG. 17. "~-k" diagram for an electron beam interacting
with a stationary plasma.
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(i.e., a region in which &v is complex for real k and k is
complex for real a&).

The frequency range B&82 represented in this region
depends on the parameters of the system. However, in

-Olfe-g'P

agreement with previous discussions, the frequencies
~ comprised in this range must be negative and satisfy
the relationship ~co~ &0;.

Z. Instabilities Produced by an Ion Beam

The presence of an ion beam introduces a term in the
dispersion equation F(co,k) =0 which is diferent from
the one introduced by an electron beam. The dispersion
equation in this case becomes p;(co,k) =0, as given by
(2-1) where the term

0.,&u;2(1 P2)'~—'((u c-kP)—

(o ckP—+0;(1 P')—" (4-2)

(a)

(b)

R0~

-uifi-P'»

is introduced by the beam. Again, if 0 is very small,
the graph in Fig. 15 will be appreciably disturbed only
in the neighborhood of the line ca=ckP —0;(1—P')'".
The diagrams for this case are given in Figs. 18(a), (b),
and (c). The instabilities occur in the rectangular re-

gions in the 6rst quadrant labeled R& through Rs. It
can be readily seen that these instabilities are convective.

Comparing Figs. 13(a) and (b) with Figs. 18(a), (b),
and (c), one can see more clearly the relationship be-
tween the "co-k" diagrams and the previous discussions.
Consider in that connection the instabilities produced
by an ion beam in a stationary plasma for which 2 = 10.
Therefore, one refers to the appropriate graph in Figs.
13(a) and (b) and compares the relationship between P
and I' as indicated by this graph with the instabilities
shown in Figs. 18(a), (b), and (c). Figure 18(a) repre-
sents an instability produced by an ion beam when its
velocity P is in the lower range, i.e., when P &OF&. In
such case the instability located in the neighborhood of
the region E& has a frequency which is very close to the
electron gyrofrequency. Assume now that P increases
and enters into the intermediate range for which OF~
&P&OIi4. In such case the slope of the line ~=cd—0;(1—P')"' increases and at the same time the line
moves upward L(1—g )'"decreases so that —Q, (1—P')'"
increases]. The "ru-k" diagram is then represented by
Fig. 18(b) which shows three instabilities in the neigh-
borhood of the regions R2, R3, and R4. One of these
instabilities, in the neighborhood of the region R2, has
a frequency which is close to the electron gyrofrequency.
Another instability in the neighborhood of the region
R4 represents a hydromagnetic wave. When the ve-
locity of the ion beam increases further and enters the
upper range for which P)OF4, one obtains a diagram
as shown in Fig. 18(c). In this range there is only one
instability located in the region R&. This instability
represents a growing hydromagnetic wave.

{c)

FIG. 18. (a} "~-4" diagram for an ion beam interacting with a
stationary plasma. (The velocity of the beam is in the lower
range. ) (b) "co-k" diagram for an ion beam interacting with a
stationary plasma. (The velocity of the beam is in the inter-
mediate range. ) {c) "au-k" diagram for an ion beam interacting
with a stationary plasma. (The velocity of the beam is in the
upper range. )
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