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The study of the structure of the two-particle S matrix as a function of the angular momentum in potential
theory is extended to spin-dependent interactions between two spin $ particles, including the tensor force.
The results reveal considerable similarity with the spin zero case, including the symmetry properties. The
main differences are two branch points at j=0 and j=—1 and a pole at j=—$. It is shown that judicious
combinations of S-matrix elements contain none of these singularities, and, as a result, neither do the
scattering amplitudes. Certain modifications of the canonical situation are found in the presence of spin-
orbit forces or other orbital angular momentum-dependent potentials. The factorization of the residue of
the S matrix is also discussed.

1. INTRODUCTION

ATELY, it has become of great interest, both for
& theoretical and for practical phenomenological

purposes, to consider the partial-wave scattering ampli-
tude for two particles as an analytic function of the
angular momentum. ' In the restricted context of non-
relativistic potential scattering, the resulting properties,
the existence of Regge poles and their motion as
functions of the energy, can be studied in great detail
and statements about them can be proved. '' In the
more general case of relativistic scattering, where the
most important applications are found, proofs are much
more dificult and one usually resorts to postulation by
analogy from the low-energy case. This adds to the
necessity of exploring the region accessible to proof
quite thoroughly.

The present paper stays entirely within the realm of
nonrelativistic quantum mechanics with interparticle
potentials. We are extending previous work, which has
been con6ned to particles of spin zero, to the case of
scattering of spin ~~ particles. 4 If both have spin +~,

then it is the presence of the tensor force that adds
new complications by giving rise to coupling between
triplet l= j&1 states. These complications are investi-
gated and cleared up.

* Supported in part by the National Science Foundation.' T. Regge, Nuovo Cimento 14, 951 (1959); 1S, 947 (1960).' R. G. Newton, J. Math. Phys. 3, 867 (1962).
'At the time of this writing we are aware of the following

papers concerning Regge poles in the potential context: R.
Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 (1962);
A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23,
954 (1962); E. Predazzi and T. Regge, ibid. 24, 518
{1962); A. Bottino and A. M. Longoni, ibid. 24, 353
{1962); G. M. Prosperi, ibid. 24, 957 {1962);S. Mandelstam,
Ann. Phys. {¹Y.) (to be published}; H. Cheng, Phys.
Rev. 127, 647 (1962); E. J. Squires, Nuovo Cimento (to be
published); V. Singh, Phys. Rev. 127, 632 (1962); J. M.
Charap and E.J. Squires, ibid. 127, 1387 (1962);A. Ahmadzadeh,
P. G. Burke, and C. Tate (to be published); A. Martin (to
be published); J. R. Taylor, Phys. Rev. 127, 2257 (1962); J.
M. Cornwall and M. A. Ruderman, ibid. 128, 1474 (1962); H.
Cheng and R. Nunez-Lagos, Nuovo Cimento 24, 177 (1962); A.
O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962);
P. E. Kaus and C. J. Pearson, Bull. Am. Phys. Soc. 7, 300
(1962).

4 The case in which only one of the two interacting particles
has spin $, the other spin zero, has been considered by L. Favella
and M. T. Reineri, Nuovo Cimento 23, 616 (1962). The multi-
channel spin zero problem is also discussed here.

The most important of our new results can be
summarized as followss: The S matrix has, in its off-
diagonal elements, branch points at j=0 and j= —1.
The partial-wave amplitudes, however, contain com-
pensating radicals so that they are analytic there. In
addition, the triplet-state S matrix has, in general, a
pole at j= —2. We prove that, nevertheless, there exist
speci6c simple linear combinations of S-matrix elements
called S in which this pole always cancels and that they
are directly related to the helicity S matrices; moreover,
the amplitudes are expressible in terms of these combi-
nations without the appearance of the pole. As a
result, the partial-wave amplitudes are as well behaved
in the complex j plane as they are in the spin zero case,
and the Watson transformation can be performed
under similar conditions on the potentials. In addition,
these linear combinations of S-matrix elements obey
the same symmetry property with respect to j and
—j—1 as does the spin zero S matrix.

In Sec. 2 we introduce the main tools of our analysis.
Section 3 generalizes Regge s limitations on the differ-
ence between successive phase shifts to the sum of the
eigenphase shifts. In Sec. 4 we generalize both the
limitation on the number of "right-hand" trajectories,
and the way they leave the real axis. Section 5 deals
with the factorization of the residue of the S matrix,
and Sec. 6 is concerned with the symmetry properties
with respect to interchange of j and —j—1. Ke show
that the transformed S matrix, S of (6.12), has the
same symmetry found in the spin zero case. Section 7
treats the point j=—

~ in detail. At this point the
triplet state S matrix has, in general, a pole. We prove
here the absence of the pole in 8.

' After this work was finished a preprint by J. M. Charap and
E.J.Squires "On Complex Angular Momentum in Many-Channel
Potential-Scattering Problems, I" came to our attention. There
is considerable overlap between their work and ours, theirs
treating also the multichannel case but being based on more
restrictive assumptions on the potential. There are a number of
problems which we treat and they do not. The problem arising
from the point j=—$ and its generalization to their more general
angular momentum coupling is not treated correctly, as a com-
parison of the statements following their (3.26) with our Sec. 7
will reveal. Note also that their definition (3.8) of +(Jts) contains
a misprint. The factor 2J+2s+1 should be replaced by 2J+2t+1
fE. J. Squires (private communication) j.
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In Sec. 8 we relax our previous restriction to local
potentials and add a spin-orbit term. Nothing essential
is changed, except for possible changes in the shape of
the pole trajectories and the asymptotic behavior of
the amplitudes. The trajectories need no longer turn
over to the left under conditions which formerly forced
them to do so. We also briefly discuss other types of
angular momentum dependent forces. In Sec. 9 we
write down the scattering amplitudes explicitly. We
show that all appearances of inconvenient radicals are
spurious, that the amplitudes can be expressed most
simply in terms of 8 without presence of poles, and
that, therefore, the Watson transformation can be
carried out as it could in the spin-zero case.

where

fo(j,k; r) = e
—'&'(-', zrkr)"'

H; )&'&(kr)
X

0

0
(2.4)—H; +g~' &(kr)

g -:(&;", '&

g(j,k r,r')=
0 g;+g(k; r,r') (2.o)

g&(k; ,r,r') = zz&r(rr')"')J&, (kr') V&, (kr) J&,(kr—) V&, (kr')],

J), and I'), being the Bessel functions of the first and
second kind, respectively. The function f satisfies the
boundary condition

2. GENERAL PROCEDURE lime'""f(j,k; r) = 1. (2.6)
We assume the most general local spherically sym-

metric potential between two spin-2 particles

U(r) = U, (r)+ V, (r)eq ez+ V, (r)S&2,

where SL2 is the tensor operator

Sig = 3 ' y
' ng 2

' ll —0'y ' Cf2

with &z—=r/r. PartiaL-wave analysis then leads to a set
of ordinary radial Schrodinger equations for the singlet
states and for the triplet states of parity (—)'. These
states can be treated just as the spin zero case; there
is nothing new to be learned here. For the triplet states
of parity (—)'+' we have, however, a set of coupled
radial Schrodinger equations with l= j&i, which in
matrix notation read6

The regular solution is dificult to de6ne by a bound-
ary condition at r=0 because of the coupled angular
momenta. We avail ourselves instead directly of the
integral equation7 9

p(j,k; r) = p, (J,k; r)

r

+ dr'(g(j, k; r,r') V&'&(r') y(j,k; r')
0

—6[j( j+1)]' &r' 'q&0(j, k; r)V, (r')P), (2.7)

4"+~(i)r V—+V4=kV. (2 1) where"

(j-1)j
CU) =

0 (&+&&(&+2&)

The centrifugal term contains the diagonal matrix J; L(kr) 0
q, (j,k; r) = (-,'zrkr)'~'k-~ (2 g)

0 J,~t(kr)

and the potential matrix is, with V~=—V,+ I'.
A Jost matrix function is defined by

ti(i)—
2i+1

so that
PV k)= f'~' f"v =—LV(f, v—), (2 9)

(2j+1)Ue —2(j—1)U~ 6Lj(j+1)]'"U~
(X

6LJ(j+1)]' 'V~ (2j+1)V& 2(j+2) V~

(2.2)

An irregular matrix solution f(j,k; r) is defined in
the standard manner by the integral equation

f(j,k; r) = fo(j,k; r)

dr' g(j,k; r,r') V'»(r') f(j,k; r'), (2.3)

' AVe use units in which A=2m=1.

p(j,k; r)= (2zk) &[f(j, —k; r)P(j,k)

f(j,k; r)F(j,——k)], (2.10)

and the unitary and symmetric S matrix is given by"

7 See R. G. Newton, Phys. Rev. 100, 412 (1955).' See R. G. Newton, J. Math. Phys. 1, 319 (1960).' The purpose of the somewhat cumbersome "counter-term" is
to eliminate an otherwise present divergence. Its presence is
unnecessary if r 'Vg is integrable at r=0. However, we want to
include it in order not to have to make unphysically strong
assumptions about the tensor force."It is convenient for later purposes to have no k~ factor in
front of the J;+y. Since we are not primarily concerned with the
behavior near k=0 this produces no difhculties.

"The phase factor is designed to assure that S is unitary and
tends to unity as P -+ +~, even for nonintegral values of j.
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S(j k) =e"&'+"F(j,k)[F(j, —k)] '. (2.11)

Here the superscript T denotes transpose.
The series of successive approximations to f and p

converge under the usual conditions on V&&') and the
proofs of the standard properties go through as usual,
including that of the analyticity of y as a function of

j in the left half of the complex j plane. As shown in
reference 2 that depends only on the number of finite
derivatives of rV at r=0. Of course, y has, in general,
the usual simple poles at j=0, —1, —2 . ."A look at
V(&), however, seems to indicate trouble at j=——,'.
Since a simple pole in the potential is iterated infinitely
many times, it looks as though there will be an essential
singularity in f and p at j=—i. That this is spurious
is shown by diagonalizing V'&) with the matrix

The presence of the tensor force introduces additional
singularities in the S matrix. Both the original form
(2.2) of V"' and the "diagonalized" form of the
integral equations (2.15) and (2.16) (the latter in G)
contain the factor [j(j+1)]'l'.As a result both f and

p, and hence F and S, acquire a branch line running
from j=—1 to j=0. En the region —1&j(0 the
potential matrix V&&) is not Hermitian and as a result
S(j,k) is not unitary in that region, even for real k."
Because only the o6-diagonal elements of V&&'& contain
the factor [j(j+1)]"',and since the diagonal elements
of S must be even functions of those oB-diagonal
elements of V{~), only the o8-diagonal elements of the
S matrix contain the branch line. The diagonal S-
matrix elements are, in general, regular at j=0 and
j=—1 (if the potentials are sufficiently well behaved).

so that

and

(j+1)'"
U;—=

yo llyyyi )'

U,-l = U,/(2j+1),

(2.12) 3. THE PHASE-SHIFT DERIVATIVE

Differentiating the Schrodinger equation (2.1) with
respect to j yields with the standard Wronskian
technique

Vg+2 Vg
U;U' U. '—=W'=

0

0
(2.13)

Vg —4Vg
Writing

@(j,k; r)= U, q (j,k; r), —
fV k;«)=Ulf(j, k;r)

G(j,k; r,r')=U, g(j,k; r,r')U, ',

(2.14)

where
dcM 2l—1 0

)C'(j)=
dj 0 2j+3

we get from (2.3) and (2.7)

f(j,k; r)=fo(j,k;r)

dr'G(j, k; r,r') W(r') f (j,k; r'), (2.15)

4(j,k'r)=A(j, k «)

I+6[j(j+1)]'I' dr'r' 'V, (r')F

+ dr' {G(j,k; r,r')W(r')P(j, k; r')

Integration from 0 to ~ gives by (2.10) for real k

BF«(j,k)
', i -' F(j, —k)—

8$

BF«(j, —k)
F(j,k)

=k dr r 'Vl«C(j)(p. (3.1)

We multiply by Fr(j,k) ' on the left and by F(j, —k) '
on the right, then take the trace. The result is

8
,'i ln d—et—F(j,k)[F(j, —k)] '

Bj

—6[j(j+1)]"'r' 'P&(j,k,r) V, (r')F). (2.16)

Now it is easily shown by means of the Bessel function
recurrence relations that the (2j+1) in the denominator
of G, coming from V, ', cancels out and G has no
singularity at j=—~i. As a result f(j,k, r) and P(j,kr),
contain no singularity there either. Consequently,

F(~ k) fTU —1U —I@& fl«U —lgr —I@

= (f'~' f"~)/(2i+ 1) — (2»)
has, in general, a simP/e Pole at j=——,'. We shall return to
the detailed consideration of the point j= ——, in Sec. 7.

'2 The pole at j=o comes from l = —1.

=k dr r ' tr[F«(j k)] 'y«C'(j)sl[F(j —k)] '

where the symmetry of S has been used and the fact
that

—ln detF = trF—'—F.
8j c)j

Now for real k and real j&~ the right-hand side is
positive. Hence if we write D(j,k) for the sum of the
eigenphase shifts

a(j,k) = ——'i ln detS(j, k),
"Since V&&) remains symmetric, S does too.
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we obtain by (2.11)

and therefore
86/8 j(7r,

a(j+1, k) —a(j,k) &~.

This is the generalization of Regge's formula for spin 0'.
It must be remembered, though, that it holds, in

general, only for j& ~~. For j=0 the physical S matrix

has, of course, only one element, that for /=1. There
does not appear to be any restriction on the difference

between that phase shift and the sum of the j=1
eigenphase shifts.

where

V&»=UWL -' (4.1)

Vy'g= —Vg —2 Vg

=0
%2= —Vg+4Vg

=0

if Vg+2Vg &0)
otherwise,

if Vg —4Vg&0,
otherwise.

Then we look for the number of E=O bound states
introduced when —'U&» is replaced by —O'U&&' and 0.

increases from 0 to 1.That leads directly to the general-
ized Bargmann formula'4

4. THE NUMBER OF TRAJECTORIES AND THEIR
BEHAVIOR NEAR E=O

In order to generalize the bound on the number of
zero trajectories in the right half plane to the present
case, we first replace V&» by a negative delnite po-
tential matrix —U'&) whose eigenvalves are nowhere

bigger than those of the matrix V(&). In other words,

In order to get down to j=—~~, it would be necessary
to take the t= j—1 part to l= —-. No simple way of
doing that is known as yet. At j=0 the equations
uncouple and only the 3=j+1 part has physical
signi6cance. Therefore there is a simple Bargmann
inequality for the number of physical bound states
with j=0, but not for the number of S-matrix poles. "

%e now wish to generalize the previous results' "
concerning the way in which trajectories leave the real
axis at A'=0. The starting point is the motion of a
zero jo of detF along the real j axis for negative energy.
Straightforward generalization of the Kronskian con-
dition preceding (4.3) of the reference 2 yields for
negative energies

dk' 0 2jo 3
(4.4)

which can be used only for jo& ~. Otherv ise the zero
entails no normalizable state.

Now detF=O implies the existence of a nonzero,
k-dependent vector a such that Fa=0. The physical
signi6cance of the components of a is that they deter-
mine the "mixture parameter" in the bound or shadow
state. If one of the components of a is zero, it is a pure
l= j—1 or I=j+1 state. If that happens at E=O then
the previous results are immediately applicable. On
the other hand, if we take the more general case in
which at E=O neither component of a vanishes, so
that the "bound state" is a mixture of /= j—1 and
l= j+1, then the energy derivatives of the real and
imaginary parts of jo are dominated by the l= j—1

term. As a consequence we get as in reference 2 for
jo&~ as E —+0+

e, & dr r'U~~'&'(r)/(2 j—1)

4 Imjp =O(Eio—t)
d

(4.5)

+ dr r'U»&'& (r)/(2 j+3), (4.2)

which can be used, of course, only for j&~. The j=-,'
case can be treated as in reference 2. The result is

d Rejo/dE=0(1) for js) ~3,

=O(log~E~) for j,=-,',
=O(E'~1) for jo(-,', (4.6)

and hence for the angle y of the trajectory with the
real j axis

n„, ~& 1y-', dr rV 22&'I'& (r)

dr dr' rr"Uu&' '(r)'U~~'t'~" (r') ln(r/r')

coty=0(Ef &')= ~
=O(log lEI) = ~
=o(1)

for jp) 2,
for
for jo&2. (4.7)

dr r'U $1""'(r)

(4.3)

where

'U»""'= g (3~i+~2), U22""'=-', (~i+3~2)
'4 V. Bargmann, Proc. Natl. Acad. Sci. U. S. 38, 961 (1952);

J. Schwinger, ibid. 47, 122 {1961).

'~ It has been remarked both in Secs. 3 and 4 that at j=0 the
S matrix is diagonal and only one of the two terms, that for
l=j+1, has physical signi6cance. This is a special example of
Gell-Mann's discussion of "sense" and "nonsense" terms LM.
Gell-Mann (to be published)g. For j=0 the functions detP(j, k)
factors, F being diagonal. If a zero of detF passes through j=0
it must then be a zero of either the "sense" or the "nonsense"
factor. If it is a zero of the l = —1 factor then it does not correspond
to a physical bound state. We then have a Regge trajectory that
leaves the real axis at j&0 and yet it is not connected with a
bound state.

' Barut and Zwanziger, reference 3.
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Moreover, the trajectory leaves the real axis in the
forward direction if it leaves at jp&1 and in the
backward direction if at jp&1.

It must be recognized, though, that the significance
of the foregoing statements depends on the value of
the mixture parameter. They are true if the "bound
state" at E=O contains any admixture at all of /= j—1.
If that admixture is small the trajectory will follow a
general shape appropriate to 1=j+1 and only at very
small energies will it revert to its proper /= j—1
behavior.

which is satisfied by P(j,k; r) as well as f(j,k,r). Here

yp 1 2( 2 x)1/2

D(j)= U,C(j)U,
—=

—2(x'—', }'" v+o/4} )
with X=j+~. Thus the transformed equation is again
a function only of X', just as in the spin 0 case. The
function

f(1},k;r)= U,f(j—,k;r)U, '= f(j,k; r)U, ' (6.2)

satisfies (6.1) and the boundary condition

S. FACTORIZATION OF THE RESIDUE lime+'f(X, k; r) = 1. (6 3)

The possibility of "factorizing" the residue of the S
matrix" at a Regge pole is an expression of the fact
that, although in general each element of 5 has the
pole, there is (except in the case of accidental degener-
acy) only one vector (or more exactly, one ray) which
when multiplied by S, has a pole. That implies that
the residue E is a singular matrix whose null space" is
one dimensional, and since it is symmetric it must be
writable as

R,, (k) =a, ( k) a&( k),

so that Eh=0 for all the n —1 linearly independent
vectors b (if we are dealing with an nXn S matrix)
orthogonal to a. In the present case, of course, n=2.

In order to see the rela. tion to the zero of detF (l}.,
—k),

we reahze that detF(Xp, —kp) =0 imphes that the null
space of the matrix FP p,

—kp) is at least one dimen-
sional. %e assume it is exactly that; otherwise we
would call it accidentally degenerate and since m=2
that would imply F(Xp, —kp) =0. The range'P of
F(l}.p,

—kp) is therefore one dimensional (i.e., n —1
dimensional) and that range must be equal to the null
space of the residue of LF(l}p, —k)] ' at (Xp,kp). In
other words, the vector a(kp) is orthogonal to the range
of F(l}.p,

—kp).
Another connection comes from the symmetry of S

which implies that a spans the range of R. But the
range of the residue of t F(X, —k)] ' must equal the
null space of F(Xp, —kp), and hence by (2.11)

a pp F(hp, kp)c,

F(Xp kp)c=0.

6. SYMMETRY PROPERTIES

The transformation U, of (2.12) applied to (2.1)
yields the equation

Wt p(l}.,k; r), pp(
—l}., k; r)]= —sinprX.

The function pp is expressible in terms of f as

(6.5)

pp(X, k; r) = (2ik) 'Pfg—,,
—k;.r)F(X,k)

f(X,k—; r)F(l}„—k)], (6.6)
where

FO},,k) = U;F(j,k)U, ' (6.7)

Insertion in (6.5), together with the evenness of f as a
function of X gives

F'(l}„k)F(—X, k) F'(X—, —k—)F(—X, k)
= —2fk sinprX. (6.8)

In order to eliminate the poles from F we may then
dehne

(6.V)
and get

Qr(X k)$(—X —k) —5'r(l}. —k)Q( —X, k)
= (ik/pr)l}, ' sin2prX. (6.10)

Since

S(j,k) =e*' "+"U '$(X,k)t g(X, —k)] 'I:,
=e*~"+"U, 'F(X/k)LF(l}.)

—k)] 'L
g, (6.11)

this means that the function which satisfies a simple
symmetry relation is

Hence it is a function only of )'.
Similarly we introduce

(p(X,k; r)= U)v—}(j,k; r)U; '=P(j,k; r)U) '. (6.4)

In order to obtain the analog of the symmetry relation
obeyed by F in the spin zero case we calculate the
Wronskian of w(X, k; r) and pp( —l}., k; r) by means of
the integral equation (2.16):

0 "+D(j)r 9+&—4=k%, (6.1)
8(X,k)=—U,S(j,k)U, ', (6.12)

'7M. Gell-Mann, Phys. Rev. Letters 8, 263 {1962); J. M.
Charap and E. J. Squires, Phys. Rev. 127, 1387 (1962).' The null space of a matrix 3If is the space of all vectors a
which it annihilates: Ma=0. The range of M is the space onto
which M maps; i.e., the space of all vectors b that can be written
b =Wc.

rather than 5 itself. 8 too is symmetric and unitary. "
"Explicit calculation of 8 in terms of S, as in {9.3), shows

that 8 has the same branch point properties as S. The diagonal
elements are free from branch points at j=O and j=—1, but
the off-diagonal elements contain the factor pj{j+1)g'".
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The symmetry relation is

e
—' '8(X,k) —e' '8(—X k)

= —(k/s. )X' sin2irlig5( —X, —k)/rgb, —k)j '

= —2k sinn. X(F(—X, k)F—r(X, —k)g '. (6.13)

The discussion given in reference 2 concerning the
symmetries of S-matrix poles for positive and negative
integral or half-integral j values applies again. It will

be clear in Sec. 9 that U, is connected to the transfor-
mation to helicity states.

1
A(7) =

(47 2 1)1/2

(4g2 1)
I/'2

The residue at 'A=O is proportional to the singular
matrix

(7.2)

Consequently the residue of g at 'A=O is a left matrix
multiple of A, and so is that of F

'?. THE POINT j —I/2

We now want to determine the nature of the point
j=—

~ in the S matrix. The fact that Ii has a pole
there independently of k no longer allows us, as it does
in the spin zero case, to conclude that there is no pole
in S.' %e first determine whether Ii ' has a pole at
2= —

2

Let us examine the nature of the pole of F(X,k)
= II (f, p) at X=0. The pole of p comes from the right-
hand L"; ' in go

foo(X kI r) = (2sr)i/'O'-"P (kr) 'J/, (kr)1

R(k) annihilates the constant vector

Furthermore, a look at go shows that not only does

(Xg&0) at X=O annihilate /i, but so does its X derivative

lim —P, wo)a=0.
X~o gy

The same therefore holds for 'AI'. From this and the
fact that (XF) ' has at most a double pole at X=O, we

conclude by the theorem of Appendix C of reference 7

that (XF) ' has exactly a douMe pole there, i.e. , that
F ' has a simpie pale there

F '(li, k)
—=R'(k) X '+- (7.5)

(except for isolated values of k).
An immediate consequence of the fact that both F

and F ' have simp/e poles at X=O is that detF cur/not

have a pole there. "
%e now want to see if 8 has a pole at X =O. Direct

computation of (detF)S, which can be expanded in a
convergent power series in the "potential strength, "
shows that to first order S in general does have a pole
there.

Since F(k)F(k) '=1 we must have by (7.3) and (7.5)

R(k)R'(k) =0,

and since A'=0 it follows from (7.4) that

R'(k) =AM'(k).

Consequently we also have

R(k)R'( —k) =0

and therefore 8(X,k) has at most a simple pole at X=O.

where
F(),k) =R(k)X '+

R(k) =M(k)A,

(7.3)

(7 4)

In order to examine the residue of S at X=O we look
at the symmetry relation (6.13) near there. We get

and it can be assumed without loss of generality that
M (k) is not singular.

Consider now the determinant of F. Since 8 is
singular, detF has at most a simp/e pole at X=O. Ke
may expand it in a convergent power series in the
"potential strength" and find that to first order there
is no pole, but the constant term at X=O is in general
different from zero. This is, of course, the same result
as in the absence of the tensor force. Although we
cannot, at this point rule out a pole of detF at X=O,
the constant term at X=0 can vanish at most for
specific values of k, not identically in k. Higher orders
in V cannot alter this state of afFairs. It follows that
F ' has at most a simp/e pole at X=O (except possibly
for specific values of k), i.e. , that (XF) ' has ut most a
double pole there.

The next observation to make is that the residue

S/i(k) = ,'mkR'r(k)R'( k)-=—,'n.kM'r( ——k)A'M'( —k) =0.
This proves that 8(7,k), in contrast to the S matrix
itself, has r/o pole at j=—2i. It is, therefore, of great
importance that the scat tering amplitudes can be
expressed in terms of 8 without explicit introduction
of a pole, as we have done in (9.2) and (9.4) below.

8. THE SPIN-ORBIT FORCE

Dropping our previous restriction to local potentials,
we now want to include a spin-orbit coupling term in
the potential

&'r s=L SVo(r),.
~That means that since a Regge trajectory is defined by a

zero of detF, X=0 is not a possible trajectory end point, as it
would be if detF had a pole there, following arguments given in
reference 2. A remark made to the contrary, at the 1962 Midwest
Theoretical Physics Conference, before we realized that detP has
no pole at X=0, should therefore be withdrawn.
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since such a force is clearly indicated in the low-energy
nucleon-nucleon system. VL, 8 manifests itself in the
potential matrix (2.2) as an additional term

as I j~ —& ~. There is at present practically no experi-
mental evidence which would decide that. Nor is it
clear what the prediction of field theory would be.
In any case, such possible effects should be kept in mind.

After application of the transformation i'/, of (2.12)
which previously diagonalized the potential, 8' is now
changed to

~ ~

—1
=W+

Lj(j+1)]'"
which is a function only of )' and contains no pole at
j= —

~ ~ Hence the previous results apply again, except
for one.

There is a change owing to the fact that AV(&' is a
linear function of j. As

~ j~ ~ ~ the potential there-
fore becomes effectively stronger and stronger. Since
its growth is only linear, it is for large

~ j~ still small
relative to the centrifugal term and hence the proof of
Bottino, Longoni, and Regge, ' that S~ 1 as

~ j~ —+ ~
along any ray toward the right still holds. However,
Regge's proof that under certain specific conditions on
the potential each pole trajectory must turn back to
the left and either cross the line Rej= —

~ or else
approach it asymptotically, now breaks down. It
cannot now be ruled out that a trajectory approaches
an asymptote parallel to and to the right of the imagi-
nary j axis. Now, if for large energy all trajectories
move to the left half of the complex j plane, then there
exists an energy beyond which the scattering amplitude
always asymptotically vanishes with increasing mo-
mentum transfer. The presence of a spin-orbit force
may prevent that from happening. No matter how
large the energy, the scattering amplitude may now
always increase to infinity with increasing momentum
transfer.

It is clear that what is happening in the presence of
a spin-orbit force may happen to an even larger degree
with other nonlocal potentials, such as L L forces or
higher powers of the angular momentum, which may
be present even if the particles have spin zero. In fact,
it is then in general impossible to perform the customary
change of integration path in the Watson integral since
the contributions from in6nite

~ j~ need no longer
vanish. Furthermore, even if that were possible in
specific cases, pole trajectories could now move off to
infinity toward the right. That would imply that the
larger the energy the more strongly the scattering
amplitude would increase with the momentum transfer.

It should be remarked though, that the foregoing
conclusions for spin-orbit (and L L, etc.) forces need
not be true if the potential Vo in (8.1) is assumed to
depend on j in such a way that AV&&' remains bounded

~, (cos8) —=P,'(cos8)/j(j+1),

r;(cos8) P, (cos8=—) cos8 (c—sos8),

n, (cos8) —=LP,+&(cos8)—P, &(cos8)]/(2 j+1)
cos8

ds P, (s), (9.1)

P, (cos8) —=L(j+1)P, &(cos8)+jP,+&(cos8)]/(2j+1)
cos8

=1+j(j+1) ds sn., (s),

which are all analytic functions of j everywhere.
(Zeros of the numerators cancel those of the denomi-
nators. ) Now there are two kinds of center of mass
scattering amplitudes that can be usefully written
down. One is a set classified by the total spin of the two
particles. The only case of interest here is that of the
triplet state; the singlet is no different from the spin
zero case. If we choose the s axis along the direction of
the incident beam and write o~„„ for the triplet
scattering amplitude in which the initial and final s

"It was shov n in reference 5 that this happens under more
general conditions with angular momentum coupling.

9. THE WATSON TRANSFORMATION

Writing down the various scattering amplitudes for
spin-~ particles on spin-~ particles with the aim of
applying the Watson transformation, we are faced
with a number of problems. First, each spherical
harmonic as well as each Clebsch-Gordan coeS.cient
that appears contains various radicals such as j'~,
(j+1)'", (j—1)'", etc. ; second, as we have seen in
Sec. 2, the off-diagonal elements of the triplet state S
matrix contain the factor Lj(j+1)]'~', but are otherwise
regular, apart from the Regge poles; third, there is a
pole in 5 at j=—~. As for the first and second points,
explicit calculation shows that all the radicals cancel
out, except for a factor of Lj(j+1)]'"multiplying the
oR-diagonal triplet state 5-matrix elements. There are
therefore no branch points in the partial amplitudes. "
The third point will be eliminated if we can write the
amplitudes in terms of the elements of the matrix 8
of (6.12) without explicitly introducing a pole at
j= ——,. That is, in fact, possible. Indeed, in so doing we
actually acquire an additional factor of (2j+1) that
makes the partial amplitude vanish at j=——,'. More-
over, the use of 8 simplifies the expressions.

In order to exhibit these features explicitly we
introduce the following functions of 0:
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components of the total spin are v and v', respectively,
then we get"

00,——(2ik) 'Q(2j+1)(T,++ cos8P, T;+—~,),

Og, g
——(4~k) 'Q-(2j+1)(T, P; T,+—n,+T,P,),

0 &,0= (231'~k) 'e-*~ sin8 P (2j y1) (T,++P;

the spin directions of each of the two particles relative
to their direction of motion (i.e., "helicity amplitudes" ).
Writing 0„,.»,„,„, for the amplitude for initial and
final spin projections on the momenta p&, p2, p, &', p2',
respectively, with p, =+, — indicating forward or
backward spin, we get23

8++.++= 0--,——= (4&k) 'Z(2j+1)(T +++S~ 1)P—'

—T, cos8, ), (9.2) 0, +=0+,++——0++, +=0+, = —0++,+

00 &
——(2'"ik) 'e'" sin8+(2j+1)LT; j(j+1)~,

Tg +cos8'm'g+Tplg5,

0 = —(4ik) 'e'"'~ sin'8+(2 j+1)(T, P,

+T;+ x;+T,~,'),

and the remaining amplitudes are obtained by

o(8,v)"..= (—)"' "o(8, —v)-",-'
We have used here the abbreviations

1+T, =S, ={—jS;',; ~+ (j+1)S,
2Lj (j+1)—5'"S~ ~,~+~'&I (2i+ 1)

1+T, ==8 '={(j+1)S,&,; &'+jS,+g, ,+g'

+2Lj(j+1)5'"S—~, +i'}/(2j+1) (9 ~)

T,+-=—i j(j+1)5'"S+.-'
=Lj(j+1)/(2j+1)5{S;&,; g&

—S+, + '—
LjU+1)5'"S—. + '),

j.+T;=—S,j.
The other set of amplitudes is classified according to
~ These are obtained by explicit calculation from reference 8.

The notation is the same as there.

= —o-+,--= —0-+,++= —o--,+-
=(4ik) 'sin8+(2j+1)T, + w;,

0+ -,+-= 0-+,-+
(9.4)= (4'k)-'Z(2j+1)(T; -+T,)(,+;),

o+-.-+= o-+.+-
= (4~k)

—' P(2j+1)(T, —T,) (~,—r, ),

0++,--=0--,++

= («k) 'E(2i+1)(T +++1 S)P, —

where S, stands for the singlet state S-matrix element.
Notice here that 8 together with S, is essentially the
helicity S matrix.

The form of these amplitudes shows that there is no
difhculty in applying the Watson transform. All argu-
ments that have been used in the spin zero case can be
taken over directly.

'3These are obtained by explicit calculation from M. Jacob
and G. C. Kick, Ann. Phys. (N. Y.) 7, 404 (4959).


