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Quantization of the Electromagnetic Field*
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A method of quantizing the electromagnetic Geld is proposed, where the underlying Hilbert space has a
definite metric and the verifications of Lorentz covariance can be easily carried out with the help of Ward's
identity, The usual Feynman-Dyson rules are obtained for the electron-photon system, and the longitudinal
and scalar photons are found to have separately no interaction with the electron field.

1. INTRODUCTION

HE quantized form of electrodynamics has been
known for over three decades. "One of the many

problems encountered at a rather early stage in quantiz-
ing the electromagnetic 6eld is that, if the Lorentz condi-
tion is considered to be a restriction on the state vectors,
these state vectors cannot be normalized. ' To avoid this
difhculty, one of two rather different methods is
generally used. In one method the longitudinal and
scalar parts of the 6eld are eliminated from the begin-
ning and are thus not considered as dynamic variables, '
while in the second method proposed by Gupta, Bleuler, 4

and others the inde6nite metric of Dirac and Pauli' is
employed. The 6rst method has the feature that Lorentz
covariance cannot be recognized in the intermediate
steps and need be verified at the end, while a difhculty
with the second method lies in the interpretation of
negative probabilities.

Since both are quite complicated, it is proposed here
to consider yet a third and possibly simpler method of
avoiding this problem of unnormalizable state vectors.
For a massless vector meson 6eld, the four components
3„are independent dynamic variables. In order to de6ne
the transverse, the longitudinal, and the scalar parts of
the field, it is necessary to introduce polarization vectors.
There is no unique way to define these polarization
vectors; indeed, there is a four-dimensional family of
possible polarization vectors for each momentum. A
special choice was used by Fermi. ' In the process of
quantizing the field, because of the commutation rules,
the creation and annihilation operators for the scalar
6eld interchange their roles. For this reason, the bare
vacuum depends on the choice of polarization vectors,
and so does the bare propagator. Because of this
arbitrariness, it is proposed in this paper to consider in
a natural manner certain one-parameter families of
normalizable state vectors. %hen the parameter in-
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2. POLARIZATION VECTORS

Consider for the photon a given real four-momentum
k„ that is not zero and satisfies

k„k~=0.

For such a k„, the polarization vectors are four real
vectors that satisfy

and
gp.&."&r "=ga~

~

~.~k„=0 for r =1, 2.

(2)

(3)

Here ~,& is the pth component of the 0th polarization
vector. e|" and em& are said to be transverse by (3),
~~" longitudinal and eo& scalar. Since (2) and (3) give
twelve conditions on the sixteen numbers ~.&, there is a
four-dimensional family of possible polarization vectors.

Let 6'0 be the plane determined by the vectors ~1 and
e2, and let 6' be the plane orthogonal to 6'0. By (2), (Pais
spacelike. Therefore, (P contains two linearly inde-
pendent lightlike vectors. Take one of them to be k„, and
normalize the other one, called k„, by

k&k„= 1.
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creases without bound, the state vectors satisfy the
Lorentz condition in the norm, although they do not
approach a limit themselves. Using these vectors, the
Feynman-Dyson rules are obtained for computing the
S matrix, which is not Lorentz covariant and further-
more couples the transverse field to the longitudinal and
scalar 6elds. In the limit, however, the usual Feynman-
Dyson rules are obtained for transverse photons, while
the longitudinal and scalar photons are found to have
separately no interaction with the source 6eld in the
same limit and hence cannot be observed. In a later
paper, it is hoped to apply similar considerations to the
b 6eld of Yang and Mills. '

Families of normalizable vectors have been used by
Utiyama et al.~ to study in detail a result of Dyson. '

As usual, unless otherwise stated the summation
convention is used, with Greek indices running from
0 to 3 and Latin indices from 1 to 3. Units are chosen so
that c=h= 1, and the metric is (—1, +1, +1, +1) with
x'= I,.
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By (2), the polarization vectors ep and pp are in (P. Since then the total energy and momentum are given by
the over-all sign of each polarization vector is of no

+x r(k)+x, (k)+E, (k,c )kj, (14a)
ppp ——(e'k e—'k-p)/v2, and

and

3. FREE ELECTROMAGNETIC FIELD

The free electromagnetic field may be described by
the Lagrangian density

L = ', (B—A-„/Bx") (BA &/Bx, ), (6)

where A„are the independent Hermitian dynamic
variables. The variables conjugate to A„are

pr" = itL/i7 (BA„/itt) = ciA x/i7t (7)

Second quantization is easily carried out by Fourier
series expansion in a cubical box of volume V

(x) —I —l Q k(2 l
k

l
)—

(k) ie k x i[k .+iiow(k)e —ik.x+iik[i) (8a)
and

x"(x)= —i&' '"g""zk(p lkl)"'
XLo (k)eik. x—ii kit it P(k)e—i +k iixi ]k. i(8b)

together with the commutation rule

Lo.(k) it'*(k')j =g..hkk'

The operators c (k) for the annihilation of scalar,
transverse, or longitudinal photons are related to
u„(k) by

it„(k) =g„„g"p."(k,C k)c, (k,C k). (10)

The polarization vector, and hence the operators c„
depends explicitly not only on k= (lkl, k), but also on
k(lt) and C k. In (10), only the dependence on k and 4k
are written explicitly. The commutation rule for c
follows immediately from (9)

t c,(k,C k),c.*(k',C'k )]=g,.8kk . (11)

Given a choice of polarization vectors for each k, the
bare vacuum is defined by

c,*(k,C,) l k,C) =0 (12a)

c;(k,C,) lk, C)=O. (12b)

If the number operators are defined as usual by

1Vp(k,C'k) = cp(k, @k)cp*(k,C k) (13a)

1V;(k,C k) =c;*(k,C k)c, (k,C k), (no sum), (13b)

p x= (e'kx+e 'kp)-/v2,

where C is real.
The four-dimensional family of possible polarization

vectors has thus been parametrized by k„(two param-
eters) to 6x iP and 5'p, the direction of p& in (Pp, and the
number C. All these parameters are, in general, func-
tions of k.

P=gk kt —Sp(k, C k)

+Xg(k)+ Vp(k)+¹(k,C k)]. (14b)

Note that the energy is not positive definite, and the
bare vacuum is degenerate with many other states. It is
for this reason that the bare vacuum depends on the
choice of polarization vectors. In particular,

lkc)=g sechck e ~kek'"& '&"&k'&lko). (15)

3. THE LIMIT 4'—+~

Because of the ambiguity in the bare vacuum with
respect to photons, some additional rule must be em-

ployed to obtain definitive results for electrodynamics.
The bare vacuum

l k,C ) may be used to compute the
bare photon propagator with the result that

(k,C l TLA, (x)A„(x')jlk,C)
ig„,Ap(x x')—+(2V)—' p—k(2lkl) —'

)&fe'Pkk„k„ (k„k„+—k„k„)+e 'ekk„k„$

XLeik. (x—x')—iiki (&—&')+eik (x'—x)—iikl (i'—i)j (1{j)

Consequently, the Fourier transform of the bare
propagator is given by

D„.(k; k C) = ig„.(k—' ip) '—+2pi6(k')

X[e'~kk„k„(k„k,+k,k„)—+e 'Pkk„k.j. (17)

Since there is no way to specify naturally how k should
be chosen, a meaningful theory must be independent of
this choice. Therefore, the form of (17) indicates that
the physical world can only be related to the limit

(18)

Since it follows from (15) that lime „lk,C') does not
exist, results of quantum electrodynamics are to be
obtained by the following rule: In order to obtain an
element of the 5 matrix in quantum electrodynamics, it
is computed by 6rst using l k,C) as the bare vacuum, and
then taking the limit (18).

4. FEYNMAN-DYSON RULES

Using a bare vacuum specified by k and C, The
Feynman-Dyson rules for the electron-photon system
are those given in Fig. 1. The notations used there are
as follows: e is the number of vertices, Ã, is the number
of externa) lines, X; is the number of internal lines, and
X& is the number of electron loops in the Feynman-
Dyson graph under consideration. In the first column
of Fig. 1, the usual Feynman-Dyson rules are shown;
quantities that approach zero in the limit (18) are given
in the third column; and the rest in the second column.
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It remains to study the limit (18).Dyson' has pointed
out that in D„„aterm proportional to either k„or k„can-
not contribute to the S matrix if the electrons are on
their mass shells. In perturbation theory this follows
from Ward's identityo

zA —ss zk —ss

Therefore, in the computation of an element of the
5 matrix on mass shell, the terms appearing in the
second column of Fig. 1 do not contribute and hence
may be omitted. After this omission, those in the third
column are seen to contribute nothing in the limit (18).
Therefore, the usual Feynman-Dyson rules are obtained
together with the statement that the longitudinal and
scalar photons separately do not interact with the
electron field. In other words, the 5 matrix consists of
diagonal blocks so that the numbers of longitudinal and
scalar photons of each momentum are separately con-
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served. The block with no longitudinal or scalar photons
corresponds to physical reality.

5. DISCUSSION

One of the major problems with a quantization pro-
cedure where a definite metric is used and where A„are
considered to be four independent fields is the follow-
ing. "The commutator $8A„(x)/Bx„,A„(x')] is a c num-
ber and does not vanish. How is this to be reconciled
with the observation that its vacuum expectation value
seems to be zero because of the Lorentz condition on the
state vectors? Within the present formulation, the
answer is as follows: It has been shown that every
element of the S matrix on the mass shell formally has
a limit under (18). But quantities that are not gauge
invariant often have matrix elements that do not
approach a limit under (18). For example, it is readily
verified that

(k,C i c3(kgb, )A„(x) i k,4)
—1 V

—1/2)'k~ 1/2(sc'gk +e—4+ )e
—ik.x+i(lt(i (20)

Even though c/A„/Bx„operated on a physical state does
lead to a small factor of the form e ~, this small factor is
cancelled by a corresponding large factor from A„as
seen from (20). Thus, the vacuum expectation value of
the above commutator is not zero.

The Lorentz condition on the state vector has not

"This point was 6rst raised by Professor Yang. See S. T. Ma,
Phys. Rev. 80, 729 {1950}.

been explicitly stated so far. It follows from (15) that

Lco(lt 0)+cq(k0)]
~
k C) = (1—tanhC k)co(lt0)

~
kC ), (21)

[c,*(1,0)+c,*(1,0)]~
k,C)
= (1—tanh4 i,)c,*(k,0)

~
k,C ). (22)

Consequently, in the limit (18), the Lorentz condition is
satisfied in norm. Thus, the Lorentz condition is
naturally satisfied if any sense is to be made of describ-
ing the massless vector meson field by four independent
fields without indefinite metric. This situation is quite
diferent from the case of the massive vector meson field
treated by Lee and Yang. "

Finally, it is to be noted that in the limit (18) each
4» approaches infinity independently, although some
uniformity is probably desired. Since the derivation of
the usual Feynman-Dyson rules under this wide class
of limiting processes depends critically on the validity
of Ward's identity, the corresponding situation with
other gauge fields can be much more complicated.
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