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The Lindhard approximation to the frequency- and wave-number dependent dielectric constant, e(k,ao),

provides a good description of many properties of the degenerate electron gas. However, it is known that
the short-range behavior of the gas is not adequately represented by this function and it is necessary to
include certain additional terms. DuBois incorporated some exchange terms into e(lr.,cu} and was able to
obtain the correction to the plasmon excitation frequency. Though his 6nal results are reasonable and have
been corroborated using alternative approaches the "corrected" dielectric constant is found to violate certain
a priori restrictions. In this paper a more accurate dielectric constant is derived. In order to obtain an ac-
ceptable function which does not violate the sum rule and positive definiteness restrictions on the imaginary
part it is necessary to account for three types of corrections. These corrections originate in (1) the effective
screening of the long-range interaction between particles; (2) the shift in single-particle energies of electrons
and holes; and (3) the tendency of particles and holes to form bound states when any repulsive interparticle
interaction is present. %'ith these corrections all spurious singularities in the dielectric constant disappear.
Numerical calculations of e(k,co) and of moments of the imaginary part of this function have been carried
out for an intermediate electron density equal to the density of conduction electrons in aluminum. The
resulting dielectric constant departs by as much as 50% from the Lindhard form for low frequencies, but
has similar qualitative features. The moments can be used to determine the high-frequency behavior and
other properties of the electron gas.

I. INTRODUCTION

'HE dielectric formulation of the many-body
problem has been found to be very useful in

treating the degenerate electron gas and for studying
properties of solids which depend strongly on electron-
electron interactions. ' ' The frequency- and wave-
number-dependent dielectric constant can be used to
rigorously describe and relate many properties of the
system. These properties include any that can be ex-
pressed in terms of an expectation value of a two-body
operator, or in terms of the rate of transitions out of the
ground state induced by a one-body operator or ex-
ternal field acting on the system. ' Thus, this approach
has been applied in analyses of electron scattering by
thin metal 61ms23'; and for studying the pair dis-
tribution function and the ground-state energy of the
degenerate electron gas, and the nature of the plasmon
excitation mode. It has also been shown~' that the
effective interaction between electrons, ions, or im-
purities in the system can be expressed in terms of the
dielectric constant. This function, in effect, transforms
the elementary two-body Coulomb force into a non-

~ Supported in part by the U. S. Air Force Once of Scienti6c
Research under grant AFOSR—62—46, and by the National Science
Foundation while the author was a Postdoctoral Fellow at the
%eizmann Institute of Science. A preliminary report on this work
was presented at the 1962 Annual Meeting of the American Physi-
cal Society LA. J. Glick, Bull. Am Phys. Soc. 7, 67 (1962)j.' J. Lindhard, Kgl. Danske Videnskab, Selskab, Mat. -Fys.
Medd. 28, 8 (1954).' J. Hubbard, Proc. Phys. Soc. (London} A68, 976 (1955).

3 P. Nozieres and D. Pines, Phys. Rev. 113, 1254 (1959).' A. J. Glick, in "Lectures on the Many-Body Problems, Naples,
1WO,"edited by K. Caianiello (Academic Press Inc. , New York,
1962).' A. J. Glick, Ann. Phys. (N. Y.) 17, 61 (1962).

6 R. H. Ritchie, Phys. Rev. 114, 644 {1959).' J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (2957);
A 242, 336 (1958).

8 J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
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local, time-dependent interaction which incorporates
the complicated screening e6ects of the intervening
electron gas. Experimental studies of many phenomena
in solids have recently been re6ned to the point where
it has become interesting and necessary for theory to
incorporate the e6ects of these electron-electron
interactions.

However, the dielectric constants used in previous
studies are not completely satisfactory and violate
certain a priori restrictions. Using the dielectric con-
stant first found by Lindhard, ' one can obtain a de-
scription of screening effects and of the plasmon excita-
tion mode which is very accurate for high electron
densities and appears to be quite good even for metallic
electron densities. However, it has been shown that
short-range sects are badly represented; indeed for
metallic densities the pair distribution function found
with this approximation becomes negative for small
separation between particles. '" DuBois" calculated
an improved dielectric constant valid to the next order
in perturbation theory. %hile perturbation theory
cannot be applied to calculations of most properties
of the electron gas due to the long-range character of
the Coulomb force, it had been suggested4' " that it
might be valid for determining the dielectric constant
of the medium. DuBois' dielectric constant does tend
to remove the difhculties with the pair distribution
function to lower densities, but it is now found that
another important condition is violated: The imaginary

9A. J. Glick and R. A. Ferrell, Ann. Phys. (N. Y.) 11, 359
(1960)."D. Pines, The Many-Body Problem {W. A. Benjamin, Inc. ,
New York, 1961)~ In these notes Dr. Pines disagreed with this
result, but he has more recently come to agree that it is, indeed,
correct (private communication}."D. F. DuBois, Ann Phys. (N. Y.) 7, 174 {1959);8, 24
(1959).
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part of the new dielectric constant becomes negative
for certain frequencies.

In this paper, we calculate a more accurate dielectric
constant which appears to be free of these difBculties.
It is shown that it is not merely the long-range nature
of the Coulomb force which causes trouble. For any
repulsive interparticle interaction ordinary perturba-
tion theory is inadequate for determining corrections
to the dielectric constant valid for all frequencies and
small wave numbers. In the present case the breakdown
of perturbation theory is due to three different effects
of interaction. These are (1) the long range of the
Coulomb force; (2) small shifts in single-particle en-
ergies and the Fermi surface; (3) the tendency of
particles and holes to form a bound state when any
repulsive interparticle interaction is present. As a
result it is necessary to combine three groups of terms
for calculating the dielectric constant.

The method of calculation is the same as that dis-
cussed in references 4 and 5. Ke use a diagrammatic
many-body perturbation theory or equivalent Green's
function formalism to 6nd the linear response to a
density Quctuation. The imaginary part of the dielectric
constant is then given by the contributions of the
reduced class of diagrams which comprise a "black
bubble. " Ke here consider the completely degenerate
electron gas, and restrict ourselves to the long-wave-
length (k-+0) limit where the diSculties with the
perturbation treatment are most pronounced.

In the next section we consider the corrections given
by perturbation theory to Lindhard's dielectric con-
stant' and we obtain a function equivalent to that used
by DuBois."However, the present derivation gives the
imaginary part of the dielectric constant directly and
the result evidently violates the a priori positive-
de6niteness condition.

In Sec. III an effective screened interaction is derived
from a consideration of higher order processes. Kith
this interaction the divergences associated with the
long-range Coulomb force disappear but by itself this
improvement does not provide a satisfactory dielectric
constant. In Sec. IV the single-particle propagators are
modi6ed to incorporate self-energy effects. In this way
we eliminate the familiar severe singularities in higher

order terms of the perturbation series which are due to
small shifts in single-particle energies. In the present
approximation this correction can be taken into account
by introducing an effective mass into particle and hole
energy differences. The effective mass is calculated and
found to differ from the electron mass by less than 5%
for any electron density.

%ith the effective interaction and effective propaga-
tors derived in Secs. III and IV incorporated into the
correction terms to the dielectric constant, it still re-
mains necessary to provide for the presence of a pole
in the free-particle-hole propagator. Thus, in Sec. V an
acceptable dielectric constant is obtained by carrying
out a summation over a class of graphs containing re-
peated particle-hole scat terings. This sum is over
graphs which are the exchange counterparts of the
familiar simple "bubble graphs. " These calculations
indicate that even for very small wave numbers where
the "direct" terms in perturbation theory would be
thought to be very much larger than their individual
exchange counterparts, the exchange terms are still
suKciently singular for certain frequencies that they
must be combined over all orders to make valid im-
provements in the calculation. The resulting dielectric
constant is well behaved and provides reasonable cor-
rections to results obtained with Lindhard's function.
Section VI consists of a short summary.

II. PERTURBATION THEORETIC CORRECTIONS

In reference 4, it was shown that the imaginary part,
~2, of the frequency- and wave-number-dependent di-
electric constant, e(k,co) can be expressed in terms of the
real part of an integral over positive t which takes the
form (t't equal to unity)

s(lr)
eg(k, (o) =

0

X(eolp (t)p (0)le,)„(2.1)

where v(k) is the Fourier transform of the interparticle
interaction, 0 is the quantization volume, p&(t) is the
Heisenberg density Quctuation operator:

(c) (d)

I'1(:. 1. Typical graphs which contribute to the imaginary part
of the dielectric constant. (a) is the graph which reproduces
Lindhard's approximation while (b), (c), and {d) represent the
6rst-order corrections which were included by DuBois.

and 4'0 and II are the many-particle interacting ground
state and Hamiltonian of the system. The rules for
drawing diagrams and 6nding their contributions to the
matrix element in (2.1) were given in reference 4, but
for convenience we include a momentum space form of
the rules in Appendix A. The subscript 8 on the matrix
element refers to the graphical description and restricts
the contributions to terms coming from the "b)ack
bubble" graphs, i.e., those which cannot be divided into
two unlinked parts by cutting a single interaction line.
Typical contributing graphs are shown in Fig. 1. The
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real part, ~j., of the dielectric constant can then be
found from the Kramers-Kronig dispersion relation,

contributions to the matrix element:

2 zo'oz(k, zo')

oi(k, zo) = 1+—6' dzo'.

p Q7 —M

(2.2)

lvf, E.»=-
4@aiQ k1,ke

Xe '"'v(ki —kz)S(ki, zoi)S(ki —k, oiz —oi')

XS(kz,zoz)S(kz —k, o;z —zo'), (2.5a)

2&o
oz (k,~) ~ u&(1—)u)),k~ @ok'

do»zdzozd4o' e '"'v (ki—k,)
4r'iQ». k2

(2.3)

The contribution from Fig. 1(a) gives Lindhard's' di-
electric constant o (k,oo). As k approaches zero this M F «+M F ie
result reduces to

1

where u=op/(kvp) wit'h vp denoting the Fermi velocity,

q(x) =1, for s)0
=0, for x &0,

(2.4)

and ao= 1/(zzze').
The first-order corrections to (2.3) come from the

graphs shown in Figs. 1(b), (c), and (d). Applying the
rules of Appendix A and integrating out the variables
restricted by the 8 functions, we find the following

XS(k„oo,)S(k,p&,)S(kz,oiz)

XLS(ki—k, zoi —oo')+S(ki+k, oii+zo')]. (2.5b)

The integrations over the ~; can be carried out using
the simple structure of the particle propagators S(k;,zo;)

given by Eq. (A1). After substitution into (2.1), the
integrations over t and co are easily performed as
indicated in Appendix 8 and the first-order corrections
to e~ become

v(ki —kz)ztk, k&
X

~kg+k +k2 ~~k11~k1—k ~k2 ~k2—k ~k1+~k1—k

4zrv(k)
oz = Q ztkz&zlkz —k&'gkz&[ft(oi —Eki+Eki k) —6(oi+Ekz Ekz k)]

Q2 k1 k

v(ki —kz —k)gk, ~k&
(2.6a)

2zrv(k)
oz"+oz"—— — p zlk, &zonk, k&zlk, &Lb'(oi —Ek,+Ek, k)+5'(zo+Ek, —Ek, k)]Lv(k, —kz) —v(ki —kz —k)], (2.6b)

Q2

v (k) = 4zrez/kz. (2.7)

The sums over k~ and k2 can be replaced by integrals
which are easily evaluated in the limit k —& 0 for which
the regions of integration collapse into very thin caps
on the Fermi sphere. "

Combining Kqs. (2.6), the correction to oz can be
written in the form

1 — 1 1
6m+

xuo9P — 1+I 1—e-
n(1 —lul)

where 6' denotes principal part in the integration over
the pole in the denominator of (2.6a) and the zlk& and

gk& are defined in Appendix A; note that Eq. (2.6b)
contains a derivative of the 8 function with respect to
~. For the electron gas the interparticle interaction
takes the form

Substituting into (2.2) we obtain

1 1 1 1—u
6m+ —-- — -- ln

zrzaozkz 1+u 1—u 1+u

+12—— ——,(2.9)
1—u 1+u

with
dfk/du =2uoz! (v u„'), (2.10)

which corresponds to the correction to the polarization
propagator found by DuBois" from graphs analogous
to Figs. 1(b), (c), and (d).

As shown in reference 9, it is also of interest to know
the I moments of the diGerential oscillator strength
dfk!du,

zz„z=zo /(kvo)z=4zrzzez/(zzzk vo )=4ko/(3zrzzok ) (2.11))uf- 2
+ ln —4 b(1—iud) . (2.8)

u 1—/u/ The zeroth moment is fixed by the well-known sum rule,

Though this result is very singular, it is integrable.
du uoz = zruo /2. (2.12)

"In (2.6b) the gk k does not appear directly from application
of the rules but the e6'ect of cancellation between the first and
second e(lr)'s gives the same eGect.

'3D. I'. DuBois, Ann. Phys. (N. Y.) 7, 174 (1959), Ap-
pendix A.
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11 7
X 1+

~&ohio 12~2&o2+o2-
(2.19)

I0-

Since Lindhard's function (2.3) already exhausts this
sum rule, the contribution of corrections to e2 to the
zeroth moment should vanish. This condition is, indeed,
satisfied by (2.8). Calculating the correction to the
higher moments, one easily 6nds

2
6(u")—= u ufo, du, (2.13)

x'Np o
2

6(uo) = —1/5m kooo, (2.14)

a(u4) = —4/35prkoao, (2.15)

which can be compared with the small-k result of
reference 9,

(u')o p
——3/5, (2.16)

(u')o o=3/7. (2.17)

Using (2.14) we can substitute into Eq. (20) of refer-
ence 9 to obtain the "exchange correction" to the
plasmon frequency. The result is in agreement with
that found by DuBois" and others, giving to order k'

/ = 1+(9 kpap/40) (k /ko ) (1—1/3 koap). (2.18)

Similarly one can use Eq. (25) of reference 9 to 6nd
the plasmon oscillator strength which becomes, to
order k4,

27+ko2&o2 k4

dF),——1——
p) 700 ko4

(a)

(b)

FIG. 3. (a) First-order irreducible graphs which contribute to
the dielectric constant when an electively screened interaction is
used. The chains represent the approximate interaction which is
found from an integral equation represented schematically in (b).

These corrections to the plasmon frequency and
strength are small for high densities and are even
reasonable for metaHic densities. For a density equal to
the density of conduction electrons in aluminum one
has 1/(o koao) =0.34.

iNote, however, that A&2 is highly singular, and in the
region of I=1 this function becomes much larger than
the zero-order term given by (2.3). Thus, for small k
and I near unity it appears that perturbation theory
fails. Indeed, as shown in Fig. 2, the imaginary part
of the dielectric constant is driven negative in this
approximation in viola. tion of an a priori restriction. A
negative value of e2 for positive frequencies imp)ies
that the system generates rather than absorbs energy
on excitation from the ground state. Such a result in-
dicates either that we have incorrectly chosen the
ground state and there actually are other states of lower
energy, or that perturbation theory has broken down
and gives meaningless results in this frequency range.
Since the Coulomb interaction between particles is re-
pulsive, it is unlikely that there exist states of lower
energy than the normal ground state. Hence, we are
concerned in the remainder of this paper with the
derivation of a more accurate correction to ~2, which
seems to be in better accord with the a priori criteria
at our disposal.

III. THE EFFECTIVE INTERACTION

-0.5—

0$ Lo
I

I

I

I

I

I

I

I

I

FIG. 2. Imaginary part of the dielectric constant in units of
2k0 j(a0k ) as given by first-order perturbation theory and plotted
as a function of e for an electron density equal to the density of
conduction electrons in aluminum. Note that this function violates
the a priori positive-definiteness condition for u=1 and also has
a 8-function peak with infinite coeKcient at 1= 1. The broken
line shows e2 in the zero-order (Lindhard) approximation. Both
forms of e2 vanish for N)1.

A frequent cause of the failure of perturbation
theory, when applied to the electron gas, is the long-
range nature of the Coulomb force. However, for the
determination of e2 it is shown in this section that
perturbation theory is unsuccessful even with a screened
interaction between particles. YVe erst investigate how
certain higher order processes introduce an effectively
screened interaction and then we reconsider the graphs
of the previous section as modihed by the effective
interaction for calculating a screened A&2.

Hubbard' has shown how the perturbation series
which we have been using can be formally rearranged
in terms of the effective interaction. One then restricts
attention to a class of irreducible graphs (to avoid
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counting contributions more than once), and the
effective interaction is determined as a sum over all
possible graph parts which begin and end with a simple
interaction line, but have no other external lines. It
has been shown'" that the only modi6cation in the
rules of Appendix A in this treatment is that in rule 1
the interaction e(k;) is replaced by

'U(k;, (o;)=v(k,)/e(k„, od,), (3.1)

where e(k;,pd~) is the exact dielectric constant of the
system except that its imaginary part has opposite

sign for negative ~;, i.e.,

whereas
e(k co) = e(k —co),

e(k&co) = e(k& cd)

(3 2)

(3.3)

The Grst-order irreducible graphs which contribute
to es are shown in Fig. 3(a). Since the effective inter-
action is not instantaneous these graphs represent
more time orderings than do Figs. 1(b), (c), and (d).
However, the additional contributions are characterized
by terms of the form

['U (kr —ks) Ear Esp) U—(kr ksj M+Egr k Ego)]p
(v'+Es, a—Es, rd'+Es, a—Es,—sn

containing a difference between 'U 's or 'U+'s, where 'U (k,cd) and 'U+(k, u) are those parts of 'U(k, &u) which are
analytic in the lower and upper half of the complex cu plane, respectively. 4 Note also that the co' dependence is
such that the terms tend to cancel when the denominators are small. %e, therefore, neglect these additional con-
tributions compared to those which contain terms of the form

[U—(k1 k2 i Eky N Esa—s)+0+(k1 ks 1 rd +Esr—k Esp)] ~

+ +~k1—k +@1+&O( ++kg—k Ek2+ZQ

In this latter case the denominators enhance the contributions for co' such that the bracketed expression can be
approximately taken as

['U (k —k; E, E,)+'U+(k— k; E,—E—,)]='U(k —k; E,—E,). (3.4)

Replacing the effective interaction by its value where the coefficient peaks, we obtain an expression for the screened
des which is very similar to (2.6),

4rre(k)
+es 2 riky&risg —kWko&[6(& Esy+Eky —a) ~(rd+Esr Etr—k)]

Q2 k1 kg

U(kr ksj Ekr—s Esp)rik~k& U(kl ksi Ear Eao)riks —k&
X 6'

+km+ k ~k2 ~kl+ ~k 1—k +h2 +k2—jt +kl+ ~k1—k

2orn(k)
+ Z oia»ris, -s&oias&P'(rd —Es,+Es, s)+&'(~+Es,—Es, s)]

0
)&['U(kr —ks, Es,—Es,)—'U(kr —ks—k; Es, a —Es „)]. (3.5)

For our purpose a sufBciently accurate effective inter-
action can be found from the integral equation repre-
sented by Fig. 3(b). Its solution is well known and can
be written in the form (3.1) with (k,,e)rgdiven by
Linhard's' function e~(k, ,&o;). But we need not retain
the full and complicated dependence of e~(k, ,po;) on k,
and ro;. In the limit of small k, both L~ and k2 are re-
stricted to thin caps on the Fermi sphere and, hence,
are associated with energies close to the Fermi en-
ergy Eo. Since only the energy differences EQ1 E]fg,
Ea, s—Ear s enter (3.4), we make little error if we
replace ~(ek;, )rdby the static dielectric constant
e (k;,0). The k, which enter (3.5) all lie in the interval
0&k, (2kp. Since e~(k, ,O) is real and monotoni
decreasing, and behaves as

for small k;, and as

ei(2ko, O) = 1+3&v s/2kPoos (3.7)

for k, =2ko., it should be a good approximation to use

(3.8)e (k;)/ei(k; rd;) =4orss/(k s+2nkp')
where

2n =3(u,s/(kpep)s =4/(orkeep). (3.9)

Thus, the graphical analysis leads us back to an ap-
proximate Yukawa-type screened interaction. '4 The
evaluation of (3.5) now proceeds as for (2.6) with the
result

e~(k, ,0)=1+3(o '/k'eos

cally '4 A more accurate analysis shows that the potential actually
falls off more slowly over large distances than the Yukawa force
and behaves as cos(2kor)/r . See J. Langer and S. Vosko, Phys.

3.6 Chem. Solids, 12, 196 (1960).
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2++ 2+at—2Na ln +4u rl(1 —u)+ (1+a) ln —2 8(1—u) . (3.10)

Figure 4 contains a plot of this expression using +=-',
which is appropriate for an intermediate electron density
corresponding to the density of conduction electrons
in aluminum. Note that ht. 2 diverges only loga-
rithmically near u=1 and the 6 function has a 6nite
argument. However, A&28 is still not an acceptable
correction to the dielectric constant in the region of
m=1. It is not merely the long-range nature of the
Coulomb force which causes perturbation theory to
break down, and it is necessary to look at additional
high-order processes which might cause difficulty.

In the remainder of this paper we consider graphs
for which the same arguments, which led to the eR'ective

Yukawa interaction (3.8), seem justified, and thus we

continue to use this effective instantaneous force
throughout. In this approximation the electron gas
can be viewed as a gas of particles which interact via
the elementary two-particle Yukawa force (3.8). Then
De2s given by (3.10) is the first-order perturbation cor-
rection to e2 for small k, which is completely analogous
to (2.8) for a gas with unscreened Coulomb interactions.

For comparison with the unscreened case we give the
moments of u calculated with A&2~. The correction to
the zeroth moment again vanishes exactly in accord
with the sum rule. The correction to the second moment
analogous to (2.16) is

~s(N2) = —(1/5~~~, )

X (1—2n+ (n/2) (1+2a) ln/(2++)/n]}, (3.11)

which approaches the unscreened result for small 0.

IV. THE EFFECTIVE MASS

Having found an eGective interaction between par-
ticles we now investigate the eHect of using improved
single-particle propagators. Note that Figs. 1(c) and
(d) are essentially the same as Fig. 1(a), except that
in each of these graphs one of the particle propagators
contains a self-energy correction. Since the iII function
which appears at ca=1 in De2 arises from (2.6b), the
contributions of these graphs, one might suspect that
higher-order self-energy corrections could individually
also give large or singular contributions and hence
should be considered.

(c)

Fro. 5. (a) Zero-order and (b) erst-order irreducible skeleton
graphs which contribute to the dielectric constant when the
effective interaction and eRective single-particle propagators are
used. The single-particle propagator is taken as the solution of an
integral equation represented in (c) and the eRective interaction
can be approximated by an instantaneous force for small k as
indicated in Sec. III.

0.5

-2,0

Fro. 4. The screened correction 6~28 to the imaginary part of
I indhard's dielectric constant in units of 1/(~u0'k') plotted as a
function of e for an electron density equal to the density of con-
duction electrons in aluminum. This function, which was calcu-
lated from the graphs of Fig. 3, is not as singular as the unscreened
correction shown by the dashed line, but still violates the positive-
de6niteness requirement for I= 1.

It is well known" that self-energy corrections can
be taken into account by replacing the single-particle
propagators S(k,,ar;) by eA'ective propagators $(k;,co;).
This procedure is equivalent to another rearrangement
of the perturbation series after which only a reduced
class of skeleton graphs, without any self-energy parts,
are considered, and the new propagators are determined
by the sum over all possible graph parts which begin
with an incoming particle line S(k;,co;), end with an
outgoing particle line S(k,,&o;), and have no other ex-
ternal lines. Alternatively, S(k;,co;) can be found from
an integral equation

s(k;,~;)=S(k;,co,)+S (k;,(a,)Z (k;,co;)8 (k;,(s;), (4.1)

"A. Klein and R. Prange, Phys. Rev. 112, 994 (1958).
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s(k;,co;) =
Z'g It

Nj Ek ZZ (~kj) ohio)+ on

+ (4.2)
oo;—Ek,—iZ (k, ,oo;) —in

V,'e take as the effective propagator the solution of
the integral equation represented in Fig. 5(c), which

in terms of the "mass" operator or irreducible self-

energy operator Z(k;,a&;). As noted by Klein"" S(k;,co;)

can be expressed in a form which is similar to S(k;,oo;).

Then the rules of Appendix A remain valid except that
in rule 2 one must replace S(k;,co,) by

contains the first approximation to the mass operator
in terms of the effective interaction:

00

Z (k;,oo;)= Q Coo,
2~0 j;

Xs(k, ,~,)v (k;—k;, ~,—~,). (4.3)

We further approximate 'U(k, ,a&~) by 'U(k~)=v(k~)/
o~(k, ,co;) as given by (3.8), resulting in a Z (k;,co,) which
is purely imaginary and independent of M;. The first
two skeleton graphs which arise are shown in Figs. 5 (a)
and 5 (b). Applying the new form of the rules and carry-
ing out the integrations over frequency, we obtain their
contributions in the form

= [2vv(k)/fl] Z ks 1kz) S» k&[~-(oo E»—*+E» k') -&(oo—+Eke Ek& k)]—&

4orv(k)
/kl) lkl —k& lk2)B(~ Ekl +Ekl—k ) ~(~+Ek1 Ekl—k )]

02
'U(kg —kk —k)gk, +k& 'U(kg —ko)gk, k&

Eko+k*
—E)„*—Ek,*+Ek, k* Ek, —Ek, k —Ek, +Ek, k

(4.4a)

Ek" lP ~(2——m) jiZ(k), (4.5)

'6 A. Iaein, in Lectures oe the Mazy Body Problem, Auples,
1960, edited by E. R. Caianiello (Academic Press Inc. , New Yorl;,
to be published).

"Note that the present de6nitions of S(h,co) and Z(k, co) are
consistent with references 4, 5, and 7, but differ by a factor of i
from those used in references 15 and 16.

and the redundant frequency dependence of Z(k, oo) has
been suppressed. Except for the appearance of EI,*'s in
place of Ej,'s these terms are identical to expressions we
have previously encountered. The first gave rise to
Lindhard's oP(kp&), and (4.4b) resembles (2.6a). The
term (2.6b) has no counterpart in the present scheme
since its contribution has been absorbed into (4.4a).

Note that only energy differences of the form
Ek, —Ek, k enter into Eqs. (4.4), and in each case k~
(also kk) is restricted to values outside the Fermi sea
and k~—k to values within the sea. As a result, in the
small-k limit k~ takes on values within a very thin
cap on the Fermi sea. The relevant energy differences
are easily evaluated for this case. introducing an efI'ective
mass mo and explicitly evaluating i[Z(k&) —Z(k~ —k)],
we find to first order in k

Ek,*—Ek, k'=kg k/m*,
where

1/m*= (1/m){1—(1/2 koa, )
X[2—(1+n) ln(2+n)/n]j, (4.P)

or, using (3.9),

m*/m= (1—(n/4)[2 —(1+n) ln(2+n)/n]) '. (4.8)

m*/m is plotted in Fig. 6 as a function of n For these.

graphs the e6ective mass is equal to the electron mass
for n=0 and for very large n, while for intermediate
coupling it is smaller, but never departs from m by
more than 5%.

The Lindhard self-energy corrected e2 now becomes
[compare (2.3)]

where

oo"= (2&o/oo&') ( m' /m)~' v(1
~

~'~ ), (4.9)

14 = Q(m /m) = m (0/(kko). (4.10)

However, this function by itself no longer satisfies the
sum rule (2.12), but must be augmented by oko',
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FIG. 6. The ratio of the effective mass to the electron mass as a
function of the dimensionless screening constant a. The effective
mass is smaller than m, but doesn't depart from it by more than
5%. For u =0 and very large cx the effective mass equals the elec-
tron mass. The numerical calculations of the dielectric constant
reported later in this paper are for a=). In this region the dif-
ference between m and m* is most pronounced.
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Q (1—u') (1—u'+a) la+La'+2a(1 —u")j'i'}+a(1—u")
+ ln (4.11)

fa'+2a(1 u—")J" (1+u') (1+u'+a)(a+La'+2a(1 —u")Ji'}+a(1—u")

Combining (4.9) and (4.11) and using (3.9) we find the imaginary part of the self-energy corrected dielectric
constant e2

—g 1—I' I' 1+— — ln

I (1—u') (1—u'+a) l a+ La'+2a(1 —u")j' '}+a(1—u")—
+ ln (4.12)

fa'+2a(i —u")j'" (1+u') (1+u'+a)(a+t a'+2a(1 —u")]' '}+a(1—u")

is plotted in Fig. 7 with o.=-', . Note, in comparison
with Figs. 2 and. 4, that the 8 function at I= 1 no longer
appears, but that the largest contributing frequency
has been shifted from 1=1 to m=1.05. This shift re-
flects a small change in the single-particle energy of
particles near the Fermi surface due to interaction
between the electrons. The singularities which arise in
the pure perturbative approach, with Figs. 1(c) and
(d) contributing 8-function peaks to oo and higher order
terms giving rise to derivatives of 8 functions, provide
a rather violent indication that these energy shifts
occur, but their accurate treatment can only be ac-
complished by means of a formal mass renormalization
as carried out above.

lO, i

(uo) s E—] (4»)
3 ts)3 2 5z

(uo)s osE
I

1y
5 m*l mkpapm~

-4+~ 2+a'l——,', (2a'+10a+9) ln
~

. (4.14)
3 a i

Though e28E provides an improved approximation to
the imaginary part of the dielectric constant it still
contains a logarithmic divergence which tends to drive
it negative for I near its maximum value. Thus, a
further refinement of the calculation is necessary to
obtain a positive-definite ~2. Ke proceed with this
calculation in the next section after recording two
moments of e2
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Equation (4.13) is in agreement with the sum rule
(2.12) and it holds independent of whether a is chosen
to have the specific value (3.9) or is just retained as an
arbitrary screening parameter. Using (3.9) and (4.8),
the second moment reduces to the DuBois result (2.14)
in the high-density limit (a —+ 0):

(u')~~osE ~ -'(1—a/6).
a-+0

(4.15)

00

M E '= —— Ao' e '"'

V. THE CORRECTION TO @

The contributions of Figs. 5(a) and (b) to the matrix
element needed for ~2 can be expressed in the form

FIG. 7. Imaginary part of the dielectric constant calculated
from the graphs of Fig. 5. Here e28E(k,co) is plotted in units of
2ko/(aok }and as a function of u for an electron density equal to
the density of conduction electrons in aluminum. There is no
6-function peak in this approximation and the highest I for which
e2 is not zero has been shifted from m=1 to I=1.05. However,
this approximation continues to exhibit the logarithmic singularity
which causes a violation of the positive-de6niteness requirement.
The broken line shows the zero-order ~.

XP PF(k, ,k,co')+ (1/Q)P(kg, k,a)')
k1

XQ 'u(kx —ko)F(ko, k,co')$, (5.1)

where F(kq, k,o&') is related to the propagator for a
mass corrected, but otherwise free, particle and hole:
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F(kl, k,(v')

1
IfALII g(kl ki &I ~ )g(klylt11)

2m—

0k1—k&'Qk1& /k' —k&gk1&

10 —E2,*+E2, 2*—2X ca —E2,*+E2, 2*+2ll

+ 2 ~ ~

Fzo. 8. Graphs which give rise to a positive-definite corrected
c2. These graphs account for repeated scatterings of eGective
particles and holes via the efkctive-interparticle interaction.

Q k1—k&'9 kg& g kj,—kggk1&

a)' —k kl/2II* —A I'' k—kl/. 212*+ill
(5.2)

G (kl, k,10') =F(kl, k,co')H (kl, k,co').

Then H(kl, k,c0') satisfies

(5.6)

For small k this propagator has a pole for c0'=kk2/212*

which can be associated with the tendency of particles
and holes to form bound states. It is the presence of this
pole which causes the second term on the right of Kq.
(5.1) to become large, signaling the breakdown of per-
turbation theory for N'= 1. In order to properly account
for the bound state it is necessary to use a better
propagator which incorporates repeated particle-hole
scatterings. Thus, we now include the set of graphs
shown in Fig. 8. Applying the rules of Appendix A and
using the effective interaction of Sec. III and the
propagators of Sec. IV, we can express the contribution
of these graphs in a form analogous to (5.1):

where

M E 2= —— d(a' e '"' Q G(kl, k,&o'), (5.3)

G(k„k,(u')

=F(kl, k,10')+—F(kl, k, (o') P 'U (kl—k2)F (kl, k,~')
Q

1
+—F(kl, k,(u') g g(kl —k2)F(k2, k,(a')

Q'

1
XQ 'U(k2 —k2)F(k2, k,co')+—F(kl, k,(a')

k3 Q3

XP 'U(kl —k2)F(k„k)c0') P 'U(k2 —kl)

XF(k„k,~') g ~(k,—k,)F(1„k~')+" . (5.4)

G(kl, k,co')

1
= F(kl, k,a)')+—F(kl, k,a)')

Q

G(kl, k,cd') is related to the propagator for an inter-
acting particle and hole, and Eq. (5.4) is equivalent to
the integral equation

H(kl, k,(o') =1+(1/0) +22 '0(kl —k2)

XF(k2,k,co')H(k2, k,co'). (5.T)

In the neighborhood of s&'=kk2/212" one might expect
that F(klk,&o ,)'dominates the behavior of G(kl, k,c0')

and H(kl, kid') , is essentially constant and can be taken
out of the sum in (5.7). Thus, in this region,

H(k ,Ik(o') =1+(1/Q)H(kl, k, ld')

Xgkl U(kl k2)F(k2Pk, ~') (.5.8)

This latter equation is readily solved and gives

F(kl, k,~')
G(kl, k,a)') = (5.9)

1—(1/0) +2, 'O (kI—k2)F(k2, k,(o')

Away from the singular region the perturbation series
seems to be adequate to determine the corrected form
of 22. We now show that in this case too Eq. (5.9) pro-
vides an accurate solution for G(kl, k,ca').

When expanded, (5.9) reproduces the first two terms
on the right-hand side of (5.4). By interchanging the
dummy indices k&~ h2 it can be seen that the third
term on the right is also given correctly when summed
over kl as in (53).Thus, the approximation only begins
with the fourth term corresponding to the last bubble
shown in Fig. 8 and should be very good for the whole
range of frequency. In the particular case when the
screening becomes very strong (a))1) so that 'U(k) be-
comes essentially a constant independent of k, then
(5.9) becomes an exact solution for G(kl, k,~').

Utilizing the techniques of Appendix 8 to bypass the
~' and 3 integrations, we obtain

2k,
22(k, (d) = —Im d2:

7l gpk 5$ X, (5.10)
X 21' iX 1+—I (N—',2;)

XP V(kl —k2)G(k„k,~'). (5.5)
kg where ) is an in6nitesimal. The frequency dependence

in (5.10) is represented by u' which was defined in
Removing a factor of F(kl, k,10') from G(kl, kp&'), we (4.10), and the real and imaginary parts, Il and I2 of
write I(g', x) are given by
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m*/m Q
ln ~+

2xkoao 2+a) [(u' —x)'+2a(1 —xu')+n'7"'

(1+u') (u' —x)(1—x)+a(2—xu' —x)+n'+(1 —x+n)[(u' —x)'+2n(1 —xu')+a'7'"
)& ln (5.11a,)

(1—u') (u' x—)(1+x) a—(2 x—u'+x) n—' —(1+x+a)[(u' x—)'+2a(1 x—u')+a'7"

ou*/m g
I,= — g(1—[u'

~ )
2kgco [(u' x—)'+2a (1 x—u')+a'7'i'

(5.11b)

o ~(lr,0)—1=u v'(u-'), (5.12)

and is thus shifted by 20%. For frequencies near kvo

there is a rapid variation in e~, but it no longer becomes
negative infinite. At higher frequencies the changes in
the dielectric constant due to the correction are small

l.0 "
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Fxo. 9. Imaginary part of the corrected dielectric constant
calculated from the graphs of Fig. 8, and plotted in units of
2k0/(a0k') as a function of I for an electron density equal to the
density of conduction electrons in aluminum. For this electron
density e& departs appreciably from the Lindhard form shown by
the broken hne, but is well behaved and no longer exhibits the
violent fluctuations characterizing the previous incomplete
approximations,

Equation (5.10) has been numerically evaluated for an
electron density equal to the density of conduction
electrons in aluminum and the result is plotted in
Fig. 9. Note that there is a sizable departure from the
Lindhard &2~ for this electron density, as might be
expected, but the violent fluctuations characterizing
the previous incomplete approximations have dis-
appeared. e2 is positive de6nite and the values obtained
for the moments are shown in the table where they are
compared with the corresponding moments for different
approximations. Note that the zeroth moment, which
represents the sum rule (2.12), is satis6ed to within
2~'Po and provides an indication of the numerical ac-
curacy of the dielectric constant we have obtained and
of the other moments.

The corresponding real part of the dielectric constant
has been computed from the Kramers-Kronig relation,
Eq. (2.2) and is plotted and compared with the Lind-
hard e~~ in Fig. 10. For small u the corrected dielectric
constant departs appreciably from e&~. The zero-fre-
quency value is 6xed by the moment (u '):

but, nevertheless, can be important in certain cases,
as for determining properties of the plasmon excitation
mode. Since e2 vanishes for high frequencies in this
approximation, we can obtain the asymptotic behavior
of ~j in terms of the even moments of e2.

oi(lr, co) ~ 1—(u,'/u')

&((1+(u')/u'+(u')/u'+ }. (5.13)

It has been observed that a rather good empirical
fit (within 5%) to the dielectric constant shown in
Fig. 9 is given by

oo"'——(2k /k'ao)$u'(1 —u")"- 0 (u' (1. (5.13)

This function can be used for rough calculations of
properties of the electron gas for an aluminum electron
density, though the analytical behavior near u'=1 is
probably not correctly represented by (5.13). The
Kramers-Kronig relation gives for the corresponding
real part

&i"= (2ko/k ao) '(~o u—"),—u" (1
(2k /koo )o [& u~2+u&(u~2 1)1/27 u~o) 1

(5.14)

VI. SUMMARY

Ke have derived the dielectric constant of the inter-
acting degenerate electron gas moving in a uniform
positive background of charge. In order to obtain an
acceptable function which does not violate the sum
rule and positive-de6niteness restrictions on the
imaginary part it was necessary to include three types
of corrections to previous calculations. These correc-
tions (1) account for the eGect of higher order processes
which tend to screen the long-range elementary Cou-
lomb interactions; (2) provide for the shift in single-
particle energies which manifests itself as a change in
the eGective mass of particles and holes; and (3) allow
for the presence of a particle-hole bound state by treat-
ing the repeated or "t-matrix" scattering of particles
and holes.

Numerical calculations of the dielectric constant and
moments of ~~ were carried out for an intermediate
electron density equivalent to the density of conduction
electrons in aluminum. The resulting dielectric con-
stant departs considerably from the Lindhard form for
low frequencies, but has similar qualitative features.
The moments can be used to determine the high-
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frequency behavior and other properties of the electron
gas. However, the small wave number limit was used
to simplify the numerical calculations. The extension to
finite wave numbers presents a substantial computa-
tional problem, but would be necessary to 6nd the
e6ect of the corrections on properties such as the cor-
relation energy and the pair-distribution function. A
preliminary step in this direction is being carried out
by Hubbard and Leigh' who are calculating the wave-
number dependence of the static dielectric constant. '~

There is some question of the validity of applying
the present approximations to metallic electron densities
since they are based on a partially summed perturbation
series and there is no guarantee that neglected higher
order terms are not signi6cant. However, the fact that
even the Lindhard approximation provides such a
qualitatively and often quantitatively accurate de-
scription of many properties of real metals wou)d in-
dicate that any correction terms should be well behaved
and that they should not alter the general structure of
the dielectric constant appreciably. The present cor-
rected form indeed satishes this criterion and appears
to lead to results in better accord with the experimental
information available. Recently, Baym and KadanoP'
have emphasized the importance of preserving certain
conservation laws in the approximations used for many-
body calculations. The present calculation is essentially
in accord with their criteria and contains the same type
of terms as contribute to their two-particle correlation
function when calculated in what they call the general-
ized random-phase approximation. However, for the
electron gas it appears necessary to include, in addition,
a screening of the long-range Coulomb interaction be-
tween particles in order to obtain well-behaved results.
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Fio. 10. Real part of the dielectric constant minus 1 in units of
2kp/(xapk') as found from the corrected e& of Fig. 9 by means of
the Kramer-Kronig dispersion relation. For u greater than one
this function is very similar to the Lindhard approximation which
is shown by the broken line.

S(k;,(u;) =

for a directed line marked (k;,~,), where

and Eg,.=kP/2m;

=0
1

=0

for ik, i
(ko

otherwise,

for ~k;()ko
otherwise,

(3) a factor exp( —ice'i/2)/2x for each p line;
(4) summation over all k, but not k, and integration

of all co, and co' over the interval (—~, ~ );
(5) multiplication by a factor (—2)', where i is the

number of closed particle loops. The 2 accounts com-
pletely for the two spin states of the electrons, and no
other sum over spins should be carried out.

The contribution to the matrix element obtained by
application of the above rules contains integrals over
frequencies co; and co', and sums over momenta h;. An

APPENDIX A

This Appendix contains rules for 6nding the con-
tributions of individual graphs to the matrix element of
Eq. (2.1). The graphs are drawn as in references 4 and

5, but it is now more convenient to label the directed
particle lines and the dashed interaction lines by the
momentum h; and frequency co; they carry. Choose an
arbitrary direction for the Qow of momentum and
energy along the interaction lines, and label the p~
lines by k and ~' such that the lower p line is directed
into its vertex and the upper p line out of its vertex.
The labeling should be such as to conserve momentum
and frequency at each vertex. Then the contribution of
the graph is given by:

(1) a factor u(kq)/(2miQ) for an interaction line
marked (k;,co~);

(2) a factor
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additional integration over t is required to find the cor-
responding contribution to e2. These integrals are not
all well defined and it is advisable to use the following
prescribed order of integration to obtain the correct
result: Integrate, respectively, over the cu, , t, ~', and
finally sum over the k;. In many cases the integrals
over t and cu' can be obviated, as shown in Appendix B.
After all of the frequency integrations have been per-
formed the small quantities X in the particle propagators
can be set equal to zero.

—2—1
0
1
2
3
4

Lindhard

3.00
1.50
1.00
0.750
0.600
0.500
0.429

DuBois

4.00
1.59
1.00
0.693
0.533
0.443
0.391

Present

3.57
1.60
0.976
0.689
0.529
0.428
0.359

TAax, E I. Moments of e2. Several moments (I") calculated in
the small-wave-number limit and for a =2/3 are compared in the
Lindhard, DuBois, and present approximations.

APPENDIX B

In this Appendix we note how the integrations over
t and co' in the calculation of e2 can often be carried out
very simply. Neglecting the k dependence and after
carrying out the ~, integrations one obtains an expres-
sion of the form

I(cu)=Re(i) dh (e' ' e' '—) ka'e ' 'F( ',X). (81)
0 —00

Since F (co',) ) is the result of integrations over products
of 5(lr, ,~;) as given by (A1) it can be broken up by
means of partial fractions into two parts,

F(a)',X)=F+(cv'+iX)+F (co' —A),

where F+(a&'+iX) has denominators containing co' and
the positive in6nitesimal ) 's in the combination co +9,
and hence is analytic in the upper half of the complex ro'

plane and F (co' i)) is a—nalytic to the lower half of
the ~' plane, and each part vanishes for large co' at
least as fast as

~

co'
~

'. For all the corrections considered
in this paper each individual graph or pair of graphs
(for the self-energy terms) has the property that
F(co',X) is even in co'. In this case, and if F~(co'&iX)
contains no multiple poles, the result of the integrations
in (81) takes a pa, rticularly simple form. Integrating
over t and then ro' we obtain

I( )= —2 ImLF ( +iX) F(co eX)—]. (8—2)

Im[ —F (~—a)]=ImLF (~—i),)*]=Im[F (~+il)],
so that

I((v) = —2n Imt F~(co+i) )+F (co+iX)], (83)

i.e., the effect of the t and co' integrals is to change the
sign of i) throughout Ii and multiply by 2+.

If F(co,X) contains multiple poles as for the self-

energy graphs Figs. 1(c) and (d) it is not possible to
use the above simple scheme. However, after inte-
grating over t, the ro' integration can still be unambigu-
ously carried out by breaking F(co',X) into F+(a&'&iX)
and expressing each part as a multiple derivative of a
product of simple poles. As an example, consider the
following integration:

00 1 1
Re Cko'

co a& A (al 6q+ A) (co A2+ A)

Jn 1 1
Re Cko'

F2 —,&
col' —co—$X Gl' —ky+$X (o' —52+1'

Re 2m
da,"da; ~—a,+9,' ~—a,+~@'

0"(co—Dg) 5"((u—Dg)-
=2~ S(—1)" —O(—1)"

(~—~i)" (&o
—a2)"

Since only the imaginary part of the bracket is needed
we can use the identities

where
gm(~ g )= (dm/d m)g(~ g )


