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Thus, we arrive at the equation

dq. q
(2n+1) "dr=k ' ~rr

0 r' dn)

Assuming that n&1 (i.e., ruling out the s wave @0),
there is no contribution to the right-hand side of (42).
Integrating the dp„/dr term by parts, we obtain from
(42) and (61)

In the semiclassical approximation, the techniques
described in (A) above may be used to show that (59)
becomes the more familiar result'

2—dr+ (2n, '+2n —-')m—'
r2

00

dr

-',x =dq. /dn. (60)

If some restriction is placed on n, the relation (58)
may well imply the convergence of certain integrals at
the origin, and so widen the Geld of choice for 5'. For
example, with W=r 'd/dr, we have

LHO —k'/2m, r 'd/dr]g„
= L

—k r- +22n(n+1)r rd/d—r+2rnr V

mr 'dV/dr)—m 'y . (61)

dV
+ Q„' 2r='V r' —dr—=0. (62)

0 dr

The relation (58) ensures the convergence of the
integrals, provided that n&1. Equation (62) is the
quantum-mechanical analog of (29), and becomes
identical with it in the semiclassical approximation
when n is large. Equations (59) and (62) can be com-
bined to give an alternative expression for dg„/dn
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The form of hypervirial theorem which is appropriate in scattering theory is discussed in general terms.
It is shown that variational wave functions which are optimized in accordance with Kohn's variational
principle do satisfy hypervirial theorems. Thus such theorems may be useful in selecting approximate wave
functions to give accurate phase shifts or scattering amplitudes. The situation is analogous to that of energy-
optimized wave functions for bound-state systems.

property of W. Thus, if f& is selected to satisfy the
hypervirial theorem for a bound state

I. INTRODUCTION

A S Epstein and Hirschfelder have shown, ' if an
approximate bound-state wave function P& admits

a variation &/i& such that
then, as far as variations of the form (1) are concerned,
P& is automatically optimized to give the best energy g, .

In this paper we show that an analogous situation
exists for approximate wave functions in scattering
theory, provided that the form of the hypervirial
theorem is employed which is appropriate to a free
system. Ke find that if Kohn's variational principle'
for phase shifts is used to optimize a partial wave, then
this partial wave satisfies a hypervirial theorem. For
total wave functions, a form of Kohn's principle for
scattering amplitudes again leads to such a theorem.
Thus hypervirial theorems may be helpful in selecting
approximate wave functions in scattering theory, as
they are with bound-state systems.

'%. Kohn, Phys. Rev. 74, 1763 (1948).

bg, =i~W&„

where lV is a Hermitian operator, then the correspond-
ing variation bE& in the energy E& of the state is given by

This result follows immediately from the Hermitian
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(A,A)&«= (W'i (II &~)A)+ (6 (& —&g)&4'~)—
(2)=i~(P„[a,W]P,)
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The modi6cations to the hypervirial relations which

are necessary for free systems were discussed in the
preceding paper, ' but we briefly recapitulate here; the
bracket notation is retained for generality and concise-
ness. For an exact bound-state wave function gag, the
hypervirial theorem

(f,LH, W]f) =0

here the surface integral extends over the surface
enclosing the volume ~, which in the limit includes the
whole of space.

II. HYPERVIRIAL THEOREM 8 FOR APPROXIMATE
PARTIAL VfAVES

The exact partial wave gggg(r) is frequently defined as
the solution of the equation

is a consequence of the Hermitian property of H, i.e.,

(f,HWf) (HgfgW— gig) =0,

and of Schrodinger's equation. With continuum wave
functions, however, the quantity

Z =—(gfg, HWgig) (HgJ, W—gag)

(where E= k'/2m),

with the boundary conditions

~(0) =0,

gjgg(r) k ' sin(kr —sigggr+gt) for large r.

(13)

(15)

(P,LH, Wgf) =Z. (8)

With degenerate wave functions golgi and fs, we should
have, in obvious notation:

Qg, LH, WjA) =&gs. (9)

In the preceding paper, ' particular cases of (8) and (9)
were utilized which are relevant for the scattering of a
particle of mass m by a central 6eld. For the (real)
partial wave p corresponding to the eRective
Hamiltonian

is not, in general, zero because idg does not now tend to
zero at large distances. Z is a surface integral, or, for a
one-dimensional system, merely the difference of
end-point values. Meaningful hypervirial relations arise
when Z is 6nite, or possibly even when it is zero because
of the nature of W'. 7Vhen Z is not zero, we say that H
is "nominally Hermitian. "%e have

(4,LH, W jf') = (4,HW0)—(4,WH4)—
=Z+ (Hglg, LYLY) (f,WHP)—, (7)

and because HP=EP the last two terms in (7) cancel
each other to give the more general form of the hyper-
virial theorem:

X=k—' tang. (17)

Suppose now an approximate trial partial wave rggg(r)

satis6es the boundary conditions

and
Pg(0) =0, (18)

f(grgg)
k-' sin (kr —-', gggr)+ Xg cos(kr ——,'gggr)

for large r. (19)

Then Kohn's variational principle' states that the
optimum P& is determined by

(2m) 'h7gg+fi gtgg (E Hp)gtggdr =0. —
Q

(2o)

%'e will prove that if the variation in @& is such that

&g ieWyg, —— (21)

Without loss of generality, we absorb the factor cosy
into gggg and take instead of (15):

gtg(r) k ' sin(kr —$gggr)+)i cos(kr engr), (16)

where

H, = —(2m)
—'d'/dr'+V(r)+gg(gg+1)/2mr', (10) where W is a nominally Hermitian operator, then the

relation (8) gives
optimum trial function p& derived from Kohn's principle
satis6es the hypervirial theorem

(4 g, l HpW54 g) =&gg (22)

Kohn's principle for partial waves follows from the
following equation, which holds for variations of p&

Relation (9) yields, for any two degenerate total wave about the exact function 4:
functions,

y, (E Hp)year+—(7, ),) /2m—
Pi*[H,Wjgigsdr= (2m) ' (Wglgs grad/re

—f,*grad(Wgs)) dS (12)
y(E Hp)+r =0. (23)—

Q

g p. D. Robinson md J. o. Hirschfetder, preceding paper Equation (23) is obta, ined by integrating by Parts, and
/phys. Rev. 129, 1391 (1963)j. neglecting the second-order term in (gf g

—gag).
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From Eq. (20) it follows that

(2m) '—l'&h +&(Q &{8—Ho)&f&&)+ (&t», {E—Ho)5&f») =0 (24)

We also need the exact result

(2~) '@«+ (HA &,H&) —(4 &,HA &) =0; (25)

this is established with the help of a partial integration
similar to that required for (23), and depends on the
boundary conditions (18) and (19). Expanding (24),
and substituting from (21), we get

(2nsi&. ) '5X&—E(WQ&,&f&&)+&(&f»,W&t»)

+ (Wy„H@,)—(@„H,Wy, ) =0. (26)

Now, by hypothesis, S' is a nominally Hermitian
operator; thus the difference of (W&t&, ,H+, ) and

(&„WHY/ &) is, in general, a surface integral, which in
this one-dimensional case reduces to a diGerence of
end-point values. The boundary conditions (18) and

(19) imposed upon P&, together with the fact that
HQ, ~& when r is large, imply that this same
"surface" term is also given by the difference of
(W&t&„~,) and (&f»,W~&) It follow. s that

(W4 &,Hof &)
—(4»WH4&)

=F-(W4 &,4 &) F-(4—&,W4 &) (27)

Making use of (27), Eq. (26) becomes

( 2mie)-'8, = (&t»,[H o,W jP&) . (28)

If we substitute for b&f&, from (21) into Eq. (25), we
obtain also

(2nue)-'bX, = (y„HOWy&) (H04», W4 &)
—=—&». (29)

Thus, from (28) and (29), the hypervirial theorem (22)
is satisfied.

%'e can trace the argument in reverse, and so the
hypervirial theorem is really equivalent to Kohn's
principle. The principle has been shown' to be a
minimum principle in many situations, and so hyper-
virial theorems may serve as helpful criteria in selecting
approximate partial waves to give accurate phase shifts.
It should be noted, however, that the boundary condi-
tions (18) and (19) imply a restriction on bp, and, hence,
on 5". In particular, a simple scale transformation is
not allowed.

' L. Rosenberg and L. Spruch, Phys. Rev. 125, 1407 I'1962), and
references given therein.

III. HYPERVIRIAL THEOREMS FOR APPROXIMATE
TOTAL WAVE FUNCTIONS

The ideas of Sec. II can readily be extended to include
approximate total wave functions. The exact wave
function &I&; representing a particle with incident
momentum k, is the solution of

Hf=L —(2m) 'V'+V(r)jf=EQ, (30)

which is 6nite at the origin and has the asymptotic
form

exp(ik; r)+F(8;)r ' exp(ikr) for large r (31)

Here ~k;~ =k, 0, is the angle between k; and r, and
F(8;) is the scattering amplitude upon which scattering
cross sections directly depend. Let f~& and $2& be two
approximate wave functions, which satisfy the correct
boundary conditions but have approximate scattering
amplitudes F, (8&) and F, (e:). An appropriate form of
Kohn's variational principle is now'

where y is the angle between k~ and k2. This gives, in
bracket notation,

(2&r/m)8F&(y)+ (&1pg&,{E—H) f2,)
+ Qg, ,{E—H)bp2&) =0. (33)

We also have the result, which follows from Green's
theorem, that

( / ) &(V)+( A&,%4&)—(4i& Ah&)= ( )
Now if we assume that

bf, & i GAWP, &, j——= 1, 2, (35)

then using the technique of Sec. II it is easy to show
that Eqs. (33) and (34) become, respectively,

(2&r/~i~)f&F (7)= (A»EH W3'2&), (36)
and

(2m/flic)hF &(y)

(pl&&HW$2t) (H&II&&W$2&) =~1&,2& (»)
Thus, from (36) and (37), we see that the hypervirial
theorem

Q», [H,W]P~&) =Z„„
is satished, and is again equivalent to the appropriate
form of Kohn's variational principle.


