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Heretofore, the hypervirial theorems recently introduced by Hirschfelder have only been applied to
bound-state systems. In this paper it is shown that, with certain modiGcations, these theorems can also
be applied to free systems, and, in particular, to scattering problems. The new form of the general hyper-
virial theorem is derived, and the theory is illustrated with the problem of a particle scattered by a
central Geld. The ordinary virial theorem is deduced, together with other results of physical interest. Both
classical and quantum-mechanical formalisms are considered, and in some cases the semiclassical approxi-
mation links corresponding results.

I. INTRODUCTION

%HOI.E family of relations, called hypervirial
theorems, which are useful both in classical and

in quantum mechanics have recently been introduced
by Hirschfelder. ' The usual virial theorem is a member
of this family. Some applications of these relations to
bound-state systems in quantum mechanics have
already been discussed. ' 4 However, as yet there has
been no mention of the relevance of the hypervirial
theorems to free systems, or, in particular, to scattering
problems. It is the object of this paper to show that,
with certain modifications, these theorems can indeed
be applied to free systems.

First, we derive in a general manner the new form of
the hypervirial theorem which is appropriate to a free
system. Then the theory is illustrated by taking as an
example the simple scattering problem of a particle
under the inAuence of a central field. Ke show how the
ordinary virial theorem can be deduced, together with
other results of physical interest. Both classical and
quantum-mechanical formalisms are considered, and
the parallelism between them is emphasized. In some
cases the semiclassical scattering approximation forms
a bridge between corresponding results. Our techniques
can be extended to more complicated scattering
problems.

II. CLASSICAL HYPERVIRIAL RELATIONS

In classical mechanics, let m be any function of the
generalized coordinates and momenta of a free system
whose Hamiltonian is H. Then, in terms of the Poisson
bracket (H,w) of II and w, we have the classical
equation of motion:

dw/dh= (H,w).

Integrating Eq. (1) with respect to time from t=0 to
t= T along a dynamical trajectory, it follows that

w(T) —w(0) = (B,w)dt. (2)

Here w(t) denotes the value of w for the trajectory at
any time t, and we suppose that w(0) is not infinite.

There are now two cases to be considered. Firstly, we
assume that w(T) remains finite as T tends to infinity.
In this case the hypervirial relation for the free system is

w(N~) —w(0) = (H,w)dt.
0

This is diGerent from the hypervirial relation for a
bound system, which is'

T

0= lim T 'Lw(T) —w(0)7= lim T ' (H,w)dh. (4)+~to T~
0

Equation (4) is actually the time average of Eq. (1).
For bound states the time average of dw/dt must be
zero, and meaningful results can be obtained by
equating the right-hand side of (4) to zero. For free
states, however, this time-averaging process does not
yield any useful information. We, therefore, take (3)
rather than (4) as the hypervirial relation generated
by m.

Secondly, w(T) might become infinite as T does. In
this case, Eq. (2) must be rearranged by adding
equivalent terms to each side of the equation so that
each side is finite in the limit as T tends to infinity. The
hypervirial relation for the free system is then obtained
by taking this limit. This rearrangernent of Eq. (2) is
equivalent to a new choice of m; with this choice the
limiting form of (2) will be like Eq. (3).

~ This work was carried out at the University of Wisconsin IIL QUANTUM-MECHANICAL HYPERVIRIALTheoretical Chemistry Institute under Grant ¹6-275-62(4180)
with the National Aeronautics and Space Administration.

f Present address: Mathematical Institute, Oxford, England.' J O. Hirschfelder, J. Chem. Phys. 33, 1462 {1960).
' In quantum mechanics, let 8' be any function of the

S. T. Epstein and J. O. Hirschfelder, Phys. Rev. 123, 1495 generalized coordinates and the quantum-mechanical
(1961). momentum operators of a system whose quantum-

mechanical Hamiltonian is H. Then if the system is in' J.H. Epstein and S.T.Epstein, Am. J.Phi s. 30, 266 (1962). a bound state represented by it, the hypervirial theorem
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VIRIWL THEOREM AND I TS GENERALIZATIONS

IV. THE CLASSICAL SCATTERING OF A PARTICLE BY
A CENTRAL FIELD

We consider the motion of a particle which approaches
some origin 0 from in6nity, and is under the sole
influence of a Geld centered at 0 (see Fig. 1).We denote
the various properties of the particle and its trajectory
as follows: m= the mass, k=the linear momentum at
inhnity, b= the impact parameter, r = the distance
from 0, rp ——the distance of closest approach to 0,
V(r)=the potential energy, p=mr'=the radial mo-

mentum, 8= the decreasing angle between the radius
vector and the original direction of the trajectory,
x= the scattering angle (that between the original and
terminal directions). The time t=0 is taken when r= ro

and p=0; thus the motion extends from t= —00 to
t=+ . The angular momentum of the particle about
0 is constant, and so

—mr'8= bk. (16)

The classical Hamiltonian H of the particle is given by

H= (2m) '(p'+b'k'/r')+V(r) (17)

and, because the energy of the particle is conserved,
we have

H =k'/2m = const. (18)

It is convenient to know the asymptotic behavior of r
when t is large. From (17) and (18) we see that, for
t&0,

p = mr' = k (1 2m V/—k' b'/r')—' " .(19)

Ke make the assumption that, as r tends to inanity,

V (r) r, where u) 1. (20)

It follows from (19) that, when t and r are large, p k

and
(21)r~s+kf/ta.

The quantity s in (21) appears as a constant of inte-
gration; it is an important property of the trajectory
which is useful in kinetic theory. With a Coulomb
potential V=X/r, (21) is replaced by

r+ (mX/k') lnr s+ kt/~n

A. The Virial Theorem

(22)

w=r(p —k).

Using (17), (19), and (23), we have

8H Bzo 8H 8Ql

(H, w) =
Bp Br Br Bp

(23)

k dv
=—(k—p) —2V+r—. (24)

m df

For bound trajectories, the ordinary virial theorem
is generated by m = rp; however, for a scattering process,
rp becomes infinite as t does. To obtain the appropriate
form of the virial theorem here, we choose

FIG. 1. Classical trajectory.

Equation (2) now gives

T T
r(p —k) =k'T/rps kr-

t=o t=0

dVy
i

2V+r ddt (25).
~0 & dr&

From (19) and (20), we can see that r(p —k) tends to
zero as T tends to infinity. Thus, proceeding to the limit
in (25), and making use of (21), we get for the virial
theorem:

dVi

t 0

2V+r ddt= —ks.
dr)

(26)

This result (26) has been obtained by Demkov, ' who
takes as his starting point a modi6ed form of Hamilton's
principle. It can also be verifled directly from Eq. (19),
without reference to a virial, but it is not an obvious
result to derive ab initio. The result does not hold for a
Coulomb potential; it is evident from (22) that the
right-hand side of Eq. (25) would then become inflnite
in the limit.

B. Hypervirial Relations

Various hypervirial relations are generated by
taking, for example,

w=f(r) p, (27)

where f(r) is such that w-+0 as t~ ~. It can be
shown that

' Y. N. Demkov, Doklady Akad. Nauk S.S.S.R. 138, 86 (1961)
Ltranslation: Soviet Phys. —Doklady 6, 393 (1961)1.

(H,w) = (k2/~) &(1 bm/r') df/dr+—be/e j
—(2 Vdf/dr+ fd V/dr) (28).

Here m is zero both when t=0 and when t= ao; thus
from (3) the hypervirial relations are given by equating
to zero the integral from 1=0 to t= ~ of expression (28).

The choice f(r) = r ' leads to

k' " " 2k'P dV
0= —— r 'dt+ +2r 'V r' dh (29)—.

fS Q p Std df
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From Eq. (16) and Fig. 1 we see that

oo m tn
r 'Ch=-—— C8= (n —X)

bk t=p 2bk

Combining (29) and (30), we obtain a new expression
for the scattering angle x, viz. ,

2b~ " 2k'b' dV
+2r 'V r' —df —(3.1)

k& p mr' dr

The more usual expression for x,

H is now the quantum-mechanical Hamiltonian, given
in (9).

It is frequently convenient to decompose a solution P
of (34) into partial waves p„(r) by the substitution

p" A F (cos8)r-'P. (r). (37)

which is zero at the origin and has the asymptotic form

y„(r) k 'si—n(kr —-', ~-+q ) (39)

Here P„(r) is the (real) solution of the equation'

dPP /dtP+[kP —2mV —n(n+1)/r $P =0 (38)

2m V b'~ '~'

pr —x=2b r '1—— ——
I

dr
kP r'J

for large r. The coeKcients in the expansion (37) are
(32) given by the formula

[which follows directly from (19) and (30)], can be
recovered from (31) with the help of an integration
by parts.

If we choose f(r) =r " in (27), then the hypervirial
relation which follows from (3) gives a reduction
formula for the integral I„=J~gr "dt. This is, for
n&1

bP(n+1)I~p
CQ d t/'

=nI ~
—mk ' 2nr " 'V —r " dt. (33)

0 dr

Equation (33) is also true for a Coulomb potential, when

it would lead to a recurrence relation connecting
I~g, I~2, and I~3.

V, THE QUANTUM-MECHANICAL SCATTERING DF A
PARTICLE BY A CENTRAL FIELD

We use the notation of the previous section, and
work in atomic units with A=1. The wave equation is

VQ+ (k' 2m V)$=0—, (34)

for which is required a solution with asymptotic form'

exp(ik r)jr ' exp(ikr)F(8) (35)

for large r. Here k is the linear momentum vector of
the particle before it is affected by the potential V(r),
and r is the position vector of the particle. If f~(k~,8~)
and fp(kp, 8p) are two solutions of (34) representing
particles with the same energy E=k'/2m, but with
different initial directions, then according to the
discussion in Sec. III the general hypervirial relation is
the limiting form of

k2

Pg II , Wfp dr-
2m'

A, = (2n+1)i" exp(iq„). (40)

= (2m)-' (Wy.) y„(W—y„)—. (42)
dr dr ~o

A. The Virial Theorem

Corresponding to the classical m of (23), the quantum-
mechanical virial theorem is generated by

W=r grad kd/dk=r—d/dr kd/dk— (43)

With this choice for W, it follows that

[E k'/2m, W]P= —[m '(7'+k—')+rd V/dr]f
= —(2V+rd V/dr)f, (44)

and

[Pp—k'/2m, W]g„=—(m '( /dPr'd+k')

+rd/dr[V+n(n+1)/2mr']) p„
= —(2V+rd V/dr)p„. (45)

Using (35), we can also show that, for large r:
d

(WA) -6—(WA)
dr dr

= [ik (1—cos8,)r-' —r-']

In order that the phases g„should be 6nite, it is neces-
sary to make the assumption (20) about V(r). Equation
(38) is a one-dimensional Schrodinger-type equation
for a wave function p, with the effective Hamiltonian

IIp —(2m) 'd'/——dr'+ V (r)+n (n+1)/2mr'. (41)

It is easy to show, using integration by parts, that the
hypervirial theorem for the partial wave p„ is

= (2m) ' [(WPp) grad/~ —P~ grad(Wpp)] dS. (36)
Xexp[ikr(1+cos8&)]—[kF(8p)]+0(r ~). (46)

dk6 See, for example, ¹ F. Mott and H. S. W. Massey, The Theory
of Atomic Colhsioes (Oxford University Press, Oxford, 1949), 2nd
ed. Here P) 2 provided that we again make the assumption



VI RIAL THEORE M AX D I TS GEN I RAL I ZATIOiNS 1395

(20). From (37), (38), and (39) this assumption implies
that the correction to ltd in (35) is 0(r e), where P&2,
and this latter property is needed in deriving (46).

Let us take the surface S in (36) to be a sphere with
center 0 and radius R. The only contribution to the
surface integral which does not vanish in the limit as R
tends to infinity is, from (46),

employed, ' it can be shown that

9 =k "' P"' -'e"l + P" dr)'r, )r;
r'Q

d =-,'k "'~ P~'eeep( — )P~'&'d)
r

(52)

29P(2m)
—' (1—cos8i)—[kF (8p)j

dk
From the form of (52) when r is large, it follows that
the phase is

Xexp[pkR(1+cos8)))Rpk sin8)d8i (.47)

Integrating by parts, (47) yields

r] = ,'pp+ ,'-nip -krp+— (F'"—k)dr,

which yields

(53)

—(1—cos8i)—[kF (8p}i
m) dk

=—rp+ (kF-"—1)dr.
Tp

(54)

Xexp[pkR(1+cos8))j +0(R ')
—81=0

The semiclassical approximation is only valid for large
phases; thus in an integral over r it is reasonable to

2Ã replace the rapidly oscillating @„byits root-mean-square
&)j+ (R )r (48) value when r&rp, and the exponentially decreasing P

by zero when r(rp. When this is done, (50) becomes

where y is the angle between the directions of k& and k~.
Thus from (36), (44), and (48) the virial theorem for
complete wave functions is

(2k) ' d V~, did.
I:-i~2 2V . d.= 2~-~ . SS

dr) dk

dV 2x'

d, (kp+r d,d = ——[kp( —9)]. (99)
dr m dk

For the partial wave kt), the right-hand side of (42)
becomes, using (39) and (43), precisely —(2pn) 'dpi„/dk.
Hence from (42) and (45) the virial theorem for kt)„ is

dV dq„
kf).

~
2V+r—dtk„dr= (2nd)-'

dr dk
(50)

' Y. N. Demkov, Doklady Akad. Nauk (S.S.S.R.) 89, 249
(1953).

It is possible to check the consistency of the results
(49) and (50) in the case when )Idi kfdp=kld with the——help
of the expansion (37) and formula (40).

Demkov' has derived the virial theorems (49) and
(50) starting with Hulthen's va, riational principle, but
our methods seem more straightforward and. better
illustrate the parallelism between the classical and
quantum-mechanical formalisms.

As Demkov' points out, the correspondence between
(50) and the classical result (26) may be demonstrated
with the help of the semiclassical scattering approxi-
mation. 6 Vy'e define

F(r) =k' 2pn V (n—+-')'/—r' (51)

and assume that F(r) has just one simple zero at r=rp.
This corresponds to the classical case, where F'" is
replaced by mr' and (n+pi) is replaced by bk [see Eq.
(19)].According to the WKB approximation which is

I'inaBy, if Ii'~' is replaced by the classical mi, then
using (21) Eq. (54) gives

did /dk= —s, (56)

and (55) becomes identical with the classical virial
theorem (26).

k—'r"+' for small r. (58)
' R. E. Langer, Phys. Rev. Sl, 669, 1937.' Even if t =2, there is still no contribution at r =0 for a repulsive

6eld.

B. Hypervirial Relations

It is not as easy as it seems at 6rst sight to extract
useful results for quantum-mechanical scattering from
the formal hypervirial theorems (36) and (42). The
problem is to select a 8' for which the integrals con-
verge, and which gives a Gnite or zero expression on the
right-hand side of (42). Powers of (rd/dr kd/dr) for—
S' give results which, though interesting, can be
derived from (49) or (50). The choice re "d/dr leads to
a relation which follows from the Laplace transform
of Eq. (38).

One apparently new result is generated from (42) by
the simple choice W= d/dn. We have

[Hp —kP/2m, d/dn j= —(2n+1)/2nprP (57)

and, using (39), the contribution to the right-hand side
of (42) at r= pp is (dk]„/dn ', pr)/2npk —A—tr=0, .there is
no contribution if we assume that V does not have a
singularity worse than r—', where' t(2, for then it
follows that
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Thus, we arrive at the equation

dq. q
(2n+1) "dr=k ' ~rr

0 r' dn)

Assuming that n&1 (i.e., ruling out the s wave @0),
there is no contribution to the right-hand side of (42).
Integrating the dp„/dr term by parts, we obtain from
(42) and (61)

In the semiclassical approximation, the techniques
described in (A) above may be used to show that (59)
becomes the more familiar result'

2—dr+ (2n, '+2n —-')m—'
r2

00

dr

-',x =dq. /dn. (60)

If some restriction is placed on n, the relation (58)
may well imply the convergence of certain integrals at
the origin, and so widen the Geld of choice for 5'. For
example, with W=r 'd/dr, we have

LHO —k'/2m, r 'd/dr]g„
= L

—k r- +22n(n+1)r rd/d—r+2rnr V

mr 'dV/dr)—m 'y . (61)

dV
+ Q„' 2r='V r' —dr—=0. (62)

0 dr

The relation (58) ensures the convergence of the
integrals, provided that n&1. Equation (62) is the
quantum-mechanical analog of (29), and becomes
identical with it in the semiclassical approximation
when n is large. Equations (59) and (62) can be com-
bined to give an alternative expression for dg„/dn
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The form of hypervirial theorem which is appropriate in scattering theory is discussed in general terms.
It is shown that variational wave functions which are optimized in accordance with Kohn's variational
principle do satisfy hypervirial theorems. Thus such theorems may be useful in selecting approximate wave
functions to give accurate phase shifts or scattering amplitudes. The situation is analogous to that of energy-
optimized wave functions for bound-state systems.

property of W. Thus, if f& is selected to satisfy the
hypervirial theorem for a bound state

I. INTRODUCTION

A S Epstein and Hirschfelder have shown, ' if an
approximate bound-state wave function P& admits

a variation &/i& such that
then, as far as variations of the form (1) are concerned,
P& is automatically optimized to give the best energy g, .

In this paper we show that an analogous situation
exists for approximate wave functions in scattering
theory, provided that the form of the hypervirial
theorem is employed which is appropriate to a free
system. Ke find that if Kohn's variational principle'
for phase shifts is used to optimize a partial wave, then
this partial wave satisfies a hypervirial theorem. For
total wave functions, a form of Kohn's principle for
scattering amplitudes again leads to such a theorem.
Thus hypervirial theorems may be helpful in selecting
approximate wave functions in scattering theory, as
they are with bound-state systems.

'%. Kohn, Phys. Rev. 74, 1763 (1948).

bg, =i~W&„

where lV is a Hermitian operator, then the correspond-
ing variation bE& in the energy E& of the state is given by

This result follows immediately from the Hermitian

~ This research was supported at Lincoln, Nebraska by a grant
from the National Science Foundation, and at Madison,
Wisconsin, under Grant NsG-275-62(4180) with the National
Aeronautics and Space Administration.

)Present address: Mathematical Institute, Oxford, England.' S. T. Epstein and J. 0. Hirschfelder, Phys. Rev. 123, 1495
{1961).

(A,A)&«= (W'i (II &~)A)+ (6 (& —&g)&4'~)—
(2)=i~(P„[a,W]P,)


