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Neutrino Pair Emission by a Stellar Plasma*
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Various current models and generalizations of a universal weak Fermi interaction predict a first-order
weak coupling between electrons and v-v pairs. The radiation of such pairs by a hot, partially degenerate
relativistic plasma is calculated for temperatures and densities that appear to be relevant for stellar evolution.
neutrino-pair emission by collective electron modes, especially transverse plasma excitations, is found to be
the main mechanism for neutrino radiation by a dense stellar plasma when electron-positron production
is small either because the temperature is too low (T&10 'K) or degeneracy supresses it. The neutrino
luminosity of a star can greatly exceed its photon luminosity for a central core temperature greater
than 10' 'K.

I. INTRODUCTION

'HE Fermi coupling of electron and neutrino pairs
is a consequence of many postulated forms for a

universal Fermi interaction. An intermediate heavy
boson, the representation of a universal four-fermion
interaction in the form' Jq1",or the equivalence of (pv„)
and (ev, ) in all weak interactions, would lead to an
interaction between the pairs' (ev)(ev) to lowest order
in g. A simple rearrangement then gives an interaction
in the form g(ee)(vv). An electron could then radiate a
neutrino pair as well as electromagnetic radiation, al-
though with an enormously decreased probability. The
detection of such radiation in any terrestrial experiment
seems at best remote, but Pontecorvo, ' Chiu and
3Iorrison, ' and others have emphasized that in stars
such radiation may be of great significance in certain
stages of stellar evolution. The mean free path of low-
energy neutrinos is sufficiently large that they will al-
ways escape from a star without interaction, whereas
the electromagnetic radiation diffuses out very slowly
from the hot stellar core. In a star that has evolved off
the main sequence, such neutrino pair emission may be-
come the chief means of energy loss at certain times.
Specific calculations have been performed for the neu-
trino pair emission from electron-positron pair annihila-
tion,"by a photon in a Coulomb 6eld, 6' by photon-
electron collisions, ' and by neutrino bremsstrahlung. "
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Here we investigate the special eGects of the very hot
(T&10"K), very dense (p)10' g/cc) plasma from
which the emission is presumed to take place.

The collective modes of the plasma (plasmons) can
play a significant and even dominant role in the neutrino
pair radiation. As long as the plasma frequency coo is
not negligible in comparison with xT/5 the collective
behavior of the plasma is often more signi6cant than
N'ects from single photons or electrons. In Fig. 1 the
region where such collective e6ects are expected to be
signi6cant is exhibited. It coincides with the region of
temperatures and densities that have been conjectured
for the cores of white dwarfs, red giants, and prenova
or supernova stars.

The neutrino-pair decay of a free photon is forbidden
by gauge invariance or energy-momentum conservation
only if oP= k'c' or oP (k'c'. But in a plasma the dielectric
constant is approximately 1—coo'/co', so that the trans-
verse electromagnetic waves (transverse plasmons) have
a spectrum of the form co'=~o'+k'c'. For ~ less than ~0
there is no propagation; for ~)coo the wave has the
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Fzo. 1.The density p at which for a given temperature T
the plasma frequency cdp =KT/A.

Fiz. 37, 1072 (1959) /translation: Soviet Phys. —JETP 10, 764
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relation between frequency and wave number of a par-
ticle of rest mass Ao)s/es, and such a plasmon can decay
into a v-v pair. A similar situation exists for the longi-
tudinal plasmon. Moreover, the plasmon decay rate
into neutrino pairs can be simply calculated once coo is
known.

In Sec. II the formalism for the calculation of the
dispersion law of plasmons in a relativistic plasma is
reviewed. The quantization of these collective modes is
discussed in Sec. III, and related to v-f emission in
Sec. IV. Section V presents explicit approximate
formulas for the relation between ~ and k of the
plasmon, together with numerical values for the
neutrino-pair emission. In Sec. VI we discuss the
validity of the approximation that the plasmons are
adequate normal modes, i.e., that they have negligible
damping. Application to stellar models and comparison
with other mechanisms of neutrino-pair emission is
given in Secs. VII and VIII.

G(x)= d p exp) —sp.x,+jj j5
(2~)' (-)

X
2Ey

I-~ (y)
(m+E ~4—

V y)
p4+ jc—E,+4&

()+ —(m —E y4 —p y)
Pc+jc Es ij)——

1—n+ (y) ~+(y)
X + (1)

p4+14+Es &jj p4+jc+Es+4&—
"We use the following conventions: Greek indices range from

1 to 4, I.atin from 1 to 3; metric (———+); ys~iy'Pgy'. The
momentum k will occur in the following ways: k&~ {Ir„co), k Ir/
~h~, k

~ k). Boltzmann's constant is cc. Units it=4= 1 with 4s, =i,e'= 1/137.

II. COLLECTIVE MODES AND ELECTROMAGNETIC
WAVES IN A STELLAR PLASMA

Conventional quantum electrodynamics assumes, in
the absence of electromagnetic interactions, a vacuum
in which all negative energy states are 6lled and all
positive energy states are empty. The same formalism
clescribes the QED of a relativistic electron gas when
the vacuum is replaced by a new state in which, in
addition, certain positive energy states are 61led in a
manner given by the distribution function of the Fermi
gas. At suKciently high temperatures, ~T&&m/,
electron-positron pairs must be included in this non-
interacting ground state. The hole formalism of
Feynman diagrams is applicable for the description
of interactions, with the "hole" now standing for the
absence of either a positive or a negative electron from
the ground state.

The C.'reen's function for the propagation of an
electron is modified to take account of the sea of
electrons through which it moves. This Green's function
isll

(a)

Fro. 2. Feynman diagrams that contribute to the dielectric
constant in a plasma. The dotted lines are photons; the wavy line
is a transverse or a longitudinal plasmon; the solid lines represent
electrons or positrons and the holes in the unperturbed electron
gas.

Here Es= (y'+m, ')'", l) is a positive infinitesimal, jc is
the chemical potential, js+(y) is the distribution in
momentum space of positrons, and js (y) is the dis-
tribution of electrons.

We now consider the propagation of an electromag-
netic disturbance in such a medium, with which it
continuously interacts. This interaction may be de-
scribed as the sum of the Feynman diagrams in Fig.
2 (a), in which each box represents in turn the sum of all
irreducible Feynman graphs between two photon lines
such as are pictured in Fig. 2(b). The operator corre-
sponding to one box is a tensor that we call II„,(k,o)),
which is a function of both the energy and the wave
number of the electromagnetic wave. The corresponding
field equation satis6ed by the plane electromagnetic
wave is, in momentum space,

(k),k'g„„—k„k,—4z.II„,)A, = j„, (2)

II„.(k,o)) = (4s )-'o)'(ec —1)(Pr) „„
+ (4z)—'krak" (4' —1)(Pj.) „(3)

where the projection operators are given by

(Pj.)„.= e„e„, e„=Lk) k "5 "(o)k,k), —

and
(PT) 'j—c) 'j k'kj, (Pr);4 (Pr) 44

——0, ——
(4)

and e' and e', the dielectric constants, are functions of
~k~ and cd, and of the momentum distribution in the
electron background plasma. Substituting expression
(3) into the field equation (2), and setting the external

"We follow here V. N. Tsytovich, Zh. Experim. i Teoret. Fiz.
40, 1775 (1961) I translation: Soviet Phys. —JETP 13, 1249
(1961)Q.

where A„ is the electromagnetic four-potential and j„
is the external four-current. Because gauge invariance
implies that II„„is normal to 0,

k~II„„=O,

and because the medium is considered isotropic and
II„,=II,„,one may put the polarization operator in the
form"
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current equal to zero, we find that the equation has
two independent solutions: One is a longitudinal
plasmon which has the dispersion relation

e'(co,k) =0,

and the other is a transverse plasmon which in the case
of large k is the usual transverse electromagnetic wave
with the dispersion relation

Fzo. 3. Feynman diagram for the neutrino-pair decay
of a plasmon.

that for q&= (q,0), satisfy

GPC (GJ k) = k (6)

III. QUANTIZATION

For neutrino emission by a stellar plasma the most
effective collective modes have energies that are not
large compared with xT/5, and the quantization of the
mode amplitude is a dominant feature. Equations (5)
and (6) give the spectral dispersion relation for the
plasmons, i.e., &o(k), but not its amplitudes. A plasmon
of frequency co consists of oscillating electromagnetic
fields coupled with electrons moving with the same
frequency cu. Quantized electromagnetic waves in a
dispersive medium have been described by Watson and
Jauch. " The plasmon vector potential operator is the
sum of transverse and longitudinal parts, A =At+At.
The longitudinal part can be written

A(1'(x, t) = (2z.) 3~' d'k [(a'Be'/Ba)] "-'

X (gp(k)a(k) exp[ —~(cot—k x)]

+g("(k)at(k) exp[ —f((ut —k.x)]). (7)

In this expression a~, a are creation and destruction
operators, respectively, for longitudinal plasmons,

[u(k), at(k')] =6'(k —k'),

and g~" is a polarization vector: g~"=e" deined in (4).
The normalization factor in the integrals is such that
the plasmon's energy (electromagnetic+interaction
+electron energy) equals (n+1/2)ko. The derivation
of its form is given in the Appendix.

The transverse electromagnetic potential operator is

A&( )/x) = (2z)—'"P d'k ((u(2e'+cocle'/Bcv)]

&(exp[—~(cut —k x)]fg„"(k)b,(k)

y exp[—i(~t —k.x)]+q,„~(k)b,~(k)

Xexp[i(a)t —k x)]), (9)

where b, bf are destruction and creation operators,
respectively, and s is a polarization index with values
1 and 2; q&&I" and qt2f" are two polarization unit vectors

"K. M. Watson and J. M. Jauch, Phys. Rev. 75, 1249 (1949}.

@(AD=1 (s=1, 2). (10)

IV. NEUTRINO PAIR EMISSION FROM THE
COLLECTIVE MODES

The coupling of the electron-positron field to the
plasma electromagnetic field A is, of course, still given
by the interaction Hamiltonian,

3Cr ——(&)' "eg,y„P,A I' (11)

By using the above formalism it is possible to compute
processes involving plasmons by the usual rules of
QED, among them plasmon neutrino-pair decay. The
proposed (ev) (ev)t coupling can be written

~w= g(2) "V.v. (1+v~)4.4"v"(1+v~)f.+H c.
= —g(2) "V.v. (1+76)4.0.7"(1+7~)4.+H c, (12)

where g=3.08)&10 "m, ' is the weak coupling constant.
The decay rate of the transverse plasmon and that

of the longitudinal plasmon are computed separately.
Each is conveniently subdivided further into the rate
from vector and pseudovector couplings. %e write the
weak interaction Hamiltonian as the sum of two parts,

~~= —g(2) "V.vA"k.v"(1+en)4"
g(2) "v"Y.V~—P"W.v"(1+75)4" (13)

The matrix element for the process pictured in Fig. 3
has two parts: one from the electron vector current"
part of the X~ and the other from the electron pseudo-
vector part of X~.When the matrix element is squared,
the cross term of these two parts is a pseudoscalar and
contributes nothing when integrations to compute
decay rates are carried out. The axial vector current
vanishes in nonrelativistic limit (the collective modes
have charge but no net spin variation), and because
the momenta of interest are not highly relativistic we
expect that the contribution of the electron axial vector
current to the decay rates is much smaller than that
from the electron vector current in stellar plasmas.

"Electromagnetic corrections to the vector current, which to
lowest order in X~, but all orders in e (Z3 is the charge renormaliza-
tion of electrodynamics) eftectively replace g by gZP are explicitly
ignored. %e also ignore the possibility of direct (ee) {vv} coupling,
which might cancel the (ev} (ev}+ coupling. PB. Pontecorvo, Phys.
Letters 1, 287 (1962}, and S. Bludman, Nuovo Cimento 9, 433
(1958).j
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We consider the vector current contribution first and
deal with axial vector contribution separately.

The plasmon can decay via the mechanism pictured
in Fig. 3, which is just Landau damping into neutrino
pairs, where —if we are considering only electron vector
contributions —the box represents exactly the sum of
irreducible Feynman graphs pictured in Fig. 2(b) and
represents the operator 11„„(k,co) defined above. The
decay rate of longitudinal plasmons, r~ ' (from the
vector current), is conveniently expressed in terms of
e'. The dispersion relation (5) allows one to set e'=0,
and the result is found by the usual rules of QED to be

r —I —(8/3)g2(4~e)
—2(~2()el/(j~) —1(~2 k2)$ (14)

Similarly, the decay rate of a transverse plasmon rg '
can be calculated as

rg ' (8/-3)——g'(4s.e)-'Lcu(2e'+cuBe'/B(o)]-'

X ((o'—k') LuP (e' —1)]' (15)

To obtain the energy loss rate per unit volume from
neutrino-pair radiation we integrate over the density
of plasmons. Neglecting the damping of the plasmon
states, one obtains the plasmon density from a boson
thermal distribution. The neutrino-pair emission rates
per unit volume from transverse and longitudinal
plasmons are then

E'y+ (p k) —2(p k)'/k'
A~'=1+

EpEp g

m' —(p k)+(p k)'/k'

and

f(E,)= 2 (2s)-'Le—(p)+ n+(p)], (20)

where

e= 1 coo /4P&

, f(E.)
~02 ——4me2 d'p 1———.

Ep 3 Ep

(21)

where symbols are defined as for Eq. (1). The terms
beg' ' represent vacuum polarization eGects and are
divergent. This divergence is removed in the well-known

way by charge renormalization. The remaining finite
vacuum polarization eGect is not important compared
with the effect of the polarization of the plasma for a
stellar plasma.

For stellar plasma we content ourselves with an
approximate result to avoid numerical integration. In
the applications of interest the conditions k«m and
co&&2m obtain, so we can neglect terms in k and co in the
integrands in the expressions for e', e'. In this case both
dielectric constants reduce to the well-known form

and

Q~= rq 'arje e 1] '(2x)—~(8w)k'dk, (16) For a degenerate Fermi sea this becomes

~o'= 4e'pr'/(3~Ex), (23)

Q)
—— r) 'co[e e 1]—'(2s.) '—4~4'dk,

where P= (eT) ' The dielectr. ic constants e', e' are
functions both of k and of or and depend also on the
momentum distribution of electrons in the plasma.
The energy co is given as an implicit function of k in
the dispersion relations Eqs. (5) and (6).

V. THE DISPERSION RELATIONS OF THE
LONGITUDINAL AND TRANSVERSE

PLASMA MODES

To calculate the emissivities Q& and Q& we must now
estimate e(k,co). In the sum for II„, represented in
Fig. 1(b) all terms but the first, the single-loop integral,
are dropped. In the limit of infinite density this should
be an excellent approximation. For our applications to
stellar plasmas, the interelectron spacing is always very
small compared with the Bohr radius. With this
approximation an integral form for the dielectric
constants has been computed by Tsytovitch. " We
quote the relevant results here:

where by Ep we mean the relativistic energy, including
rest energy, of an electron with the Fermi momentum
p& [Ep= (pp'+m')'"]. This plasma frequency is used
in Fig. 1.

To get an idea of the validity of neglecting the higher-
order terms in k' and oP, we can carry out the integrals
of Eq. (18), retaining terms of order k' and cv'. Under
this approximation

4n.e2

d'p f(E,)

1 1 p2 cd 1 p2

X —1— +
Ep 3 Ep' 4Ep' 3 Ep'

k' p' 1 p' k'p' 1 1 p2-
+ —1—— + ———,(24)

2Ep' Ep' 3 Ep' ~2Ep' 3 5 Ep'

4xe2
d'p f(E.)

4xe2 Ep —Ep k

f (E )d'p
(E~—E, g)' —co'

Ep+Ep-~
+ l, g +g& t, t

(E~+Eq g)' —co'
(18)

1 1 p2 co2 1 p2

X —1—— +
Ep 3 Ep' 4Ep' 3 Ep'

k2 —
2p2 p4 — k2p2 — 3 p2-

+ —1— + 1—— (25)
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These expressions can easily be integrated for a zero-
temperature Fermi distribution. If we consider a density
of 4X10' g/cc of pure helium, p p is 0.59 m. and inte-
gration of these equations shows that as long as M and
k are small compared with m, the approximation of
Eq. (21) is good to a few percent. If we now use Eq.
(23) for c" in the dispersion relations, we find that for
the longitudinal plasmons M'=Mp'+nk', where n is
always much less than 1, and for the transverse ones
M =Mp +k' With these expressions for the dielectric
constant and the dispersion relations, the longitudinal
neutrino-pair emission energy loss rate can be written

O
V)

I

CT

IO

IO

IO

0 K

4K

7 K

IO 'II

K

g' 1 1
l

33re (23r) e"ae—1
dk k'(a&02 —k')'

g' 1 1 16
cd()

3 e' (3 )'e '&—1 313)

Qq/(ergs/cc sec) =3.15X10' (030/m, c2) (e~«—1) '. (26)

IO
IO IO IO

P (g/'cm")

IO

Fzc. 4. Emissivity from transverse plasmons q& as a function
of density p and temperature.

The upper limit k=Mp is set by energy-momentum
conservation. For k&Mo the term o.k' can be neglected,
in comparison with Mp', with small error.

We use the above dielectric constant (21) and dis-
persion relation (6) and the expression [exp(10P) —1] '

1"exp( —mug) in Eq. (16) to obtain the following
form for the transverse emissivity:

Q1 ——2g'(33re') '(27r) 'co ' g exp( —mPcv)k'dk. (27)

The integral in this expression can be expressed in
terms of modified Hankel functions of the zeroth and
first order, or by the following approximation. We
distinguish two cases: 1dp((1 and &d138))1. If cop((1,
then the exponential factor is negligible for all values
of k until k&)Mo, when M=k. Then

Neither of these approximations is accurate in the
region cooP=1; we make a smooth interpolation of two
approximations through this region on a log-log plot
in Fig. 4.

The energy rates per unit mass q3 (=Q3/p) and
q& (=Q&/p) have been plotted in Figs. (4) and (5) for
a medium of (Z/A) = (1/2). Et should be noted that
temperature-density regions are included where the
gas is nondegenerate. However, as long as ~T&m,c'
(T=1030 'K), Eq. (24) for the plasma frequency is
quite insensitive to the temperature. The exact f(E„)
in Eq. (23) would give only a slightly smaller value for
Mp.

We return now to the eGect of the axial vector
current at the weak-interaction vertex. For the longi-

or

4g' Mp' 1 ~ 1

33re' p' (23r)' ~-1 m'

IO—9

IO
8

Q3/(ergs/cc sec) = 2.96X10 (&oo/m, e ) (8m,c') 3 (2g)

If Mpp)&1, then as k increases the exponential factor
will suppress the integrand when k is still very much
smaller than Mo, so that we can approximate
co=~o+k'/21do. The emissivity is then

2g Mp o a k2Pn
Q3= P exp( —IOP) exp — k'dk

33r'e' (23r)' a=i o 2MO

IO
CJ
Cl
lA IOO
Ql

QP
IO'-

4IO—

IO

IO

I

IO

ol

g2 M 7.5
(23r)1/2 P-l.ce—ruoe

33re' (23r)'

IO

IO
IO IO IO

I

IO 10 IO
7

p(g/Cm3)

Q /(ergs/cc sec) =1.54X10' (coo/m~')7 3(Pm, c') '3
Xe~(—,P).

FIG. 5. Emissivity from longitudinal plasmons q& as a function
of plasma density and the temperature.
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Fro. 6. Comparison of emissivity from transverse plasmons g~
with that from electron-positron pair anvihi&ation (dotted lines),
as a function of plasma density and temperature.

tudinal plasmon the decay rate due to the axial vector
current can be seen to vanish from momentum con-
servation and parity considerations. For transverse
plasmons the axial vector current does contribute to
the decay rate, denoted 7& '. If in computing the loop
integral

&..'(I, )=~(2 )-' d'p»L7, G(p+~b.v.G(p) j,

for ~" represents plasmon decay into real electron
positron pairs and Landau damping. '~ Energy mo-
mentum conservation implies for both transverse and
longitudinal plasmons that real electron-pair creations
can occur only if coo&2m, which is never the case in
our study. Landau damping occurs only if k&co, this
never obtains for transverse plasmons. In longitudinal
plasmons this mechanism is relevant when k)coo=co,
but only for k &coo= ~ is neutrino-pair creation possible,
and so this damping mechanism will not aGect the
momentum distribution in the region of interest. It
has been recently pointed out' that in nondegenerate
nonrelativistic plasmas damping due to third-order (in

e) effects (collision damping), in which two of the
plasma electrons are excited, may be more important
than Landau damping. The nondegenerate nonrelati-
vistic case has been calculated. It would be expected
that degeneracy would reduce the number of Anal

accessible states and that the available formulas will

overestimate damping in that case. If the degeneracy
is neglected, Imc0/Recoo is small (e.g. , p=10' g/cc,
T=10"K, Imago/Recoo=10 4).

VII. COMPAMSON NEITH OTHER MECHANISMS
FOR NEUTRINO-PAIR EMISSION

The neutrino-pair energy loss rate can be compared
to that due to four other mechanisms'7 that have been
proposed. Neutrino brernsstrahlung was proposed by
Pontecorvo, and rates were calculated by Gandel'man
and Pineau. "Their results give an energy-loss rate

G(p) being the Fourier transform of G(x), we retain
terms to order k, the rate v~ ' is

q/(ergs/g sec) =5.9X10 ~(p/vp, g, 'cc) (T/'K)", (32)

8 $2~1( p
3 2

r g
' (2rr)4g2c' ———

~
. (30)

27 Gl (pv +tS (N/2)—
Assuming co«es, the luminosity can again be integrated,
and it is seen to be considerably smaller than Q& and
Q~ computed earlier for the range of temperature and
pressure of interest:

q/(ergs/g sec) =1.67X10 64p '(T/'K)' (33)

for nondegenerate electrons;

where v '=P;c;ZP/A;p, '=P; c~Z;/A;, and c; is the
fractional concentration of the elements by weight.
Chiu and Stabler, and independently Ritus, have
computed neutrino Compton radiation y+e —& e+ v+ v.

The results given by Ritus are

pv c (do

Q~/(ergs/cc sec) = 2 X10"
Ep~ns m,c'

X (pm~') "c "'~. (31)
We drop this term.

VI. VALIDITY OF THE PLASMON EXCITATIONS
AS NORMAL MODES

Finally, we consider the validity of treating the
plasmons as normal modes in our computation. %'e have
assumed that a plasmon is a reasonable approximation
to a normal mode of the system and have ignored the
possibility that plasmons can decay by other channels
than neutrino-pair creation. Even with the loop integral
approximation (second order in e) for c' ', we have
ignored an imaginary part for e".This imaginary part

q/(ergs/g sec) =2X10 "v '(T/'K)'. (35)

"See, e.g., reference 12."D. F. Dubois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
Letters 8, 419 (1962).

'7 These are in addition to the URCA process of Gamow and
Schonberg, which gives a single neutrino from electron capture by
individual nuclei. The energy-loss rate is essentially zero in He,
and otherwise very dependent on the assumed presence of speci6c
nuclei with low threshold for electron capture.'"Note added in proof. Dr. Leonard Rosenberg (private con-
versation) has pointed out the lack of gauge invariance in this
result. He 6nds a smaller result at T= 10' 'K and a T"temperature
dependence. G. Marx and J. Nem'rath estimate q= 10' ergs/g sec

q (ergs/g sec) = 6.9X10—n (p)
—'"(T/'K)'p —'" (34)

for highly degenerate nonrelativistic electrons.
Emissivity due to neutrino-pair creation by y rays

in a Coulomb held has been calculated by Matinyan
and Tsilosani. ~ Their result is'"
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These rates are smaller than the energy-loss rate due
to plasmon v-pair decay for log&op&4Dog&DT —7].None
of these earlier calculations has taken account of the
effect of the dense plasma on the electron propagator
or of the efI'ect of the plasma on the electromagnetic
eaves, especially the plasma cutofI', which greatly de-
creases the energy-loss rate due to neutrinos for densities
and temperature that lie above the curve of Fig. 1.

Chiua has investigated the energy-loss rate due to
electron-positron pair annihilation suggested by Chiu
and Morrison. ' His results have been plotted in Fig. 6,
together with the emissivities of Eqs. (28) and (29).
For low densities and for high temperatures the electron-
positron effect is larger than the plasmon eA'ect. Below
10"K the collective radiation always dominates for
p)5X10' g/cc and generally falls off very much less
rapidly with decreasing temperature at smaller
densities,

VIII. APPLICATIONS TO STELLAR EVOLUTION

In the theory of stellar structure the density and
temperature of stellar interiors is such that the neutrino
emissivity is negligible for stars on the main sequence.
Only at later stages of evolution during periods of core
temperature much greatex than 10~'K and high density
may the energy loss due to neutrino-pair emission play
a signihcant role. Some eGects of neutrino-pair emission
have been discussed by Chiu' for stars in which core
temperatures exceed 10"K. Two types of stars are
recognized as possessing dense hot cores: white dwarfs
and red giants. %'hite dwarfs are presumed to be cooling
by surface radiation with no interior energy generation.
Estimated central densities in a white dwarf are about
10' to 10' g/cc. The observed bright white dwarf,
Sirius B, which is estimated to have a core temperature
of 1.8X10'K and a density of 10' g/cc, has a photon
luminosity about HP times as large as the calculated
neutrino luminosity. '9 Most other white dwarfs are
estimated to have lowex interior temperatures, and
consequently an even smaller ratio of neutrino-to-
photon luminosity. Only if the internal temperature
approached 5)&10"K would neutrino-pair emission
play a significant role in the cooling process.

A red giant burns hydrogen outside of a dense 10'-
to 10'-g/cc core of inert helium. As more and more
helium is added to the core it contracts, and heats by
conversion of gravitational to thermal energy. The
heating continues until the core reaches a temperature
of about 8)&10~'K, when helium burning commences
and the star enters the next stage of evolution. Two
types of red giants may be distinguished by their
masses: those with mass greater than twice the mass

at T=1.0&(20' 'K and g=10 ergs/g sec at T=0.6X20 'K )Pro-
ceedings of 1962 Annual International Conference on High-Energy
Physics at CERN (CERN, Geneva, 1962) .

's H, Y. Chiu, Ann. Phys. (N. Y.) 15, 1 1961);16, 321 (1961)."E. Schatzman, S'ki te D2earfs (North-Holland Publishing
Company, Amsterdam, 2958).

of the sun, and those with mass less than 1.1 solar mass.
The core temperature in the heavy red giants is such
that the electrons are not degenerate, nor do they ever
become degenerate as core contraction proceeds. If a
thermal energy sink such as neutrino emission is
placed in the core, the core contracts somewhat faster,
and heats rather than cools (according to the virial
theorem). Under nondegenerate conditions the
neutrino-pair emission simply accelerates the evolution
of the star to the point at which helium burning starts
generating energy at a rate very much greater than
the rate of energy loss by neutrino emission. In light
red giants (mass&mass of the sun) the core is largely
degenerate. In a degenerate core a neutrino energy sink
results in cooling, since very little gravitational con-
traction takes place. According to a preliminary calcu-
lation by Hoyle and Schwarzschild, the core density
varies between 10' and 10' g/cc as the temperature
grows in the temperature range 10~ to 10"K, because
of gravitational contraction before He burning begins.
The time scale for this contraction is estimated to be
between 10' and 10' yr. The rate of incxease in thermal
energy of the core from a gravitational contraction
would then be of the same order of magnitude as the
loss of thermal energy by neutrino-pair emission, which
can approach 100 ergs/g sec in this interval. Whether
or not it would substantially delay or even prevent the
ignition of He in the degenerate core of a light red giant
depends upon a reasonably detailed model of the density
temperature and time scale for the development of the
red-giant core.

The relevance of neutrino-pair emission from the
electron-positron annihilation to the evolution of a
heavier star into a nova or supernova has been empha-
sized by Chiu. ' Here the temperature of the star of
interest is above 10"K.For a core density of p=2)&10
g/cc and T=10"K, the radiation of neutrino-anti-
neutrino pairs by plasmons is greater than 3)(10'
ergs/g sec, which is about the same as that from e -e+
annihilation. The neutrino luminosity of the star would
be about 106 times the luminosity of the sun. For
p) 2X10' g/cc, T=10"K, the plasmon vSradiation-
exceeds that from e=e+ annihilation, in part because
electron degeneracy surpresses the formation of e=e+
pairs, and in part because the plasmon-paix emission
rises as the density and plasma frequency increase.
For slightly lower temperature the plasmon emission
begins to dominate at much lower densities.

The effect of neutrino pair emission on the abundance
of elements in stars has been considered by Chiu and
Stothers. "They show that addition of e=e+ annihilation
to a stellar model can considerably reduce the time
scale of certain phases of evolution and hence modify
the relative abundance of the elements. Time scales of
evolution associated with pair annihilation and with

~ M. Schwarzschild, Structure and EvoLNtioe of the Sters
(Princeton University Press, Princeton, New Jersey, 1958),p. 227."R. Stothers and H. Y. Chiu, Astrophys. J. 135, 963 (1962).
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TAsz.E I. Time scales of evolution for a stellar density
of p=2X10' gjcc.

the D field and the E field to be related by

D(t, x) = E(t,x)
T{K)

6X10s
8X10s

10
1.2X109

Pair annihilation only

q„jqO ~ {yr)
SX10' 2X107
4X 10' 3X10
3X10' 400
SX10' 20

Plasmon decay only

q&jqO v. {yr}
1X105 /X 10
3X105 3X10
&X10' 2X10'
1X10' 9X10s

d'y f(&,y)E(t 7,—x—y). (A1)

The dielectric constant is defined by

plasmon decay are displayed in Table I for a density
of 2&&10' g/cc and a variety of temperatures. At
T=6X10"K, plasmon decay reduces the time scale
of evolution to 10' yr. Density rises with the cube of
the temperature in a contracting nondegenerate stellar
core. At slightly higher densities pair-annihilation
emissivity is suppressed and plasmon decay increases
(Fig. 6), so that neutrino pair emission by plasmon
decay would be the dominant factor in controlling the
evolutionary time scale in this temperature-density
regime.

Ke are happy to thank Professor L. Henyey, H.
Reeves and G. Wallerstein for an informative discussion.

APPENDIX

The normalization factor in the plasmon operators,
Eqs. (7) and (9), is the square root of the classical
energy density, including the effect of the electric field,
the kinetic energy of the charges, and their potential
energy. This has been given for transverse waves by
Landau and Lifshitz, m' and by Watson and Jauch. "
We present here a slightly diGerent derivation which
is also applicable to the longitudinal waves. We suppose

~L. D. Landau and E. M. Lifshitz, Eleclrodynamics of Con-
tinuous Media {Pergamon Press, New York, 1960), p. 2SS.

e(k, a&) = 1+ dr d'y f(r,y) exp(icor ik—y) (.A2)
0 (oo)

We consider an electric wave of gradually increasing
amplitude

E=EO exp( ice—ot+ik x+Xt),

with X infinitesimal and positive, and Eo constant in
time. The energy density at x at a time T, U(x, T) will

then be

U(x, T)= ReE(t,x)(d ReD(t, x)/dt5dt (A3).

Now we have

ReE(d ReD/dt) = ~~ Re(EdD/dt+ ', Re(E*d-D/dt). (A4)

The time average of the first term on the right side of
this equation vanishes. After a contour integration,
the second term gives

U(x, T) =-',Eone'"r(Re&(co+iX, k)
+(oo Em&(coo+iX, k)/X5. (A5)

If we now neglect absorption, Im&=0, and letting
) —&0, we have

8
U(x, T) =-',E02 Res(coo, k)+cop—e((a,k) i „„,. (A6)

taco


