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The differential cross sections for the excitation of the vibrational levels of nuclei are derived using the
direct interaction between the projectile and the shell-model particles via a two-body force. The nuclear
collective states are approximate solutions to the Hamiltonian consisting of a pairing plus a quadrupole
interaction in a quasi-particle representation. The results obtained by this method are compared to those
which follow from an interaction using collective coordinates for states of one and two phonons. Numerical
results are given for the plane-wave 6rst Born approximation scattering of alpha particles with a delta-
function interaction between the projectiles and the nuclear particle and for the plane-wave Born approxi-
mation scattering of electrons, assuming a Coulomb interaction.

I. INTRODUCTION

XPERIMENTS with medium and high-energy
~ accelerators, in recent years, have produced con-

siderable evidence that an important portion of re-
actions takes place through processes which can be
described as "direct" rather than compound" re-
actions; i.e., often the di8erential cross sections show
patterns which can be successfully interpreted by as-
suming speci6c initial and 6nal channels and explicitly
following a few of the particles involved in the reaction.
The inQuence of other open or virtual channels is
neglected, except, perhaps, by introducing a mechanism
for absorption or by explicitly assuming a particular
form for the projectile wave functions or the interaction
to try to include certain physical e6'ects of the neglected
processes.

The most successful application of these methods has
been to the stripping and pickup processes, reactions in
which one particle is exchanged between the projectile
and the target. Often the angular distribution of scat-
tered particles can be qualitatively understood by a
simple semiclassical treatment of the kinematics. ' Using
methods which are essentially a cutoG Born approxima-
tion' with plane waves for the projectile, Butler has
demonstrated that these reactions can often be cor-
rectly interpreted by assuming that the stripped
(picked-up) particle is placed in (removed from) a
particular single-particle shell-model state. Further-
more, reasonable extensions of this picture, including
the distortion of the projectile wave function, Coulomb
effects, etc., have generally improved the agreement
with experiment. '

The direct interaction process which has perhaps
attracted most interest recent1y is that of inelastic
scattering. For a number of years such reactions have
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2S. T. Butler, Phys. Rev. 80, 1095 {1950);Proc. Roy. Soc.
(London) A208, 559 (1951).' For references see M. H. Macfarlane and J. B. French, Rev.
Mod. Phys. 82, 567 (1960).

been used to identify single-particle states. That one
can calculate cross sections which are in reasonable
agreement with experiment using shell-model states
with a model analogous to that of Butler's for strip-
ping4' and that these calculations can be improved by
using distorted waves for the scattering particle'~
serves as further evidence of the possibility of success-
fully treating these processes by using a simple inter-
action linking the initial and 6nal channels.

The excitation of collective states by inelastic scat-
tering, 6rst studied systematically by Cohen, ofFers
an exciting possibility for the study of nuclear structure
and the nature of collective states. The empirical dif-
ferential cross sections for the scattering of medium
energy nuclear particles, especially alpha particles, show
strong oscillations, in which often the maxima and
minima occur at regular intervals in the scattering. '
Theoretical cross sections with such a general shape have
been derived by a diGraction model for scattering of
particles from a nonspherical strongly-absorbing nu-
cleus; this model was introduced by Drozdov, " ex-
tended by Inopin" to allow the introduction of collective
coordinates for the excitation of quadrupole vibrational
states, and further developed by Blair" to allow any
type of surface phonon. Blair has emphasized the
necessity to understand the inelastic and elastic scat-

4 R. Huby and H. C. Newns, Phil. Mag. 42, 1442 (1957).' N. Austern, S. T. Butler, and H. McManus, Phys. Rev. 92,
350 (1953)~

6 C. A. Levinson and M. K. Banerjee, Ann. Phys. (N. Y.) 2,
471 (1957); 2, 499 {1957);3, 67 (1958).

7 N. K. Glendenning, Phys. Rev. 114, 1297 (1959).
B. L. Cohen, Phys. Rev. 105, 1549 (1957); B. L. Cohen and

A. G. Ruben, ibid. 111, 1568 (1958).
9 R. Beurtey, P. Catillon, R. Chaminade, M. Crut, H. Faraggi,

A. Papineau, J. Sandinos, and J. Thirioh, J. Phys. Radium 21,
399 (1960), and (to be published); D. K. McDaniels, J. S. Blair,
S. W. Chen, and G. W. Farwell, Nucl. Phys. 17, 161 (1960);
M. Crut, D. R. Sweetman, and N. S. Wall, ibid. 17, 655 (1960);
J. L. Yntema, B. Zeidman, and B. J. Raz, Phys. Rev. 117, 801
(1960};H. W. Broek, T. H. Braide, J. L. Yntema, and B. Zeid-
man, ibid. 126, 1514 (1962}.' S. E. Drozdov, J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 734,
736 (1955) t translation: Soviet Phys. —JETP 1, 591, 588 (1955)j."E. V. Inopin, J. Exptl. Theoret. Phys. (USSR) 31,901 (1957)
t translation: Soviet Phys. —JETP 4, 764 (1959)j.'I J. S. Blair, Phys. Rev. 115, 928 (1959).
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tering in terms of the same mechanism, and has demon-
strated that certain qualitative relationships which
have been found between the experimental elastic and
inelastic cross sections can be derived by means of this
model. These results can also be obtained by the more
nearly general method of distorted-wave Born ap-
proximation"; however, since these latter calculations
are quite complicated it is easier to learn of the qualita-
tive features of the process in the adiabatic method.

Using a plane-wave Born approximation, Lemmer,
de-Shalit, and %all have recently extended the calcula-
tion of these reaction processes to the excitations of
states of two phonons. "These authors have pointed
out that in the region of Fe and Ni some of the 44-MeV
alpha-particle reaction experiments seem to suggest a
phase rule between the maxima and minima of the
various cross sections according to which the angular
distributions corresponding to the excitation of the
one-phonon states of odd J (i.e., the octopole states)
and to the two-phonon quadrupole vibrational states
are in phase with angular distribution for the elastic
scattering, while the maxima in the angular distribution
corresponding to the excitation of the one-phonon
quadrupole state occur approximately at the minima
of these other distributions. Because of the simplicity
and clarity of their formulation of the inelastic scatter-
ing in terms of collective coordinates, we compare
certain limits of the derivations in terms of two-body
forces, which is the subject of this paper, to the results
of Lemmer et cl., and, therefore, give a brief sketch of
their work.

They use the collective model of Bohr and Mottel-
son," in which the nucleus surface is sharp, but non-
spherical, with the deviation from spherical symmetry
being expressed by collective coordinates, which are
quantized to serve creation and destruction operators
of phonons whose spin equals the order of the surface
distortion. Assuming that the proj ctile experiences no
interaction outside of the nuclear surface, they expand
the interaction in terms of the distortion parameters,
taking the zero order as a uniform potential well of
radius Eo. The first term in the expansion is an optical
potential for elastic scattering, which predicts an angu-
lar distribution of Pj~(ttRO)/qRoj, q being the momen-
tum transfer and j& representing the first-order spherical
Bessel function. The second term is simply a surface
interaction linear in phonon creation and annihilation
operations, the interaction which had been used by
Hayakawa and Yoshida" for the excitation of rota-
tional states, which leads to one-phonon excitations in
the Grst Born approximation with an angular distribu-
tion of Ljr, (PRO) j, with I.being the spin of the phonon.

"E.Rost and N. Austern, Phys. Rev. 120, 1375 (1960).
'4 R. Lemmer, A. de-Shalit, and N. S. Wall, Phys. Rev. 124,

1155 (1961).
'5A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.

Selskab, Mat. -Fys. Medd. 27, No. 16 (1953).
'6 S. Hayakawa and S. Yoshida, Progr. Theoret. Phys. (Kyoto)

14, 1 (1955).

This particular form is obtained because a derivative
of a square well gives a delta function at the origin; a
more realistic surface would result in an angular dis-
tribution which lacks this quasi-periodicity for large
momentum transfer.

The two-phonon excitation results from the second
term in the expansion in the second order and the third
term in the first order, the latter terms apparently being
most important for plane waves. "The Grst order calcu-
lation of the two-phonon excitation leads (in the large
PRO limit) to a matrix element which contains a spherical
Bessel function of order L,—f, giving the phase rule
stated above. One can expect this result to be altered
by using a disuse surface and distorted waves for the
particle. Recent calculations have shown the two-step
process to be as important as the one-step one,"but it
is valuable to see how such a phase rule can arise from
a calculation using a collective model for comparison
with more nearly fundamental methods.

The development of linear accelerators which produce
beams of electrons with energies greater than the m--

meson rest mass has provided a valuable tool for the
study of nuclear structure. 's One can more easily
formulate a theory of the excitation of collective nuclear
states by electrons than by nuclear projectiles, since the
interaction is more nearly accurately known for the
former and since one knows better how to handle the
system when the electrons are near the nucleus. More-
over, from the fact that electrons tend to penetrate the
nucleus, while nuclear particles of intermediate energies
are absorbed, one might expect to be able to learn more
of the details of the nuclear structure from electron
scattering.

There have been several treatments of electron scat-
tering in terms of simple particle and collective co-
ordinates, "and the shape of the di8erential cross sec-
tions can be qualitatively understood in terms of a
simple model in the Born approximation. Still, one
hopes that there is a great deal more to be learned about
the nucleus from these reactions.

In the present work an attempt is made to understand
the inelastic scattering from vibrational states in terms
of two-body interactions, without introducing collective
coordinates for the interaction. This is possible because
of the success of the treatment of the collective states
in terms of shell-model particles interacting with an
interaction consisting of a short-range and along-range
component. In a quasi-particle interaction the short-
range force is approximately diagonalized, resulting in
a seniority spectrum for even nuclei with a ground state
of seniority zero (no quasi-particles) well below the
seniority two states (two quasi-particles). "Using the

"B.Buck, Phys. Rev. 127, 940 {1962).' H. Crannel, R. Helm, H. Kendall, J. Oeser, and M. Yearian,
Phys. Rev. 123, 923 (1961).

'9 K. Alder, A. Bohr, T. Huus, B.R. Mottelson, and A. Winther,
Rev. Mod. Phys. 28, 476 {1956).J. D. Walecka, Phys. Rev. 126,
653, 663 (1962).

~S. T. Belyaev, Kgl. Danske Videnskab. Selskab. Mat. -Fys.
Medd. 31, 11 (1959).
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dilute fermion approximation, " which is accurate as
long as the vibrational levels do not lie too close to the
ground state, i.e., the number of quasi-particles in the
ground state remain small, it has been sho~n that it is
possible to approximately diagonalize a force which
has the angular dependence of the second Legendre
polynomial of the cosine of the angle between the inter-
acting nuclear particles and that this leads to the
quadrupole vibrational states. "

The vibrational levels for the single closed shell
nuclei in this (Sawada) approximation have been
calculated with a pairing plus a quadrupole force,"
using the same parameters which had been used for the
calculation in which the same force had been treated
by a deformed field approximation, ~ with quite similar
results except in the cases for which the adiabatic
approximation is known to be a poor one. Similar results
are obtained in the spherical region with both neutrons
and protons outside of the closed shells. "While the
deformed field calculation has the advantage of clearly
revealing the physical content of the semiclassical
collective motion, one knows precisely which terms are
neglected in the calculations with two-body forces, and
therefore, is in a better position to study those processes
which are not properly treated in the adiabatic limit.

The assumption is made here that the projectile is
an elementary particle which can be distinguished from
the nuclear particles. This implies that the exchange
terms are dropped, which might introduce considerable
error for inelastic proton scattering, ' especially at lower
energies, but is not expected to be so important for
alpha-particLe scattering. It is then simple to transform
the part of the interaction which involves the co-
ordinates of the nuclear particles into the quasi-particle
representation, and this result, along with certain other
mathematical relationships, are given in Sec. II. Be-
cause of their intimate relationship to the deformed
field approximation, these reactions are conveniently
discussed in terms of the Sawada approximation and
the corrections to this approximation. In this manner
one can study in the Born approximation the elastic
scattering, the one-phonon, and two-phonon excita-
tions; and in Sec. III results, analogous to those ob-
tained in the treatment with collective coordinates, are
derived in terms of single-particle quantities. In par-
ticular, one can see how a phase rule is obtained in
certain limiting cases, and how' it depends upon the
filling of the singje-particle states.

In Sec. IV the method is applied to the scattering of
alpha particles from Ni" in the first Born approxima-
tion. Plane waves are used for the alpha-particle wave
functions and a delta function is chosen for the inter-
action between the alpha particle and the nuclear
particles. The relation betv een the magnitude of the
force constant for the interaction of alpha particles and
nuclear particles which results from this calculation
and the optica) potential for the elastic scattering of
alpha particles from nuclei is discussed.

In Sec. V, the excitation of collective states by elec-
trons is derived and numerical results are given for the
scattering of 183-MeV electrons from the collective
states of Ni' in the first Born approximation.

II. INTERACTION HAMILTONIAN AND
%'AVE FUNCTIONS

A. Interaction Hamiltonian

The interaction between the projectiles and the
nucleus is assumed to be of the form

&=Q.~'„(I"~v~&.)~"b b.~„(&)
in which the u~t (aq) are the creation (destruction)
operators for the projectile particles and the b,t (b„)
are the creation (destruction) operators for the nuclear
particles, with k and v standing for all of the quantum
numbers of these particles. The b,t and b, obey fermion
anticommutation rules and are assumed to commute
with the uj, t and the uj„since the assumption is made
that the scattered particles can be distinguished from
the nuclear particles. Neglecting the internal excita-
tions of the projectile particles, they can be treated
approximately as bosons or fermions, depending upon
their spin; but since only one-particle projectile states
enter into calculation, the only property needed is that
c~~u~ =8~q when operating on one-particle states, so
that the commutation or anticommutation rules do not
have to be specified.

The two-body interaction between the projectile and
the ith nuclear particle is taken as

v„;= (1+mr e;)v(r„;), (2)

in which the a's are the Pauli spin operators and r~; is
the relative coordinate. To separate the interaction into
nuclear and projectile part, the Slater expansion of the
force and the spherical harmonic addition theorem are
used, so that the two-body interaction can be written

2' K. Sawada, Phys. Rev. 100, 372 (1957); K. Sawada, K. A.
Brueckner, N. Fukuda, and R. Brout, ibid. 108, 507 (1957);
G. Wentzel, ibid. 108, 1593 (1957).~ K. Ikeda, M. Kobagasi, T. Maramori, Th. Shiozaki, and
S. Takagi, Progr. Theoret. Phys. (Kyoto) 22, 663 (1959); M.
Maranger, Phys. Rev. 120, 957 (1960); R. Arvieu and M.
Uhnbroni, Compt. Rend. 250, 992, 2155 (1960); T. Maramori,
Progr. Theoret. Phys. (Kyoto) 24, 331 (1960).~ R. A. Sorensen, Nucl. Phys. 25, 674 (1961).+ L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Uidenskab.
Selskab, Mat. -Fys. Medd. 32, 9 (1960)."L.S. Kisslinger and R. A. Sorensen (to be published).

v„=P(—1)~ fr.(r„r;)/V~~(p) Y'~~(i)
LM 2J+]

+~K(—&)"~"(p)~ "(~)i" (p)i' "(~)j (3)

B. Nuclear States

Let us restrict ourselves to the single closed shell
isotopes for simplicity, although there is no difBculty
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P,„=U,b, +V;b;„,
(6)

in which the transformation coefficients V,~, the proba-
bility of occupation of the jth level, are chosen to ap-
proximately diagonalize the first two terms in (4), for
even-even nuclei the nuclear Hamiltonian can be ap-
proximately written as

+rr=+0+Z jm +jm(2jm 42jm

—lXEMIZ '[(I/ V'+f7'V)/2(5)'"j
x(i'llr'I lip)[xj'r'M'+( —1)Ma ' ~Mjl' (7)

with
g., r.Mr

( 1)(+v[~.t ., )j r. (g)

representing the operator formed by vector coupling
the quasi-particle creation operators (42;t,p, i) with
(42j t,P; 2) to an operator of angular momentum 1. and
s component jlII [with a phase (—1)'+'j. The first
term, E0 in Kq. (7) is the ground-state energy, the E,
are the quasi-particle energies, and in the third term
the sums and the quasi-particle operators are to be
taken to give a scalar quantity. The accuracy of keeping
only the first two terms to approximate the single-
particle energies and the pairing force has been dis-
cussed in references 20 and 24 and has recently been
checked by comparison with exact calculations. "The
third term is the quadrupole interaction of Eq. (4) in
the quasi-particle representation without terms which
arise from the scattering of quasi-particles (see Sec.
II C). In the deformed field approximation, i.e., re-

"N. N. Sogoliubov, J.Kxptl. Theoret. Phys. (U.S.S.R.) 34, 58,
73 (1958); N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958);
J. G. Valatin, i'd. 7, 843 (1958).

7 A. Kerman, R. Iawson, and M. H. Macfarlane, Phys. Rev.
124, 162 (1961).

in extending the derivation to nuclei in which both
protons and neutrons are outside of the closed shells.
(If the neutron-neutron, proton-proton, neutron-proton
quadrupole interactions strengths are the same, the
application of these results to nonsingle closed shell
nuclei just involves extending the sums. ) The Hamil-
tonian B~ from which the nuclear states are derived
corresponds to particles moving in a shell-model well
and interacting with a pairing force and a quadrupole
force, a model which seems to account for many of the
main features of the low-energy nuclear systematics. ~ "
For completeness, we briefly state the picture which is
presented by such a model. In second quantized form
the Hamiltonian is

Err=Jr 4,b;m bjm

—kG Ejj- bj -'bj'-'b&=br= kxQ 0, (4)

in which Q is the nuclear quadrupole operator

0 =hajj "(~'~'lr'Y„'l~'m)bj

In a quasi-particle representation, obtained by means
of the transformation" (with m,)0)

and analogous ones for the other combinations of quasi-

particle operators. The eigenstates of the Hamiltonian

(7) with the approximation (9) can easily be found. "22

The ground state can be expressed in terms of the
quasi-particles by an expansion

g0—y (0)+g (4)+. . .

P0 +21234 (1234[+12 +34 j0~0 " + ~, (10)

0,+o'0) =0

The energy of the phonon, the excitation energy of the
first 2+ state, is given in the Sawada approximation
as the smallest value of flu which is a solution to the
relation

(2X/3)hajj (Z'i)'(&j+~j)/[(~j+&j)' —(i3 )'j (11)
with

Z;;=(J'll+I ll~)(U;v, +~; v, ), (»)
in which (ll ll) represents a reduced matrix element.
In (10) the wave function 40(0) is the quasi-particle
vacuum, except for normalization, and the constants
cd~34 are determined from the condition

Bop=0. (13)

The excited collective states are obtained from the
ground state by the phonon creation operator

rt P., (o., g, , gM&+( 1)Mb, g., r

1
gj, r. &M

jj' 5" E+E' Aco—
with

( 1)Mjfj, lr M

E; +E;+her
(14)

&='= (gi2 /5)(Zjj (Z'j) (Er+E')/
[(&+~')'—(~)'j') (15)

C. Corrections to the Sawada Approximation

As is shown in the next section, the Sawada ap-
proximation, described in the preceding paragraph,
leads to the inelastic excitation of the one-phonon
states, but does not allow the two-phonon states to be
excited. In this section the various corrections to this
approximation needed for the present work are given.

placing one of the factors in the last term by the

average quadrupole moment and assuming that the

particle motion is rapid with respect to the quadrupole
vibration, this Hamiltonian fits the main systematics
of the single-particle and collective states in the single

closed shell isotopes. ~ The error of dropping of the terms

in scattering of quasi-particles is of the same order as

using the approximate commutation rules,

[g IM g r'M'2 j
bir, S—MM, [b,2b34 (—1—)'&+'~"+'~'&)4b23j, (9)
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=adjs

bLo(2j+1)'»Vj'&j 3+
(2I +1)'»

(U'IVj+IIj Vj)
(g ., LMt+ ( 1)Mg ., LM)-

and

+ (IIjIIj VIV3'—)nl'I™ (16)

g(j 'r34'
l
o&YML

ljr33)

(i' ll T""lli)
Z ~1,M.p+M

(21+1)'»

X(-,'(Vjvj —Vj.vj)[xj.j "'+(—1) aj,j — ]
+(~jIIj+VjVI')nl'I™) (17)

In (16) and (17) the quantity

)., LM [~.,t~]I.
an operator carrying angular momentum L and s
component M corresponding to the scattering of a
quasi-particle from state j to j', has been introduced
for convenience, and the quantity t'~: is de6ned as

~1L;I [oYL—]J

the tensor of rank J formed from the vector coupling
of the spin operator to the spherical harmonic of order L.
In the dilute quasi-particle approximation the terms in
g are dropped, so that the neglect of these terms intro-
duces errors of the same order as the use of the com-
mutation rules (9). For this reason, for the study of the
excitation of the second vibrational state it is necessary
to use the correct commutation rules. The basic com-
mutation rule for the double quasi-particle operators is

IM g I'M't]

=~II ~MM [bipbp4 boa( 1)"+—'~"+'—~']
+ ( 1)l p+l4+j 1+j4+M Q ( 1)aQ, , I'I4

Including the quasi-particle scattering terms, the
operators which we need for the Hamiltonian given by
Kqs. (1) and (2), under the Bogoliubov-Valatin trans-
formation (5) are

Qjj~~ (j'jjo'l YMLljrN)b; .tb;

small. Another commutator useful for this work is

[~ sM' g IMt]

=z [(2s+1)(2I+1)]"CMM , M+. M
"'

X[bppd14" (—1)M+M'W(sj 1Ij 4 ,j ps
.)

+ (—1)lp+ jp+l 4+14+1 Ib '~—4'MyM't

XW(sjiIjp, jps')]. (21)

o 3(rp) = (1/V'")e'" ",
fL(r„,r) =g[(2I.j1)//4II][b(r r„)(rr~], —(22)

with V the normalization volume and g the force
strength. In this case the matrix element (21) becomes

4n. 1
(eplVlep)= —

g dr-r sinqrp(r),
V q

where q is the momentum transfer.
The quantity p(r) appearing in (23), defined by

(23)

p (r) =Q j V R„P(r) (24)

is the radial density function. If one assumes a uniform
distribution

The commutation rules (20) and (21) are exact.

III. ELASTIC AND INELASTIC SCATTERING

A. Elastic Scattering

In the Born approximation the elastic scattering is
calculated from the expectation value of V in the states
given by (10). For a Wigner force there is a con-
tribution from the part of the interaction independent
of quasi-particle operators. From Eqs. (10) and (16),
the matrix element from this part of the interaction is

(+pl'UI+p)=Zj 'o'( )rV. (ro)fp(r. ;)
XR (r) V,sr drd'r~, (21)

with OI&(r„) the wave function of the projectile and R 1

the radial wave function of the nuclear particle in the
state nlj.

To see the relation of this result to the derivation in
terms of collective coordinates, let us consider the
plane-wave Born approximation with a 6-function
interaction between the projectile and the nuclear
particles; i.e.,

X[(2I+1)(2I'+1)]'"X
k=3, 4=Pal

m =2, 2 =gQm

(—1)I'Ill&I%1 p(r) =po, r(Rp

=0, r)Ep,
(25)

Xsjj „' '
& W(IjlIj;j~), (20)

with C and W being the Clebsch-Gordan and Racah
coeflicients, respectively. The last term in this relation
represents the deviation of the fermion pairs from
bosons and becomes small if the fermion density is

the elastic scattering differential cross section becomes

(do/dQ)'= (444'/&4) (gpo)'Ro'[ ji(qRo)/qRp]', (26)

which is identical to the plane-wave Born approxima-
tion scattering from a square well of depth gpp and
radius Rp by a spinless particle with a reduced mass p.
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Because the ground-state wave functions consist of
zero, four, etc. , quasi-particles, the terms which corre-
spond to the destruction and creation of two quasi-
particles, the A t and A terms in the interaction, do not
contribute to the elastic scattering. Therefore, only the
quasi-particle scattering parts of the interaction, the
terms containing the operators q; „which are neglected
in the Sawada approximation, cause deviation from the
above result. These corrections to the Sawada approxi-
mation are second order and higher in the expansion
coeKcients, since they connect only the parts of the
wave function with four or more quasi-particles. The
correction to the matrix element (21) arising from the
four quasi-particle terms in the ground-state wave
functions, with the neglect of the contribution from the
quasi-particle scattering terms in the matrix element of
&e, l [~~],o[~t~tj, Ie,&, 1.

&+."'I&I+."')
=Pj y3 (rj)q3(rj)fo(r„,r)R„/2(r)8[(U/2 V/2)—

+a Z.(—1)"a"(p)&jllallj)/~~(2 j+1)"'j
X [+1234 C1234 (b1j+82j+b3j+54j)/

1+821234 r1234 j (2 j)

So long as the vibrational energy does not fall too

low in the gap, as in the single closed shell nuclei, these

contributions are small compared to the zero-order

matrix element.

B. Excitation of the One-Phonon States

The matrix element needed in the Born approxima-

tion for the inelastic scatterings of the one-phonon

state is
&u'e, B

I
v le,k). (28)

Because of the relation &4'3IBI11/3)=0, the interaction

term independent of quasi-particle operators cannot

lead to this inelastic process. Moreover, the quasi-

particle scattering terms cannot lead to this process in

any order since the operators q,'; do not change the

number of quasi-particles while the state 8&0 has no

component with the same number of quasi-particles as

the ground state. Thus the matrix element is

&b~,B~ I~le,b)

4x (Uj'V j+U/V j')
d'r~dr r'f~ (rn, r) ~3 *(rn) V"(rn) V3''(fi.)R- v( )Rr. ( )1r

L ~' i~' 2I.'+1 2 (2L'+1)'"

x&j'll v'ilj&&+3B,
I
(~j'P'-~'+( —1)~'~;," ) l~,&+a P„(-1)~ (P)(U, v,'-U, , v, ) P, c„, ,1'~

&j'IIT""'llj)x &+ B /
I
(jf ., J—/tj +( 1)M'g. , jM') I@ ) (2g)

2(2J+1)'"
Using Eqs. (14) and (20), one easily finds that

&b'+3B34~
I

'U
I +ob)

4'
i'i 2L,+1

&i' ll v'll j&
d'rj/dr r f/. (rj„r)p3*(r~) p3(r„)(a,', b, ,;) (U—, V;+U, V, )R, (r).R, (r.) V /. (fl )

(2L+ 1)1/2

+aZ 2
2I.'+1

d'r2d«'f j (rj,r) 323.*(r„)323(r3) Y~'—~(Q~)R„1.(r)R„4(r) P„(—1)3o 3(P) (a,',.—b, ,)

x(&j'llj""Ilj&/3'")c„, ~"'(Ujvj —U,'v;). (30)

In Eq. (30) terms in &43I2/, , I%'3&, which are of order
c', have been dropped. In the second term, which arises
from the Bartlett force, the part with L,'= 2 is expected
to be most important for the excitation of the 2+ state.
The matrix element (30) is precisely the Sawada
approximation. For comparison with the derivation
using collective coordinates, let us consider in the
plane-wave Born approximation a spinless projectile
interacting via a 5-function interaction with the nuclear
particles. Using Eqs. (30) and (22), one finds that the
cross section for the one-phonon excitation is

X(U;V;+U; V,)(a,', b,;)—
Since V and U,~ represent the probability of occu-

pation and nonoccupation of the j level, respectively,
the products U;V; are nonzero only for the levels which
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are partly occupied. Furthermore, the E, represent
elementary excitations above the ground state, with
the smallest E; corresponding to the single-particle j
levels nearest the Fermi energy, i.e., the partly filled
levels which are in the outer orbits. Therefore, the co-
eKcients of the radial integrals tend to be largest for
the j level corresponding to the lowest quasi-particle,
e.g., the fo)2 level in the Ni" isotope. If this is the case,
the cross section is approximately given by

1ph 2

i 2(qr) "RP(r), (32)
dO

with RI(r) the radial wave function of the particle in
the outer orbit. Since the quantity r2Rr2(r) tends to be
peaked near the surface, one has the qualitative result

(d t'dQ)1 n
l j2(qRo) l (33)

This is the result of Lemmer et ul. '4 and of Hayakawa
and Yoshida" using collective coordinates with a uni-
form potential well as the zero-order approximation.
In the extreme limits of a uniform density function and
a particle in the outer orbit assumed to have a precise

radial position, a comparison of Eqs. (32) and (26)
shows that the phase rule is obtained and that the
angular distribution for the excitation of the 2+ state
is approximately out of phase with the elastic scattering.

This same derivation is applicable to other collective
modes. For example, the octopole state would be de-
scribed by a phonon operator 8', and the result would

be Eq. (33) with j2(qRo) replaced by j3(qRo) which

gives the one-phonon phase rule mentioned in Sec. I.
For alpha-particle scattering this phase rule should be
quite good due to the strong absorption within the
nucleus.

C. Excitation of the Two-Phonon States

In order to calculate in the 6rst Born approximation
the inelastic excitation of the two-phonon states, one
needs the matrix element (k'4'ol BBjAI l'U i+ok), with I
taking the values 0, 2, 4, corresponding to the three
second vibrational states. The results are given only
for the %igner force, as the corresponding results with
the spin-dependent force can be immediately obtained
from these. writing out this matrix element, one has

(k'+oPBAB'g ~rt
l
v [q'ok)

4x
d'r„dr r &po*(r„)V)A(r„)YAr (Q~)fA(rtor)R~ U(r)R„t(r) q'o (2 43124234L&32&34]ns

~ ~ j~' 2L+1 1234

+f)12t)34L+12 +34 )At +t212f)34l +12+34 jAt +k124234l +12 +34]At }
(~'ll y'll~) (~,I;+~, -v, )

)& 8&oV,2f'),', (2j+1)'"+ (2,'t' "'+(—1)"A,')A"')
(2K+1)'" 2

+tU;U; —V V )q ' 4'). (34)

In the Sawada aPProximation (BC o=0, 21%'o=0) the
only terms in the approximation which occur are those
in A;., t a.nd A;, . Since the operator )BB)tr can change
the number of quasi-particles by zero or four, the
matrix elements which appear in the Sawada approxi-
mation vanish in all orders, i.e.,

(k%'oLBBg
l
A t

l Vo) = (k%'oLBB]
l
3

l
Vo) =0. (35)

This can be expected from the fact that the dilute
fermion approximation for a separable force, T~ T~ is
equivalent in the adiabatic limit to the deformed field
approximation, i.e., TA TA=TA (TA) for the collective
states arising from the interaction. In other words, in
this approximation one has linearized the interaction
in terms of the phonon operators, so that the excitation
of the one-phonon state is allowed but the second
vibrational state cannot be reached from the ground
state. Thus, in the language of the particles properties
the expansion in higher powers of the collective co-
ordinates is explained as the interactions between the
quasi-particles. moreover, one can see that it is possible

to find certain qualitative features, such as phase rules
for the two-phonon excitation, in terms of the single-
particle properties.

If one includes the terms which arise from scattering
of quasi-particles, not only do new terms appear in
the interaction, but also the relation 5%0——0 is no
longer satisfied, even though the matrix element
(113843) vanishes. Using the commutation rules (20),
one finds

or
Bq'o= Q tt„o)234&„~o'+o(~,"~') (36)

(@ottBB)'+o)= 0 (t'2) &to (37)

Therefore, for the two-phonon I=0 state there is a
contribution to the inelastic scattering from the terms
independent of quasi-particle operators which is of the
same order as the contribution from the q, ; terms. This
could have an important effect on both the magnitude
and shape of the cross section for the excitation of the
two-phonon state of angular momentum zero compared
to angular momentum two and four, as is seen below.
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Comparing Kq. (34) with Kq. (21), one finds that
the cross section which results from the part of the
interaction free of quasi-Particle oPerators, (do/dQ) p, 0.p. ,
is (with E a constant)

(d&/dQ)
2 Ph, I 0 R'(d&/dQ) el . (3g)

i.e., for this part of the interaction the cross section for
the excitation of the I=O two-phonon state is in phase

with the elastic cross section. Although this result
seems to be in agreement with the phase rule of Lemmer,
de-Shalit, and Mall, " its origin and physical content
seem to be quite dÃerent, as is obvious from the fact
that it does not pertain to the excitation of the two-

phonon states of angular momentum 2 and 4.
From the part of the interaction involving the opera-

tors g, one Gnds

(0'1113LBBj3rr~'0 ~%'3k) g—// 0;,(U,U,' —V;V, ) d'rp dr r'fr(rp r)R„1 (r)R„1(r)V 2 *(r„)V/3(rp) Y/(Qp). (39)

where

1/2 g 2

k;;=40— (2j~+ l )I/2C H2/ /(2j +1)1/2(2j~+1)1/2

42r (2I+1)(2I+1)'"

Xg;, W(Ij '2j 1', j2)C3H2/"C3H2""(U;V;, +U, ,V,)(U/ V;,+U;, V,')

It should be pointed out that in deriving the expres-
sion (40) one just uses the relation (13) and the com-
mutation rules (20) and (21); the precise form of the
wave function and the coefficients @~234 do not enter
into the calculation.

In order to study the qualitative features of this
result, let us evaluate the cross section in the plane-
wave Born approximation. In this approximation

(d1»/dQ)2ph=IC' p I3' (U U' V.V'). —

while the cross section for the excitation of two phonons
might be approximately

(do/dQ)2Ph E2 —Ri„'(r)j r (qr)»2dr

since the p3/2 level is the other level which is being filled
in this region. Since the one-node p radial wave func-
tion approximates the shape of the derivative of the
nodeless f function, one finds (with these very rough
assumptions)

X R 1 (r)R„/(r)r'j/(qr)dr . (41)

As one can see from Eqs. (31) and (41) the most im-
portant qualitative difference between the cross section
for the one-phonon excitation compared to that for two
phonons is the difference in the occupation number
factors. For the one-phonon excitation, the factor
(U, V, +V,U, ) ensures that the states at the Fermi
level contribute most to the process, while the factor
(U, U/ —V;V, ) does not allow any contribution from
these states for the two-phonon process. If the radial
wave functions of the states which do contribute to the
two-phonon process differ markedly from the states at
the Fermi level, one can expect cross sections for the
one-phonon and two-phonon processes to be out of
phase.

For example, let us consider the Ni62 isotope, in
which the neutrons are mainly filling the f3/2 level.
Presumably, the one-phonon cross section, to a large
extent, is given by

(r&/dQ)' "~It 1 Ro»'(r)j 2(qr)r2dr, (42)

E2 gI qr r~dr

which, by comparison with Eq. (32), predicts that the
one-phonon and two-phonon cross sections have the
phase rule of reference 14.

However, even under these extreme and unrealistic
conditions this phase rule cannot be expected to be
universally valid, and the shape of the differential cross
section will generally depend upon the levels which are
6lled. For o,-particle scattering, since these projectiles
are so strongly absorbed within the nucleus, the tails
of the particle wave functions contribute most to the
scattering. Therefore, one might expect in this case that
the positions of the maxima and minima of the cross
section for excitation to a particular state depend
largely upon the nuclear radius and the angular mo-
mentum transfer, although the magnitude of the cross
section might be quite sensitive to the details of the
structure of the wave function. On the other hand, for
excitation of collective states by particles which are not
strongly absorbed, Eqs. (30) and (39) show that both
the magnitude and shape of the theoretical cross sec-
tions will depend upon the construction of the collective
states in terms of the single-particle states.
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D. Excitation of the Two-Phonon States in the Second Born Approximation

In addition to the one-step process described in the previous section, the two-phonon states can be excited
by a two-step process through the one-phonon state. The second Born approximation matrix element is

(k'4'o[B~B~j»j'
l

'U
l
Bjr'~ 0'ok")(k"4'oB~'~

l
'U

l
+ok)

(k'koPB~B~ jjjjr l
'U&'& i%ok)'= Q . (44)

k"M' (A'k'"/244)+Aoj —(A'k'/244)

The matrix element for excitation of the one-phonon state is given in Eq. (30). Using the arguments given

at the beginning of Sec. III B, one can see that only the A;,~ and A;;~t parts of the interaction can lead to the
excitation of the two-phonon states from the one-phonon state. Using the commutation rule (8) and condition
(13), one easily finds that in the Sawada approximation the matrix element is (for a spinlessprojectile)

(k+o[B~B~jjjj'
l
'U

l
Bjr'@ok')

Sx (IIj'I'j+Ujl'j') .,
dormer r'p o (or )jvjo .(r„)fz(r j„r)Rj (r)Rj(r) ( 1)~-~'F—»r »4 I. -(j'llF~II j)

2I.+1 j'j (2I.+1)'"

X (c4j'j byj—)Cjr', oj j&r' . (45)

For a 5-function interaction the matrix element (44)
can be written approximately as

(k'%oLB B j 'l*U"&l%'ok)

g2

ik Q P $4jr(2lp+1) j&&'

V (2L+1)'j' 1234 1&ej»

X (2l +1)(21+1)"'(4)'~'&1(—1)cC '~' C

XW(I.t,I.f,.; II)co~~"o'F~'o (k', k)

X drdr' r'r"R1(r)Ro(r)Ro(r')R4(r')

Xj& (kr') jjo(k'r) jj(kr&)kj&»(kr&), (46)

in which r& (r&) stand for the larger of (smaller of)
r and r' in the integrations. In the derivation of (46)
(which is similar to the analogous derivation in the
appendix of reference 14), the excitation energy Aco has
been neglected in the energy denominator of Eq. (44).

A comparison between expressions (46) and (39)
reveals that the second Born approximation matrix
element is essentially of the same magnitude as the
erst Born approximation for the excitation of the two-
phonon state. This is not surprising, since the two-step
process proceeds via the Sawada terms and thus in the
second order is of the same magnitude as the one-step
process to which the Sawada terms cannot contribute.
Thus one has a close analogy between the nature of the
Sawada approximation with the corrections to this
approximation and that of the linearized collective
interaction with the addition of nonlinear terms.

Although the evaluation of Eq. (46) is straight-
forward it is quite complicated. For this reason it has
not been included in the rough numerical calculations
described in the following part,

1&„=gb (r,—r,)=go(A'/jjj. 'c)8(r„—r4) (48)

between the alpha particle and the ith nuclear particle,
where g is the interaction strength. For convenience,
the dimensionless coupling constant go is introduced in
terms of the jr-meson mass. Only the f and p-state-
neutrons are explicitly considered and the wave func-
tions are taken as simple harmonic oscillator functions,
neglecting all energy splittings. This calculation is an
attempt to further study the method described above
and is not intended to be quantitatively accurate. Also,
it should be noted that Ni' is not a particularly favor-
able isotope. It contains only two neutrons outside of
the neutron and proton 28 shells. These shells are not
very strongly closed, so that both protons and neutrons
are involved, and they occupy approximately the same
shell-model levels. Since the short-range neutron-proton
force is neglected in 6nding the nuclear wave functions,
this could be quite important.

The parameters used to determine the states are the
same as those used in reference 24, with a pairing force
strength of 0.331 MeV and the single-particle states
chosen as Pojo(0), fojo(0.78), and P ~ (11 o56) The .very.

small contribution of the gg/2 level to all of the processes
discussed here is neglected. In each case the calculation
is redone including the fjjo level of the 20—28 shell.
This is not intended as an improvement (in fact, to be
consistent one would have to at least include the fj~o
protons also), but as a test of the sensitivity of the
method to the choice of parameters,

IV. INELASTIC SCATTERING FROM Ni"

A. Alpha Particles

In this section the cross sections for the excitation of
the one- and two-phonon states are calculated in the
first Born approximation, using plane waves for the
alpha particles and a 5-function interaction
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f7/2 fs/2 Pl/2

TABLE I. coeKcients d;; for 1.45-Mev one-phonon cross section. in which Kj is a constant, q is the momentum transfer,
and the d,'; are given in Table I. The radial integrals
(R,'/r (qRo), defined as

P

f7/2
P3/2
fs/2
Pl/2

0.146
0.553
0.0649
0

0.553
0.345
0.0683
0.123

0.0649
0.0683
0.172
0.0774

0
0.123
0.0774
0

6t/;"'(qf4) = «r'i r(qr)ff/ (r)&/(r)&
Bp

(50)

From Eq. (31), the cross section for the excitation of
one phonon is written as

(do/dQ)'o"=Z& Q d, /(R, '/"&(qEo), (49)

are cut o8 at Ro, a radial parameter, to take into
account the strong absorption. Since the radial wave
functions in (49) are taken from a degenerate oscillator,
there are only three radial integrals. In terms of them,
the cross sections in the two cases are

(dz/dQ)'o (no fz/z) =go'X4. 14X10 "(0.59161 &'&+0 172(.Rr/~o&+0 291$. /u&)' cm

(do/dQ)»&' (with f7/o) =gooX2. 10X10—'4(0.5916t 'o&+0.172(R/p&+1. 3976t /~o&)' cm'.

(51a)

(51b)

The results are given in Fig. 1 for a cutoff radius of
Ra=1.6)(10 " cm, which is reasonable. One can see
that for a suitable choice of interaction strength go
either cross section is suitable, although there is a
factor of five difI'erent in their magnitude for one
choice of the constant. Of course, with a sharp cuto6
and degenerate wave functions one almost eliminates
the differences between the states insofar as the
periodicity of the oscillations is concerned, which would
not be true in an accurate calculation. Kith systematic

TABLE H. CodEcients g;;& ) for I=2 and 4 two-phonon
cross sections vrith f7/2 state.

studies, one probably could learn a good deal from the
one-phonon cross sections.

Using the assumptions described above, the cross
section for the excitation of the two-phonon state of
spin I in the first Born approximation is

(d&T/dQ)r'o"=Ito' ' Q ' g' r(R' "&(qRo) (52)

in which K2& ) is a constant, and the g;; are given in
Tables II and III for the calculation without and with
the f~/o level, resPectively. For the case of Nio one has
for the scattering from the 4+ and 2+ two-phonon
levels without and with the f&/o level, respectively.

TAsLz IH. CoefBcients g;;& ) for I=2 and 4 two-phonon
cross sections without f7/2 state.

f7/2
P 3/2

f5/2

P I/2

f7/2
P3/2

f5/2

Pl/2

f7/2

0.909
0.782
0.0226
0

1.6/4
0.724
0.0079—0.698

P3/2

g;,.(4) X 10
0.553
0—0.331
0

g;;("X102

0.558—0.433—0.0898—0.562

fs/2

0.0208—0.397—0.200
0

0.0070—0.0718
0.0769
0

Pl/2

0—1.07—0.655
0

Pa/2
fs/2
P 1/2

P3/2
fs/2
P1/2

P3l2

0—0.322
0

—0.147
0.0769—0.698

fs/2

g;;(4)X 102
—0.387—0.229

0

—0.119—0.0682—0.562

—1.068—0.655
0

(dg/dQ)4+'oh (no f7/o) =gooX0.537X10 " cm'( —0.00229(R//&" —0.00710(R~/ "&)'& (53a)

(do/dQ)o+'o" (with f7/o) go'X1.375X10 "cm'(0.00753$//&4&+0. 00606(R &")' (53b)

(d&r/dQ)z+"" (no fv/o) =go'XO 533X10 " cm'( —0.0191(R»~o&—0.000682(R//&o& —0.01026t~/&'&)', (53c)

(do/dQ)o+'o" (with f7/o) =go'X1 36X10 ~ cm'( —0 0220(R» "&+00177/R/ &'& —0 0009556t "&)' (53d)

The cross sections are plotted in Figs. 2 and 3. One
can see that the positions of the maxima and minima
are in approximate agreement with experiment for the
same value of the radial parameter Ra=1.6&(10 " cm
as was used in the one-phonon calculation. The fact

that this method predicts the correct phase relation-
ships, which in this case are that the one-phonon and
two-phonon 2+ states are in phase with each other
and out of phase with the two-phonon 4+ state, indi-
cates that the main factor in determining these rela-
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FrG. 1.The differential cross section for 45-MeV alpha-particle
excitation of the 1.45-MeV one-phonon state in Ãi". The experi-
mental curves for Figs. 1—3 are taken from the results of Beurtey
et A. (reference 9) and are consistent with those of Broek et al.
(reference 9). See the text for a discussion of the two theoretical
curves. The coupling constant used for the theoretical curves is
gp=27. 4.

tionships is the angular momentum transfer and not
the number of phonons. This result depends upon the
strong absorption with sharp cutoff the use of de-
generate harmonic oscillator states, and the neglect of
the second Born term, but seems to be closer to the
actual situation than the phase rule of reference 14. As
has been pointed out by Glendenning~ and others,
whenever the reaction is concentrated at the surface
the angular distribution is insensitive to the mechanism
producing it. However, because of the possibility of
coherent interference of the second Born terms, to
which single-particle states contribute in a different
manner than the 6rst Born terms, the phase rule for
the two-phonon states can provide a deeper dependence
upon the reaction mechanism even for such strongly
absorbing particles as alphas.

It is interesting to see that the one- and two-phonon
2+ states can be 6t with approximately the same value
of the coupling constant go=27.4. The 4+ state needs
a force constant 14 times this value, but because of
the neglect of the two-step process (as well as the other
approximations) one should not consider this to be
significant. Taking the value of 27 4(A/3f .c)'Mc' for
the magnitude of the b-function interaction between
e particles and nuclear particles, one can make an
estimate of the optical model potential which would
result for the elastic scattering of o' particles from the
nuclei. Assuming that the alpha-particle wave function

joo
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g 44 Two phonon, theor. {no f 7/2)
&4i Two phonon, theoa(with f 7'

20

lo

cOR
Cl
Cl

~ Lo

C:
a0

AJ

X

.05 „

.OR .
~OI

ar/

I
I

1

I

tI
I

tl
It

It

It

l ~ r~
t

l

tf
lt

Il
~l

I&

il

ooe-

.OOI
0

I I

eo 50
I I

40 50

scattering angle

FIG. 2. The diGerential cross section for 45-MeV alpha-particle
excitation of the 2.45-MeV 4+ trvo-phonon state in Ni'. The
magnitude of the interaction constant is gp= 14X41.1.

and the optical potential are both constant within the
nuclear volume V~, one has

Vx/A
gp= Vo —1.44&10 2VO,

(A/m. c)'m.c'
(54)

where Vo is the depth of the uniform potential in MeV.
The nuclear radius used to obtain Eq. (54) is R=1.6
X10 "X1/3 cm, the radius which results from the
present work. This gives a value of Vo= 1900 MeV.

The elaborate optical-model calculations by Igo" for
e particles on nuclei give the real part of the optical
potential, 1100 exp[ —(r—4.53)/0. 574] MeV for Ni,
so that a value of 1100 MeV is obtained at the nuclear
surface, which is consistent with the results of this
work. On the other hand, Igo's results are quite in-
sensitive to the real part of the optical potential, and
one can see by comparison to other calculations'9 that
the real part of the potential can be altered by a factor
of 10 or even 100 in the optical-model calculations with
rather minor changes in the imaginary part. In the
present work, since we have used a sharp cutoff with
wave functions having a small tail outside the nucleus
and have neglected distortion, we 6nd a coupling con-
stant which is probably far too large. It would be ex-
tremely interesting to learn of the value of this inter-
action strength from an accurate calculation and to see
if one force constant can systematically fit the data
for various nuclei.

28 G. Igo, Phys. Rev. 115, 1665 (1959)."G. Igo and R. M. Thaler, Phys. Rev. 106, 126 (1957).
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4x
e'q'j' e "»=—e'~' (55)

the plane-wave Born approximation scattering by the

B. Electrons

The cross sections for excitation of the one- and
two-phonon states in Ni» are calculated in the Grst
Born approximation using the simple nonrelativistic
Coulomb interaction. Because of the well-known
relationship

Coulomb interaction follows immediately from the
calculation with the b-function interaction. The rela-
tion between the matrix elements for the scattering of
an alpha particle from momentum k to k' is

(k ( &coulomb ) k)
=(4ree, gf/q')(1/lk —k'[')(k'(vg r,„[k), (56)

where e,ff is the effective charge of the nuclear particle.
Relationships analogous to Eqs. (49) and (52) are

obtained, but with a factor of q
4 and in terms of radial

integrals without cutoB. The result is

(de/dQ)"" (no fr 2) =3.56X10 "cm'Le ' ""(0.156—0.0299q'/v+0. 00202q'/v')]',

(do/dQ)"" (with f~~m) =1.80X10 "cm'Le &'4" (—0.0370+0.0223q2/v —0.000116q4/v2)]~

(d~/dQ)4+mv (no fr~2) =4.61X10 26 cm'I e """(0.00108—0.000313q /v+0. 0000131q /v2)]2,

(da/dQ) 4+2vb (with f~~2) = 1.18X10 26 cm'Le "'4"(0 000746+0 p000284q'/v —0.0000045q4/vm)]',

(dg/dQ)2 2» (no f7~2) =4.58X1Q 26 cmmpe &'&4" (—0.00345+0.000725q2/v —p 0000585q4/v2)]2

(de/dQ) ~'v (with f&~2) = 1.17X10-"cm'Le "I4"(O.pp106+p. ppp652qm/, —0.0000684q4/v2)]2.
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FIG. 3. The differential cross section for 45-MeV alpha-particle
excitation of the 2.9-MeV 2+ two-phonon state in Ni~. The
magnitude of the coupling constant is go=41.1.

Using an effective charge of 1.4e, which is consistent
with the B(E2),24 the scattering cross sections for the
2+ one-phonon and two-phonon states are in reason-
abl.e agreement with experiment for the calculation
without the fr~2 level, while the 4+ two-phonon state
is too small by two orders of magnitude (Figs. 4, 5,
and 6). These results are quite similar to those for the

n-particle scattering and suggest that the two-step
process is especially important for the 4+ state.

The most striking result is the strong dependence of
both the shape and the magnitude of the cross sections
upon choice of single-particle levels, which is borne out
by the tremendous differences in the results when one
includes the fr 2 state. Since the cross sections result
from a coherent sum of scatterings of the particles in
the various levels, even small changes in the wave
functions can shift the positions of the maxima and
minima and generally produce important alterations in
the results. For this reason it is clear that the informa-
tion from the excitation of collective states by electrons
might prove to be an excellent test of the single-particle
structure of the collective wave functions. For quanti-
tative calculations one must consider the magnetic
moment scattering, purely relativistic efI'ects, and the
distortion of the electron wave functions, especially for
large-angle scattering.

V. CONCLUSIONS

In conclusion, there are many similarities between
this method of deriving the excitation of collective
states by direct interaction between the scattered
particle and the nuclear particles and that of the
collective models. The dilute quasi-particle approxima-
tion leads to the 6rst Born excitation of the one-
phonon states and to excitation of the two-phonon
states by a two-step process, in analogy to the coDective
Hamiltonian linear in the phonon operator. The correc-
tion terms, which occur both in the commutation rules
and the operators and correspond to the interaction of
quasi-particles with each other, give rise to a Grst Born
excitation of the two-phonon states, in analogy to the
nonlinear terms in the collective Ha~i&tonian.
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FxG. 4. The ratio of the differential cross section to Mott
scattering for 183-MeV electron excitation of the 1.45-MeV one-
phonon state in Ni's. The experimental results of Figs. 4-6 are
taken from Crannell et al. (reference 18).See the text for a discus-
sion of the two theoretical curves. The effective charge of the neu-
tron is taken as eeff=1.4e.
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Fxo. 5. The ratio of the differential cross section to Mott
scattering for 183-MeV electron excitation of the 2.45-MeV 4+
two-phonon state in Ni~s. The effective charge of the neutron is
taken as ee ff 2.0e.

Fio. 6. The ratio of the differential cross section to Mott
scattering for 183-MeV electron excitation of the 2.9-MeV 2+
two-phonon state in Ni~e. The effective charge of the neutron is
taken as e,ff=2.0e.

In the 6rst Born approximation, the main qualitative
feature is that single-particle states which tend to be
most important for the one-phonon process often con-
tribute little to the two-phonon excitation. Although
this will not lead to a speci6c phase rule between the
one-phonon and two-phonon differential cross sections
in general and, in fact, does not seem to be very sig-
ni6cant in determining the relative phases for alpha
scattering because of the strong absorption, in certain
limits it results in a phase rule approximating that of
Lemmer, de-Shalit, and %'all" for a surface interaction
of alpha particles.

Because of the interference between the one-step and
two-step process for the two-phonon excitation, one
cannot expect a general phase rule to hold for the
two-phonon excitation cross sections in comparison to
the one-phonon ones. Since the two-step process takes
place largely via the Sawada-type mechanism, which
tends to emphasize different single-particle states than
the quasi-particle scattering of the one-step process, the
data on the phase as well as the magnitude of the two-
phonon cross sections might involve many of the details
of nuclear structure even for strongly absorbed particles.

The theoretical 6rst Born diGerential cross sections
for 44-MeV alpha-particle scattering in Ni" agree with
the experimental results as well as can be expected. The
one-phonon and two-phonon 2+ states can be explained
by the same coupling constant, while the 4+ two-
phonon state is too small by two orders of magnitude,
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presumably due to the neglect of the second Born
terms. In the rough approximation of a constant alpha-
particle wave function inside the nucleus, the inter-
action needed for the one-phonon process leads to an
optical potential in agreement with the phenomeno-
logical calculation for elastic o. scattering, but both
results can be changed by one or two orders of magni-
tude. An important result of accurate and systematic
calculations would be this interaction parameter.

The results for electron scattering indicate that one
can obtain reasonable agreement between theory and
experiment for the 2+ states with eRective charges
known from the B(E2). The scattering from the 4+
two-phonon state in the erst Born approximation is too
small, just as with the alpha scattering. For electrons,
the cross sections are extremely sensitive to the particle

makeup of the states, which suggests the importance
of further systematic studies —particularly for heavier
isotopes where the method used in this work should be
more nearly accurate.
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