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We investigate the scattering of electrons and positrons by atomic hydrogen for projectile energies in the
range from 11.0 to 54.4 eV. We calculate (a) the differential and total cross sections for elastic and inelastic
scattering, (b) quantities related to polarization and correlation of electron spins, and (c) the polarization
of radiation emitted in various electromagnetic transitions. A close-coupling approximation is used in which
the total wave function is expanded in hydrogen eigenstates and only terms corresponding to the 1s, 2s,
and 2P states are retained; the wave function is symmetrized or antisymmetrized explicitly in the case of
electron collisions. In positron interactions, positronium formation is neglected. The coupled integro-
differential equations that result from the approximate wave function are integrated numerically on an
IBM-709 or 7090 computer, subject to standard boundary conditions, to yield the reactance matrix elements
in each total spin and total angular-momentum state. In the case of electron scattering, the integral terms
are treated by means of an iteration procedure. We 6nd for elastic 1s-1s electron-hydrogen scattering that
the inclusion of the 2P state in the close-coupling wave function modihes some partial-wave contributions
at lower energies; however, the effect on the total cross section is small. The 1s-1s cross section has a maxi-
mum computed value of about 6xao' at the second quantum excitation energy, and the differential cross
section is strongly peaked in the forward direction. For elastic 2s-2s scattering of electrons, calculated total
cross sections are exceptionally large, attaining values of the order of 400ma&' at 11.00 eV; here, too, the
differential cross section is strongly peaked in the forward direction. Our calculated inelastic electron-
hydrogen Is-2P cross sections are in disagreement with experimental results, sometimes by as much as a
factor of two. The calculated cross section reaches a maximum of 1.3mao' at about 20 eV. The predictions
for polarization of photons emitted by hydrogen atoms excited by electron bombardment yield a result that,
near the n= 2 threshold, is a rapidly varying nonmonatomic function of energy; again, over-all agreement
with experimental results is poor. We support our belief that these discrepancies probably can not be recon-
ciled by any close-coupling calculation. We also present results for the 1s-3P excitation cross section calcu-
lated with a 1s-3P close-coupled wave function; there are no experimental data for comparison here but we
point out the consequences these results have for 1s-2s excitations. Our calculated total 1s-2s excitation
cross sections show little difference as a result of including the 2P state in the close-coupling wave function.
Agreement with experiment is again poor although measurements are subject to possible errors in normaliza-
tion and we suggest further investigation of normalization procedures. As in the elastic case, the differential
1s-2s cross section is strongly peaked in the forward direction. Measurements of the spin-Hip cross section
and our calculation of it are in fair agreement at the n=2 threshold. The effect of the 2p state on elastic
positron-hydrogen scattering is quite pronounced, especially for energies immediately above the n=2
threshold. For 1s-2s excitations by positrons, the same effect is seen, but it manifests itself over a wider
energy range. Calculated values of reactance matrix elements are provided in tabular form for electron-
hydrogen scattering at six energies above threshold.

I. INTRODUCTION

N a series of earlier papers' ' we have described our'. investigation of electron- and positron-hydrogen
atom collisions. In the present work we continue this

~ This work was performed under auspices of the U. S. Atomic
Energy Commission.

t Present address: Theoretical Division, Atomic Energy
Research Establishment, Harwell, Berkshire, England.'K. Smith, R. P. McEachran, and P. A. Fraser, Phys. Rev.
125, 553 (1962); see also K. Smith, Phys. Rev. 120, 845 (1960);
and R. P. McEachran and P. A. Fraser, Can. J. Phys. 38, 317
(1960).

2 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).
~ P. G. Burke and H. M. Schey, Phys. Rev. 126, 163 (1962}.
4 W. J. Cody, J. Lawson, H. S. W. Massey, and K. Smith (to

be published).
~ P. G. Burke and K. Smith, The Low-Energy Scattering of

Electrons and Positrons by Hydrogen Atoms, Rev. Mod. Phys.
34, 458 (1962).

program and extend it to higher energies and to
processes mainly associated with inelastic scattering,
not considered earlier. The results presented cover the
range of incident electron and positron energies from
11 to 54.4 eV, a range that lies above the threshold for
excitation of the second quantum level of hydrogen at
10.2 ev and, for the most part, also above the ionization
threshold at 13.6 ev.

The methods underlying our analysis are given in
detail elsewhere" and we shall only dwell upon them
brieAy to make this paper reasonably self-contained.
Our basic assumption is that an adequate representation
of the total wave function can be obtained by use of the
so-called close-coupling approximation in which the
total wave function is expanded in eigenstates of the
hydrogen atom, and only a few low-lying states retained.
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Tn the case of electrons the resulting expansion is sym-
metrized or antisymmetrized explicitly. For positrons
we neglect positronium formation.

The wave function obtained in the close-coupling
approximation leads to a set of coupled radial-linear
integro-differential equations which are solved nu-
merically on an IB)I 7090 by means of techniques
described in an earlier communication. '

Although it is usually dificult to justify the close-
coupling approximation g priori, some insight into its
validity is afforded by comparison both with experiment
and other calculations, and by investigation of the
effects of including different numbers and diferent
combinations of hydrogen states in the expansion. In
addition, the approximation can probably be generalized
in a straightforward manner to treat electron and
positron collisions with heavier atoms. Thus, the
results of our work may have some bearing on other,
more complicated collision processes.

In this paper we are concerned only with processes
involving transitions among the first, second, and third
quantum levels of hydrogen; we have, therefore,
restricted our close-coupling expansion to these levels
only. Such a program is not unique; with the advent
of present day computing facilities, this approach
has been taken by other workers' some of whom take
into account the is, 2s, and 2p states of hydrogen in
their close-coupling wave functions. The present work
is, we think, a logical extension of the earlier work. To
begin with, we calculate transitions to and from the
third quantum level. Second, we carry out the analysis
suggested above, making estimates of the accuracy of
our results by calculating with di6'erent numbers and
different combinations of closely-coupled states. Third,
we evaluate the partial-wave contributions up to and
including I values of 15 or 16 at the higher energies;
this usually insures the convergence of the partial-wave
expansion to within the accuracy of the calculation
(although in certain cases a.t higher energies we have
had to obtain contributions from higher angular
momentum states by an extrapolation procedure to
estima, te the cross sections accurately. ) Fourth, we
evaluate quantities of interest at an energy interval
fine enough to permit quite accurate interpolations
between tabulated values. Finally, we go beyond
earlier work in the case of positrons to evaluate certain
cross sections in the is —2s —2p approximation.

By and large, when comparison with experiment is

'P. G. Burke, V. M. Burke, R. McCarroll, and I. C. Percival
(to be published); K. Omidvar (private communication). In each
of these consideration is limited to total angular momenta of 0
and 1 only.

7 We have been informed by M. J. Seaton that R. Damburg
and R. Peterkop have used the 1s—2s —2p close-coupling approxi-
mation for I=0, 1, 2, 3, 4 for several energies and agreement with
the relevant parts of our work is "practically exact." The
Damburg-Peterkop work will appear as a Letter to Proc. Phys.
Soc. (London) with fuller accounts to be given later in the Journal
of Experimental and Theoretical Physics and in the Transactions
of the Institute of Physics of the Latvian Academy of Sciences.

possible, our results accord fairly well with measure-
ment. An outstanding and perplexing exception to this
is the poor agreement between certain experimental
measurements and our best estimates of the 1s—2s and
is —2p excitation cross sections for electrons. It is true
that our calculations of these quantities are made with
a close-coupling wave function which includes only a
limited number of hydrogen states; but our experience
with this kind of approximation indicates that the
addition of individual higher lying states generally has
little effect on excitation cross sections. This fact, in
conjunction with the quite large magnitude of the
discrepancy, leads us to believe that it cannot rea-
sonably be attributed to the omission of a few higher

lying states. Indeed, if the discrepancy is to be ascribed
to the calculation rather than to the experimental
measurements, we feel it represents an inherent failure
of the close-coupling approximation which could only
be resolved by taking into account many —perhaps
all—hydrogen eigenstates, including the continuum.

Insofar as positron scattering is concerned, our work
may also be regarded as an extension of earlier work.
Elastic scattering of fast positrons by atomic hydrogen
has been calculated by Moiseiwitsch and Williams'
using a simplification of the second Born approximation,
and elastic and inelastic scattering of positrons from the
s states of hydrogen have been considered by Smith
et c/. ,

' for incident positron energies below the first
hydrogen-excitation threshold. In our present work we
include the 2p state as well, and calculate above
threshold cross sections.

There are, as yet, no data available for positron-
hydrogen scattering. Nonetheless, positron scattering
is of considerable theoretical interest because the
relative importance of various positron effects will be
diGerent from the corresponding electron case. For
example, the mean static interaction of a positron with
an atom is repulsive whereas its long-range polarization
is attractive, so that the two effects tend to cancel
rather than combine as is the case in electron scattering.

We conclude this section with a brief outline of the
contents of the remainder of the paper. In Sec. II we
give the relevant theory in a much abbreviated form
and also present formulas which are referred to later
in the paper. In Sec. III we give our results for electron-
hydrogen scattering, and these include (a) elastic is —is
and 2s—2s results, (b) is —2s, 1s—2P, and is —3P
excitation cross sections, with comments pertaining to
the validity of the Born approximation for high angular
momentum, (c) polarization of the gamma rays emitted
in is—2p excitations, and (d) diiferential cross sections
and quantities related to spin polarization and correla-
tion. In Sec. IU we discuss our results for positron-
hydrogen scattering. Finally, in Sec. V we have a brief

B.L. Moiseiwitsch and A. Williams, Proc. Roy. Soc, (London)
A 250, 33/ (1959).

'K. Smith, W. Miller, and A. Mumford, Proc. Roy. Soc.
(London) 76, 559 (1960).
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presentation of calculations that includes the simul-

taneous coupling of the 6rst, second, and third quantum
levels for I.=O singlet scattering. Tables of the reaction
matrix elements are given in the Appendix.

write

F. ~s(v; r)„
A I.g

[b„„sin(k„.r ——.', 12'tr)
, lt2

+R„„~scos(k„r—-', 12's)], (2)

II. RCSUMC OF THEORY

The theory of the close-coupling approximation is
well known and has been given by various authors. "'
In this section we present a brief resume of that theory,
thus providing a glossary of formulas for later reference.

With the proton regarded as inhnitely massive, and,
therefore, at rest during the scattering, the total wave
function depends only upon the coordinates of the two
electrons in the case of electron-hydrogen collisions,
and upon the coordinates of the bound electron and the
incident positron in the case of positron-hydrogen
collisions. In the electron case we write

1 Fr(rm)
4 (rl&lf2tr2) p Nr(rltrtf2tr2)

v2 ~

Fr(rt)-—4r (r,t7,r ttr,), (1)

where the representation is labeled

r= (~f.f,f~m.sos, )

and is diagonal in the total orbital-angular momentum
I. and the total spin 8 of the system; n, and lj. are the
principal and angular-momentum quantum numbers,
respectively, of the bound electron; and l2 and k„are
the orbital-angular momentum and wave number,
respectively, of the scattered electron. For positron
scattering, there is no need to antisymmetrize the
wave function; the second term in Kq. (1) is, as a
consequence, not included.

When the wave function 4 given by Eq. (1) is used
in the standard Kohn-Hulthen variational principle
appropriate to this system, there results a set of
coupled linear integro-differential equations for the
functions Iir, these equations were 6rst given by
Percival and Seaton. '0 %hen we neglect positronium
formation, the same set of equations, with a change in
the sign of the charge of the incident particle and the
omission of the exchange terms, also describes positron-
hydrogen scattering.

The set of equations thus obtained is solved by
techniques fully discussed previously, ' and we deter-
mine the physically significant quantities (cross sec-
tions, phase shifts, etc.) by fitting the asymptotic forms
of the functions Fr to the appropriate spherical Bessel
functions modified by an asymptotic expansion. We
observe that for those channels above threshold we can

where the channel label v=—el~32 and initial-state
quantities are denoted by primes. If there are X
channels above threshold, then the submatrix E„~~
corresponding to given L and 5 values, is of dimension
ex'.

The S matrix describing the scattering can be
expressed in terms of the reactance matrix R through
the equation

5= (1+iR)/(1 —iR),

and the transition matrix T is given by

T= S—1.

(3)

(4)

An observable of importance in this work is the cross
section for excitation of a particular p-state magnetic
quantum level (nptmt), where mt denotes the quantum
number of the s component of the bound electron's
orbital-angular momentum. Percival and Seaton have
shown that this cross section is simply related to P,
the fractional polarization of the radiation emitted
when the atom decays from the npmt level to one of
lower energy. " For Lyman-n radiation (which is
important in the measurement of the cross section for
1s—2p transitions) I' has been determined experi-
mentally. " According to Percival and Seaton, for
Lyman-o. radiation excited by electron impact, the
polarization of the radiation emitted at right angles to
the incident electron beam is given by

I' =3 (1 x)/(7+11m), —
where

x=Q(1s —& 2p, m= &1)/Q(1s —+ 2p, m=0).

(6)

The cross section Qt, (1s—v 2p), obtained by counting
photons perpendicular to the electron beam and by
assuming an isotropic photon distribution, can then
be written as

Q, (1~ —+ 2P) =0.918Q+0.246Q (0),

where Q is the total cross section and

Q(0)—=Q(1s~ 2p, m=0).

Finally, it can easily be shown that in either spin

Finally, the total cross section for a transition n'1&' to
Nli ls

(2I.+ 1)(2S+1)
Q( t'1t' t— vnl )t= P ~T„;~stt'. (5)

sr tate 4P 't(2lt'+1)

"I.Percival and M. J. Seaton, Proc. Cambridge Phil. Soc. 53,
654 {1957).

"I. Percival and M. J.Seaton, Phil. Trans. Roy. Soc. (London)
A 251, 113 {1958)."%.L. Fite and R. T. Brackmann, Phys. Rev. 112, 1151 (1958).
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state S,

Qs(e's ~ ePm) = (1/k ')
XQ&rr. L(2L+1)(2L'+1)J&2Ta&,&;n sz

X T„,&,„,r, z's'C»(L, 0; m& m—)
XC»(L, 0; m, —m), (8)

where the C's are Clebsch-Gordan coefficients in the
notation of Blatt and Keisskopf. "

At the threshold for excitation, the final-state wave
number is zero and thus only the value 32=0 is allowed.
It then follows from angular-momentum conservation
that only the cross section with m=O in Eq. (8) is
nonzero, and, therefore, x=O in Eq. (6). This gives
P=3/7 at threshold. On the other hand, for very large
energies, I' approaches zero since x tends to unity in
this limit.

In general, the expression for the differential cross
section is a complicated one. If, however, we restrict
our considerations to the excitation of hydrogen s
states from the ground state, the formula simplifies
considerably and we have for the scattering amplitude

, ..s(8) = (1/2ik„') Q& (21+1)T„&,„,&'sP&(cos8}. (9)

Kith S=0 the above expression is the singlet scattering
amplitude, and with S=1, it is the triplet amplitude.
In conformity with the notation of Burke and Schey
we shall designate these as G(8) and F(8), respectively. '
The differential cross section is then given by the
standard equation

~(8)=lC3IF(8) I-'+ IG(8) I'j (10)

For positron-hydrogen scattering, the singlet and
triplet amplitudes are identical (since there is no
exchange). Consequently, a measurement of the
differential cross section at each energy exhausts the
experimental possibilities and determines the scattering
amplitude through Eq. (10) to within a phase factor.
For electron-hydrogen scattering, however, there are
possibilities of spin changes during the collision, and
other quantities in addition to, and independent of,
the differential cross section may be measured. This
corresponds to the fact that, at low energies, the singlet
and triplet amplitudes are, in general, not equal in
electron-hydrogen scattering. ' This problem has been
treated in detail elsewhere' and we here merely repro-
duce the relevant formulas. It is found that the quanti-
ties of physical interest (cross sections, spin polari-
zations, and correlations) can be expressed most readily
in terms of the five real functions

k(8) =-4PF(8)F*(8)+G(8)G*(8)j,
m(8) = ~ P'(8)F*(8)—G(8)G'(8) 3
&s(8) = -', [2F(8)F*(8)+F(8)G*(8)+F*(8)G(8)j, (11)

p(8) = 4L2F(8)F*(8)—F(8)G*(8)—F*(8)G(8)]

'3 J. M. Blatt and V. F. Weisskopf, Theoreh'cal Nuclear I'hysics
I'John Wiley R Sons, New York, 1952).

C(8)= l~P'*(8)G(8)—F(8)G'(8)j.
Thus, the components of the spin polarizations I' and
the elements of the correlation tensor Q after scattering
(denoted by primes) can be related to their counter-
parts before scattering (unprimed) by

0'(8)P& "(8}'=&s(8)Pg"'+P(8)P&,"'+q(8) Q;, e;,&Q;,,

(8)P &'&(8)'=p(8)P &'&+»(8)P "'—q(8) Q;, e;; Q;;,

and (12)

(8)Q' (8)'= (8)8' D—Z Q«j+ (8)Q*+p(8)Q '
—q(8) P&: ~*,»LPa

"&—Pa "&1,
where

~(8)=k(8)+m(8) P& Q».

The subscripts z, j, k, and $ each run over the va]ues
1, 2, and 3 corresponding to the x, y, and s directions.

Of these quantities, perhaps the most easily meas-
urable, apart from the differential cross section, are
the depolarization ratio d(8) and the spin-flip cross
section. These are defined by

d(8) = P&„.&'& (8)'/P&, &'& = e(8)/cr(8),
and

«~(8) = l IF(8)—G(8) I'=~(8)L1—d(8) j (14)

In later sections we present values of the foregoing
quantities for several reactions calculated in the close-
coupling approximation.

Lastly, the "exchange cross section, " defined by
Lichten and Schultz, " is —20sp(8) in the notation of
Eq. (14).

III. ELASTIC AND INELASTIC SCATTERING OF
ELECTRONS BY ATOMIC HYDROGEN

A. Elastic Scattering

This section deals with our results for two distinct
elastic electron-hydrogen collision processes. The first,
the more usual, is that in which the target hydrogen
a.tom is in its ground (1s) state both before and after
scattering; in the second, the target is in the 2s state
both before and after scattering.

In Table I we list our results for the 1s—1s cross
section calculated in the 1s—2s—2p close-coupling
approximation for electron energies from 11.0 to 54.4
eV. Included for comparison are the results for the
same process calculated in the 1s—2s close-coupling
approximation. In both cases we list the individual
partial-wave contributions as well as the total cross
section, which is given in the column designated "Sum."
The values given in Table I indicate clearly that in-
cluding the 2p state significantly modifies partial-wave
contributions for I.~& 1 at lower energies. The fact that
the 2p state has its major effect on higher partial waves
leads us to conclude that the differences between the

'4 W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959).
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TABLE I. Partial-wave contributions to the total is —is cross section in units of ~ao' as calculated in is —2s close-coupling approxi-
mations (rows "a")and in is —2s —2p close-coupling approximations (rows "b").Numbers obtained in Born approximation are indicated
by parentheses. "Sum" column is the total of all significant partial-wave contributions. All numbers include spin-weighing factors. k' is
given in atomic units (au}.

k2(au)

0.81

1.0

1.21

2.25

4.0

Spin

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
h

Singlet a
b

Triplet a
b

0.436
0.4474
3.687
3.6866
0.286
0.2635
2.895
2.9062
0.186
0.1722
2.297
2.2973
0.140
0.1269
1.829
1.8266
0.088
0.0836
0.971
0.9657
0.065
0.0579
0.412
0.3979

0.046
0.0098
1.3'77
1.7307
0.0333
0.0101
1.157
1.3720

0.0470 =0.007 0.0013 0.0004

0.0861
0.0014
0.0654
0.057
0.0934

0.0187 0.0040 0.0013

0.0081 0.0019 0.0006 0.0003 0.0001 0.0001

0.0168 0.0059 0.0019 0.0008 0.0004 0.0002

Sum

0.513

5.527

0 0.350

0.0001 4.398

0.0133 0.0580 0.0102 0.0025 0.0009 0.0004 0.0002 0.0001 0.258

1.0862
0.0107
0.0105
0.815
0.8853
0.0012
0.0020
0.486
0.5148

0.0948
0.0005
0.0351
0.068
0.0938

0.0049
0.0718
0.0843

0.0160 0.0068 0.0026 0.0011 0.0005 0.0003 0.0001 3.506

0.0100 0.0028 0.0011 0.0005

0.0153 0.0069 0.0031 0.0014 0

0.187

0 2 832

0.0039 0.0022 0.0011 0.0006 (0.00006) (0.00002) (0.00001) 0.098

0.0143 0.0053 0.0029 0.0016 (0.00017) (0.00007) (0.00003) 1.589

0.0089 0.0014 0.0008 O.Q007 0.0005 0.0004 0.0002 {0.00009} (0.00005) 0.071

0.2412 0.0631 0.0140 0.0040 0.0018 0.0011 0.0007 (0.00026} (0.00026) 0.724

two approximations, the 1s—2s and the 1s—2s —2p,
can probably be accounted for in terms of the long-
range distortion eGects allowed for by the inclusion of
the 2p state. Our results also indicate, however, that
the major part of the total cross section at the lower
energies comes from the L=0 contribution which is little
affected by the inclusion of the 2p state; the over-all
effect of the 2p state is thus relatively small. This sug-
gests that once the 2p state has been included in the
close-coupling expansion, the inclusion of additional
individual higher lying hydrogen states would scarcely
change the results, a conclusion we have been able to
draw in other phases of our work. '

There are, unfortunately, no 1s—1s measurements
available at the energies considered here and so the
question of the accura, cy of our calculation, judged on
the basis of comparison with experiment, must be left
open for the present.

In Table II, we give our 1s—2s—2p results for the
2s—2s cross section; both the individual partial-wave
contributions and the total cross sections are shown.
In certain cases our results are supplemented with
values calculated in the Born approximation"; these
are indicated in parentheses. The extended size of the
target atom in the 2s state can be seen to produce
exceptionally large cross sections, particularly at the
lower energies.

The values listed in Table II make it clea.r that at
lower energies the calculation has not been carried far
enough to achieve convergence in the partial-wave
expansion. At the three lower energies, therefore, we

give, in addition to the sum of the calculated partial-
wave contributions, estimates obtained by assuming
that the partial-wave cross sections depend upon the
total angular momentum through the relation
01. exp( —L/I. o), where the constant 1.0 is determined
by 6tting to our calculated results at lower L values.
This assumption is borne out well by the higher partial-
wave cross sections calculated in our close-coupling
approximation (Table II).

B. The 1s—2P and 1s—3P Excitation
Cross Sections

In addition to the elastic processes discussed in Sec.
IIIA we have applied close-coupling methods to certain
inelastic reactions. In this section we present our results
for the 1s—2p and 1s—3p excitation cross sections.

Our computations for the is—2p excitations are
summarized in Table III; row (a) gives the contri-
butions of the individual total angular-momentum
states (spin statistical factors of 4 and ~3 are included).
For some of the higher angular momenta, we have used
results obtained from a Born approximation calculation
made by keaton et al. ,"and such values are designated
in the table by parentheses. Since Born results are
available, even for small values of L, we are able to
compare them with those coming from our close-
coupling approximation; for L values greater than six

' M. J. Seaton, Proc. Phys. Soc. (London) 77, 174 (1961);
M. J. Seaton, ibid. 77, 184 (1961); J. Lawson, %. Lawson, and
M. J. Seaton, iNd. ?7, 192 (1961};and V. M. Burke and M. J.
Seaton, ibid. 77, 199 (1961).
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TAsLE IV. The is —2p results for Q(+), Q(0), and Qq, and for polarization of emitted radiation.
All numbers include spin-weighting factors.

k' (au)

0.81
1.00
1.21
1.44
2.25
4.00

Q(~)
=0.053

0.0735
0.0913
0.0878
0.0871
0.0740

Singlet

Q(0)

=0.127
0.3011
0.4386
0.4487
0.2533
0.1160

=0.234
0.4481
0.6212
0.6243
0,4275
0.2640

Triplet
Q(~) Q(o)

O.D149 0.0967
0.0262 0.2994
0.0482 0.3763
0.0753 0.4052
0.1373 0.3890
0.1654 0.2768

QT. t,

0,1265
0.3518
0.4727
0.5558
0.6636
0.6076

Q(~)
=0.068

0.0997
0.1395
0.1631
0.2244
0.2394

Total results

Q(0) Q

=0.223 =D.360
0.6005 0.7999
0.8149 1.0939
0.8539 1.1801
0.6423 1.0911
0.3928 0.8716

QI.

=0.385
0.8820
1.2047
1.2934
1.1596
0.8968

Polarization
p

=0.209
0.2835
0.2799
0.2667
0.1800
0.0855

cv c'
U

0
10 RO

1 I

50 40
Electron energy (eV)

l

50
l

60

FIG. 1. Total is —2p excitation cross section as a function of
incident electron energy as given by the Born approximation and
by the present calculation. Experimental results are those of Fite
and Brackmann, and of Fite, Stebbings, and Brackmann.

' %'. L. Fite, R. F. Stebbings, and R. T. Brackmann, Phys.
Rev. 116, 356 (1959}.

or seven, the tvro sets of numbers differ by less than a
fevr percent, and we therefore have conhdence in the
Born approximation for higher I s. At higher energies,
partial-wave results are not available for 1.)15 and
the entries in the sum column of Table III in such cases
are estimates of the converged cross sections obtained
by the extrapolation procedure described in Sec. IIIA.

Experimental results, vrhich may be used for com-
parison, are not given directly in terms of Q, the total
cross section, but rather in terms of Q(+), Q(—), and
Q(0), which are cross sections for the excitation of the
2p state of hydrogen with the magnetic quantum
number equal, respectively, to 1, —1, and 0. In the
experiments of Fite and Braekmann" and of Fite,
Stebbings, and Braekmann" photons that result from
the decay of the hydrogen-atom target to the ground
state are observed in a direction perpendicular to the
incident electron beam; an average over all directions
is then made by assuming an isotropic photon dis-
tribution. The resulting quantity, Q„ is expressed in
terms of Q(0) and Q=Q(+)+Q( —)+Q(0) through
Eq. (7). Our close-coupling results for Q(&) and Q(0)
and the resulting Q& are given in Table IV where the
polarization I' of the emitted photons calculated by
using Eq. (6) is also presented. A comparison of cal-
culated and measured values of Q, is shown in Fig. 1.

Agreement is poor; at lovr energies the close-coupling
results are greater than those of experiment by more
than a factor of two, and the over-all shape of the two
curves is quite diferent. Figure 1 also shovrs the Seaton-
Born approximation results which agree remarkably
well with our close-coupling curve. We are inclined to
regard this agreement as largely fortuitous. A com-
parison of individual R-matrix elements calculated in
the Born approximation and in the close-coupling
approximation shows that, except for higher I. values
and energies, the two sets of numbers bear little
resemblance to one another; there are frequent dis-
crepancies both in magnitude and sign. However, vrhen
the various partial-wave contributions are added to
give the total cross section the discrepancies evidently
compensate enough to give the agreement vre 6nd
between the Born results and our own close-coupling
cross section.

The disagreement between our calculation and the
experimental results led us to investigate the 1s—2p
excitation cross section with various combinations of
closely coupled atomic-hydrogen states other than
1s—2s —2p (see Sec. V). We 6nd, however, that other
combinations never yield results diR'erent from the
1s—2s—2p values by more than about 10%. Since we
are in a position of having to explain away discrepancies
of more than a factor of two, we feel that no close-
coupling approximation such as the present one will

yield results for the 1s—2p excitation cross section
which agree satisfactorily with measured values.

Our results for the polarization of the emitted photons
and the experimental measurements of this quantity
as given by Fite and Brackmann" are presented in
Fig. 2. Theory predicts a rather large drop in polari-
zation at 11.0 eV just above threshold. For energies
slightly lovrer than these the curve must rise again-
and steeply —to fu1611 the requirement of the theory
that I'=3/7 at threshold. Thus, it appears that near
threshold the polarization must be a rapidly varying
and nonmonotomic function of energy. It must be
admitted that this conclusion is based, in part, upon the
11.0-eV point which, because of our difIIculty in
achieving convergence, is perhaps less reliably given
than points at other energies. Nonetheless, there is no
question that we do see a distinct flattening of the
polarization curve for energies somewhat higher than
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11.0 eV where no convergence problem casts doubt
upon the calculated results.

From Fig. 2 it is plain that agreement between theory
and measurement for the polarization of the emitted
photons is poor. In view of the large errors quoted in
the experimental results, we cannot regard this dis-

agreement as strong evidence against the validity of
the close-coupling approximation.

In our investigation of the is—2P excitation cross
section we discovered that results obtained by use of a
closely coupled wave function containing only the 1s
and 2p states agree very well with those obtained by
using our standard 1s—2s—2p expansion (Table V).
This agreement emboldens us to calculate the is—3p
excitation cross section by using a close-coupling
expansion that includes only the is and 3p states. The
results, presented in row (b) of Table V and shown in

Fig. 3, though probably not the last word in accuracy,
should not be egregiously erroneous. There are no
experimental data for comparison, but once again, as
in the case of the 1s—2p cross section, there is fairly

o lp

Oo Qe-

0.6—
Ct

-o 04-
hl

a 02
O
0.

0 I

0 20
I

40
I

80
t I

lpp

good (though accidentalP) agreement above 30 eV be-
tween our close-coupling result and the Born approxi-
mation values given by I.ichten and Schultz" which are
shown in Fig. 3.

The large 1s—3p peak value at 15 or 16eV, if it is
to be believed, has interesting consequences for the
is—2s excitation cross section, for it would mean that
electron bombardment excites the hydrogen atom into
the 3p state more readily than had been anticipated in
earlier estimates. This, in turn, will result in an en-
hanced 2s population coming from 3p —2s radiative
transitions. Although we postpone to Sec. IIIC a
detailed discussion of this point, we may remark here
that this e6'ect brings close-coupling predictions of the
1s—2s cross section into greater disagreement with
experiment than had been suspected.

None of the results presented in this subsection are
in satisfactory agreement with experiment. Yet we find
that the higher angular-momentum states make large
contributions to the cross sections in question, and we
have considerable confidence in our results for these

Electron energy (eV )

Pro. 2. Polarization of radiation emitted in 1s—2p excitations
as a function of incident electron energy. Experimental points are
those of Fite and Brackmann.

TABLE V. A comparison of the 1s—2p cross section in units of
~a/ at two energies using two methods of calculation: (a) the
1s—2p close-coupling approximation and (b) the 1s—2s —2p
close-coupling approximation. The "Sum" column includes con-
tributions from higher L values (not shown). All numbers include
the appropriate spin-weighting factors.

$2(au} SpIn/
2 3 4 Sum

1.0

1.0

2.25

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

0.017 0.065 0.301 0.020
0.036 0.110 0.253 0.035
0.002 0.107 0.002 0.163
0.000 0.080 0.046 0.167
0.006 0.004 0.082 0.100
0.017 0.018 0.094 0.100
0.006 0.003 0.013 0.086
0.011 0.013 0.036 0.108

0.007 0.414
0.010 0.448
0.041 0.329
0.044 0.351
0.072 0.393
0.070 0.428
0.124 0.594
0.134 0.664

states. Thus, we are at a loss to explain, for example,
the serious discrepancy in the 1s—2p case, and feel that
further experimental efI'ort is well justified.

C. The 1s—2s Excitation Cross Section

We turn our attention now to another excitation
process of theoretical and experimental interest, that
of the excitation of the 2s state of hydrogen from. the
ground state by electron impact. In Table VI, row (a),
we give the results for the is—2s excitation cross
section calculated in a 1s—2s close-coupling approxi-
mation by Marriott'7' for 1.=0, and by Smith'8 for
higher L. In row (b) of Table VI we list our own results
for the same quantity calculated in the 1s—2s—2p
close-coupling approximation. Ke see that the eBect
of including the 2p state is to modify the L&0 partial-
wave contributions to the cross section, and this modi-
fication for any L diminishes as the projectile energy
increases away from the threshold. This behavior
conforms to our expectations, since the 2p state accounts
for an appreciable part of the long-range distortion

0.35

0.3—
N~
a

0.25—

0.2—
O

v) 0.15—
I/l
V)
O

O, l—

0
0.05—I-

0
IO I5 20 30 40

T f

60
! !

80 100

"R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
I K. Smith, Phys. Rev. 120, 845 (1960).

Electron energy (eV)

PIG. 3. Total 1s—3p excitation cross section as a function of
incident electron energy as given by the present calculation and
by the Born approximation (Lichten and Schultz).
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TAmE VI. Partial-wave contributions to total 1s—2s excitation cross section in units of vruP calculated in (a) the 1s—2s close-coupling
approximation and (b) the 1s—2s —2p close-coupling approximation; and the spin-Qip cross section calculated in the 1s—2s —2P close-
coupling approximation. The "Sum" column includes all significant partial-wave contributions. All numbers include spin-weighting
factors.

Spin+
10

Sum Spin flip

0.81

1.21

4.00

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

Singlet a
b

Triplet a
b

0.038
0.0529

0
0,0012
0.0714
0.0766
0.0027
0.0036
0.070
0.0588
0.0044
0.0051
0.0547
0.0380
0.0061
0.0055
0.0238
0.0123
O.OQ73
0.0045
0.0073
0.0049
0.0046
0.0030

0.008
0.0045
0.1736
0.0709
0.051
0.0145
0.161
0.1219
0.0524
0.0246
0.105
0.1000
0.053
0.0256
0.0735
0.0716
0.0383
0.0309
0.0358
0.0335
0.0157
0.0153
0.0162
0.0'J 54

0.0581
0.006
0.0031

0.0823
0.046
0.0211
0.0003
0.0645
0.0262
0.0316
0.0053
0.0245
0.0577
0.0358
0.011
0.0015
0,040
0.0302

0.0068

0,0175

=0.003 0.0001

0.01 75 0.0030

0.0103
0.002
0.0208

0.0018 0.0003 0.0001

00071 0.0012 O.OQ02

0.0232 0.0054 0.0014 0.0004 0.0001

0.0069 0.0113 0.0042 Q.OQ13 0.0004 0.0001

0.0247 0.0082 0.0028 0.0010 (0.0004) (0.0002) (0.0001)

=0.118 =0.1

0.0929

0.1858 0 2212
0, 1758

0.1854
0.1610

0.1255 0 1146

0.0021
0.0143
0.0100

0.0010 0.0010 0.0010 0.0009 {0.0007) (0.0005) (0.0004) 0.0358

0.0045 0.0025 0.0021 0.0020 (0.0020) (0.0016) (0.0013) 0.0654 J

0.0036 0.0103 0.0065 0.0029 (0.0011) (0.0005) (0.0002) (0.0001) 0.1380

0 0040 0 005 1 0 0037 0 0022 (0 0011) (0,0007) {00004) (0 0002) 0 0624 0 0285
0.00?0 0.0045 0.0054 0.0046 (0.0033) (0.0021) (0.0012) (0.0007) 0.0980

which is known to have its greatest influence near
thresholds and which, in addition, quite naturally
manifests itself in states of larger I.That the 2p state
also plays a role in allowing for short-range correlation
effects is evidenced by its somewhat greater effect in
the singlet-spin state (where short-range correlation is
important) than in the triplet-spin state.

Table UI includes a "Sum" column for the total
cross section and a column for the spin-Qip cross section,
the latter being given by Eq. (14). These sums include
all significant partial waves, and for the higher energies
in the 1s—2s—2p approximation, contributions up to
L values of about 15 must be taken into account. Such
large values of I.are not required in the 1s—2s approxi-
mation where, due to neglect of the long-range effects
represented by the 2p state, one is dealing with an
effective interaction of short range. Thus, there is a
signihcant difference between the contributions from
high angular momenta in the two approximations.
Despite these differences, however, the total 1s—2s
excitation cross section is not much altered by the
inclusion of the 2p state (see Fig. 1). The 1s—2s
approximation does, indeed, yield a less pronounced
peak than that given in the present calculation, but
it occurs at about the same energy (=14 eV) in both
cases, and at no energy is the difference between the
two calculations greater than a few percent.

Our results, as shown in Fig. 4, become almost
indistinguishable from those given by the ordinary
Born approximation at our highest energy (54.4 eV).
However, the second Born approximation of Kingston,
Moiseiwitsch, and Skinner, an approximation to the
1s—2s —2p method, which is an attempt to allow for
virtual transitions between the erst two hydrogen
levels, " shows appreciable departures from our result

' A. E. Kingston, B.L. Moiseiwitsch, and B. G. Skinner, Proc.
Roy. Soc. {London) A 258, 254 (1960}.

at this energy. Apparently it is not possible to allow
adequately for virtual transitions within the framework
of a perturbation calculation; one must include strongly
coupled states exactly.

There are two sets of experimental data shown in
Fig. 4 with which we may compare our calculation.
The 6rst data, measurements made by Lichten and
Schultz, "are not too different in magnitude from our
own, although at lower energies there is a discrepancy
of 20 to 25%. The second set of data is provided by
Stebbings er, a/. 20 They disagree completely with our
own insofar as magnitude is concerned, the discrepancy
being as great as a factor of two-and-a-half at some
energies. The shape of their curve, however, is not
unlike our own.

The experimental data shown in Fig. 4 were subject
to normalization. Those of the Stebbings group were
normalized to Born approximation values between
200 and 700 eU, a procedure which, in principle, is to
be preferred to that of Lichten and Schultz who
normalized their data to Born values at 45 eV, an
energy at which the validity of the Born approximation
might seem questionable. Our calculation, however,
agrees very well with the Born approximation for
energies as low as 30 eU, and thus seems to justify the
Lichten-Schultz normalization procedure.

There is one further point to be made with regard
to the measured values of the is—2s excitation cross
section. The methods used by Lichten and Schultz and
by Stebbings require that raw experimental data be
corrected for the enhancement of the 2s state population
caused by radiative transitions from higher levels
excited by the electron bombardment. The results
shown in Fig. 4 have been subject to such a correction
by use of an expression given by Lichten and Schultz

Hl R. F. Stebbings, W. L. Fite, D. G. Hummer, and R. T.
Brackmann, Phys. Rev. 119, 1939 (1960}.
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which takes into account only the e6'ect of transitions
from all higher lying p levels. They estimate that

0 „(2s)=ar (2s)+0.210 (3p),

where o.r(2s) is the calculated 1s—2s excitation cross
section and 0 „(2s) is the total cross section for excitation
of the metastable 2s state by all processes. The quantity
denoted 0 (3p) is the cross section for excitation of the
3P level; Lichten and Schultz obtain a value for this
quantity by normalizing the Born approximation value

by the ratio of Q(1s —+ 2p) given by Fite et al. to the
Born approximation value of the same quantity. In
the previous section we indicated that the experimental
values of Q (1s~ 2p) may be too small; corrected values
would thus lead to values of 0~(2s) for which the
theoretical-experimental discrepancy would be even
worse than that shown in Fig. 4.

Another piece of experimental information available
is the total spin-flip cross section. Lichten and Schultz
find a ratio for spin-flip to total cross section of 0.9+0.1
at threshold. Our value is about 0.7, in fair agreement
with measurement. A ratio such as this, incidentally,
is not beset with normalization difficulties, and the
relatively good agreement obtained here we regard as
evidence in favor of our 1s—2s excitation results.

Our remarks should indicate that the situation with
regard to the 1s—2s excitation cross section is far from
satisfactory. Ke do not have as much confidence in our
1s—2s results as we do for our 1s—2p, since, in the
latter, higher angular-momentum contributions are
more important and more accurately calculated.
Despite this, we find it difficult to understand the
large discrepancies discussed above within the frame-
work of this kind of close-coupling approximation. We
feel this situation warrants continued experimental
eftort. In particular, close scrutiny of normalization
procedures involved in processing experimental data
may prove fruitful.

D. Di8erentta1 Cross Sections and Electron-Spin
Polarizations and Correlations

In this section we present results for the 1s—1s and
1s—2s difterential cross sections. We also give the
functions of scattering angle defined in Sec. II in
connection with the spin polarization and correlation.
All quantities are calculated in the 1s—2s—2p close-
coupjing approximation. Apart from total cross sections,
these quantities are, perhaps, the most easily measured
of the various quantities which characterize electron-
hydrogen collisions.

The results for the 1s—2s scattering are of more than
ordinary interest because of the quite pronounced
disagreement between experiment" and the present
calculation. If this disagreement is the fault of the
calculation, it must be ascribed mainly to the unusually
large contributions we obtain from higher angular-
momentum states. It is the sum of these large contri-

l I I I I I I I j

0,3—
0

a 02—
N

0
10

I l I t 1 I I f l

20 40 60 80 IOO

Energy ( ev }

1 I I I I I 1 I

200 400 IOOO

FIG. 4. Total is —2s excitation cross section as a function of
incident electron energy as given by various calculations and by
two sets of experiments.

butions that leads to predictions very much in excess
of the measured values. Higher partial-wave contri-
butions a8ect any angle-dependent quantity such as
0(8) or d(8) much more than they do a total cross
section; thus, the functions given in this section are
one obvious place to begin the search for the cause or
causes of the discrepancy.

However, if the disagreement is ascribed to some flaw
in the experiments, such as di6iculty in normalizing the
data properly, then the experimental measurement of,
for example, the 1s—2s diGerential cross section will
still play a vital role in revealing the source of the
disagreement; the angular distribution, normalized
correctly or not, provides much information about the
contributions of higher partial waves. Even more
informative in this respect is the depolarization ratio
which, by its definition LEq. (14)j, is independent of
normalization.

In Fig. 5 we plot the angular distribution for the
elastic scattering of electrons by atomic hydrogen in its
ground state for incident electron energies of 13.6, 19.6,
and 30.6 eV. At the higher energies the scattering is
largely confined to the forward cone. The depolarization
ratio for the same reaction is given in Fig. 6. The large
backward dip at the lower energies tends to disappear
as the energy increases and d(8) tends to unity for all
angles. This limiting high-energy behavior follows as a
consequence of the equality of the singlet and triplet
amplitudes at high energies, a manifestation of the
waning influence of exchange as the energy increases.
In Figs. 7—10 we give the functions m(8), e(8), p(8),
and q(8) which are defined in Eq. (11).

In Fig. 11 we plot the di6erential 1s—2s excitation
cross section. Again, as in the corresponding elastic
case, the distribution is almost all in the forward
direction at higher energies. However, unlike the elastic
case, there is an appreciable backward peak at the lower
energies. A significant feature of these distributions is
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Fxc. 5. Differential cross section for elastic is—is scattering as
a function of scattering angle for three incident electron energies.
Note that this cross section is identical with the function k(B)
de6ned in Eq. (11).

the nonisotropy at energies only slightly above the
j.s—2s excitation threshold. Even at these low energies
the higher (1.&0) partial-wave contributions dominate
the behavior of the cross section, and an angular dis-

Fxo. '/. The quantity m(8) for elastic is—is scattering as a function
of scattering angle for three incident electron energies.

tribution might, therefore, help resolve the 1s—2s
discrepancy between calculation and experiment.

Finally, in Fig. 12 we give the 1s—2s depolarization
ratio. An important feature of this ratio at all energies
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Fxc. 6. The depolarization ratio for elastic is—1s scattering as a
function of scattering angle for three incident electron energies.

Fxo. S.The quantity e(8) for elastic is —is scattering as a function
of scattering angle for three incident electron energies.
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considered is the large dip in the angular range from
30 to 60 deg. This dip becomes less pronounced (al-
though it remains quite appreciable) and moves to
smaller angles as the energy increases.
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FIG. 11.DifFerential 1s—2s excitation cross section as a function
of scattering angle for three incident electron energies. Note that
this cross section is identical with the function k(8) deaned in
Eq. (11).
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Fra. 9.The quantity p(8) for elastic 1s—1s scattering as a function
of scattering angle for three incident electron energies.
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Fze. 12.The depolarization ratio for 1s—2s excitation as a function
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IV. ELASTIC Am INELASTIC SCATTERING OP
POSITRQNS BY ATOMIC HYDROGEN

Ke now consider the elastic and inelastic scattering
of positrons by atomic hydrogen for incident positron
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fABJE VIL Total elastic and inelastic cross sections for the scattering of positrons by atomic hydrogen in units of duo . Values in
rows "a" calculated in the is —2s close-coupling approximation, those in row "b" in the is —2s —2p close-coupling approximation.
Figures in parentheses indicated number of partial waves taken into account.

e (au)

0.81

1.00

1.21

2.25

0.679(0)
0.585 (0)
0.608(0)
0.541(0)
0.542 {0)
0.496(0)
0.487(0)
0.453 (0)
0.356(0)
0.343 (0)
0.220(0)
0.218(0)

g(1$1s)

0.689(4)
0.582 (4)

0.543(4)
0.586(5)
0.514(5)
0.475 {6)
0.431(6}
0.349(7)
0.332 (7)

0.750{5)
0.628(6)

0.594{9)
0.632(7)
0.557(12)

0.522 (13)

0.436(16)

0.334(17)

0.003(0)
0.007(0)
0.009(0)
0.007(Q)
0.015(0)
0.009(0)
0.019(0)
0.012 (0}
0.021(0)
0.017(O)
0.012(0}
0.012 (0)

Q(is —+ 2s)

0.019(4)
0.131(4)

0.159(4}
0.049(5)
0.193{5)
0.072 {6)
0.182 (6)
0.067(7)
0.119(7)

0.004(5)
0.059(6)

0.146(9)
0.035{7)
0.195(12}

0.218{13)

0.208(16)

0.138(17)

0(1& 2p)

0.005(0) 0.072 (6)

0.011(0) 0.201(4) 0.266(9)

0.013(0) 0.304(4) 0.496(12)

0.012 (0) 0.494(5) 0.694(13)

0.005 (0) 0.620(6) 0.995 (16)

0.001(0) 0.448 (7) 0.920(17)

energies between 11. and 54.4 eV. Other above-threshold
calculations have been made by Moiseiwitsch and
Williams' who treat the elastic scattering of fast
(E&217.6 eV) positrons using a simplification of the
second Born approximation, and by Smith et al. ,

' who
consider both elastic and inelastic collisions in the
1s—2s close-coupling approximation. Our calculation
is also carried out in a close-coupling approximation,
one that includes 1s, 2s, and 2p states of hydrogen;
positronium formation is neglected.

Calculations of positron-hydrogen cross sections are
of considerable interest despite the fact that, as yet,
no experimental data are available for purposes of
comparison. This interest stems in part from the
contrast between electron-hydrogen scattering and
positron-hydrogen scattering. In particular, the mean
static interaction (the total potential averaged over
the hydrogen ground state) and the long-range "polari-
zation potential" have opposite signs for positrons but
have the same sign for electrons. An investigation by
Cody et al."shows that the positron-hydrogen scattering
length is negative which, in accordance with the stand-
ard convention, implies that the effective positron-
hydrogen interaction at zero energy is positive (see also
Rosenberg and Spruch). "

Another important feature of positron-hydrogen
collisions is that, while there are no effects analogous to
electron exchange, the possibility of positronium for-
mation arises; with it arises the question of the relative
importance of (a) positronium formation and (b) the
distortion represented by the 2p state in modifying the
effect of the static interaction. %'e should like, of course,
to take into account both efI'ects, at least in some
approximation, but we have chosen to treat the 2p-state
distortion effects and omit consideration of positronium
formation. Ke make this choice because the apparatus
necessary for such a calculation becomes available by

"W. J. Cody and K. Smith, Argonne National Laboratory
Report ANL-6121, 1960 {unpublished); see also %. J. Cody,
Argonne National Laboratory Report ANL/AND-21, 1961
(unpublished).

& L. Rosenberg hand L. Spruch, Phys. Rev. 120, 474 {1960).

quite simple modifications of the code that was de-
veloped and used to treat electron-hydrogen collisions.
The inclusion of positronium formation, on the other
hand, would require revisions of our methods. While
our choice is thus dictated by convenience, it can be
justified on physical grounds: First, 68% of the long-
range distortion is accounted for by including the 2p
hydrogen state in the close-coupling expansion. Second,
according to the low-energy (E(6.8 eV) positron-
hydrogen analyses of Cody and Smith, " the inclusion
of the 2p state has a greater influence on the scattering
than does virtual positronium formation for processes
in which there is a hydrogen atom in the initial and final
states. For these reasons we feel that the present calcula-
tion, based on a 1s—2s —2p close-coupling approxima, —

tion, will yield physically significant results even though
it fails to account for positroniurn formation.

In Table VII we present the cross sections for the
scattering of positrons by atomic hydrogen calculated
in both the 1s—2s and the 1s—2s—2p close-coupling
approximations. We see that, as the energy of the
incident positron decreases and approaches the first
inelastic threshold from above, the two approximations
differ more and more. Thus, at 54.4 eV for elastic
scattering the two approximations agree within 1%,
but at 11.00 eV the agreement is not even within 10%.
A deviation of the same order is also observed in the
1s—2s excitation cross section, but here, even at 54.4
eV, there are large discrepancies between the two
approximations for a few of the lower partial waves.
These discrepancies are more pronounced in individual
partial-wave cross sections than in total cross sections
where they tend to cancel. The same kind of discrepan-
cies (though not so large) as well as the same tendency
to cancel in total cross sections are also to be found in
electron-hydrogen collisions.

For the calculation of the optically allowed 1s—2p
transition we found it necessary at the highest energy
to take into account partial-wave contributions up to
and including I.=17 to obtain convergence. This is at
least twice as many as are required in most other parts
of the calculation and strongly suggests that in this
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TABLE VIII. The J =0 singlet cross section in units of mao~ evaluated at two energies in various close-coupling approximations:
(a) 1$; (b) 1$—2$; (c) 1$—2p; (d) 1$—3p; (e} 1$—2$—2p; (f} 1$—2$—2p —3$; (g) 1$—2$—2p —3p; (h) 1$—2$—2p —3d; (i)
1$—2$—2p —3$—3p. All numbers include the spin-weighting factors.

k' (au)

1.0

Process

1$—1$
1$—2$
1$—2p
1$—1$
1$—2$
1$—2p

0.2666

~ ~ ~

0.1633

0.286
0.0714

~ ~ ~

0.140
0.0547

0.2962
~ ~

0,0166

0.2661

~ ~ ~

0.1596

0.2635
0.0766
0.0360
0.1269
0.0380
0.0343

0.2910
0.0687
0.0196
0.1281
0.0273
0.0421

g

0.2731
0.0598
0.0316
0.1303
0.0414
0.0254

0.2640
0.0633
0.0497
0.1274
0.0389
0.0313

0.3001
0.0486
0.0255
0.1314
0.0300
0.0335

range of energy partial-wave analysis alone ceases to be
useful and should be replaced by, perhaps, the Born
approximation supplemented with close-coupling results
for lower angular momenta.

V. CONVERGENCE IN CLOSELY COUPLED STATES

Because of the discrepancies between experiment and
theory, we have investigated the effects on the 1.=0
contributions to the cross section which are introduced
by hydrogen states other than the 1s, 2s, and 2p.
Attention is limited to the 1.=0 state chief in the
interest of simplicity —each new hydrogen state intro-
duced couples in only one unknown scattering-wave
function. However, we hope our results will provide
some general indications of the accuracy of the close-
coupling approximation. Since our code, in its present
form, can cope with a maximum of five coupled equa-
tions (mainly because of computer-space limitations)
we have also confined our attention to combinations of
states from only the first three hydrogen levels.

Our resujts are presented in Table VIII where we
give our calculated values for the I.=O contributions
to the 1s—1s, 1s—2s, 1s—2p cross sections. We have
used nine different close-coupling combinations, as
indicated in the table, and have considered two energies
above the second-quantum excitation level.

The elastic 1s—1s cross section is only slightly
modified from its 1s—2s—2p value by the inclusion of
states from the third quantum level, although the
values given by the 1s—2s and 1s—2p approximations
are appreciably different. The agreement is better at
the higher energy.

The cross sections for the 1s—2s and 1s—2p ex-
citations are also only slightly changed by the inclusion
of additional states, once both the 2s and 2p states are
present in the close-coupling wave function; however,
these cross sections are not given as accurately as are
those in the elastic case.

These brief considerations, though they may be only
another case of the slow convergence in hydrogen
eigenstates already noted by Burke and Schey' for
energies below the first excitation threshold, do give
us some hope that the 1s—2s—2P close-coupling
approximation can provide reasonable results. Evi-
dently we can gain little in calculating 1s—2s and
1s—2p excitation cross sections by including hydrogen

eigenstates coming from the third, or higher, levels.
Hov ever, in the interest of accuracy, it does appear
important to include all hydrogen states corresponding
to any given level. Thus, one should include the 2p
state in calculating Q(1s —+ 2s), and the 2s state in
calculating Q(1s ~ 2p).

%e emphasize that these remarks rest on an investi-
gation which involves only the state 1.=0. It mould be
interesting to see if they apply to other states as well.

VI. CONCLUSIONS

Ke have calculated quantities pertaining to the
collisions of electrons and positrons with atomic
hydrogen for incident projectile energies from 11.0 to
54.4 eV. Calculations were made mainly by means of
the 1s—2s—2p close-coupling approximation.

There are no experimental data in the case of elastic
scattering of electrons. There are data, however, for
the inelastic processes 1s—2s and 1s—2p; agreement
is poor in both cases. For purposes of calculating the
1s—2p excitation cross section, our approximation is,
we believe, quite accurate. Consequently, we suggest
further experimental effort. For 1s—2s excitations, our
method is inherently less accurate, although we have
presented evidence which indicates that more extensive
close-coupling methods, including, for example, 3s, 3p,
and 3d states, mould yield results essentially no better
than those we have obtained in our 1s—2s—2p approxi-
mation. %e are left, then, with the conclusion that
either the method of calculation must be radically
a/tered or replaced with something quite different, or
the experiments must be repeated with close attention
paid to normalization procedures. The fact that our
method gives the ratio of spin Rip to total cross section
(a quantity independent of norma]ization) in fair
accord with experiment, and since our prediction of the
shape, if not the magnitude, of the 1s—2s cross sections
accords well with measurement, we are led, not un-
naturally, to prefer the latter alternative.

For positrons we have no experimental results for
comparison. YVe have pointed out, however, certain
differences with the corresponding positron case. The
2p state, for instance, seems to play a more important
role in the is—2s excitation process here than it does
for electrons.
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Our results can be compared with those coming from
the Born approximation as given by Seaton et al. In
terms of R-matrix elements, good agreement is obtained
for L&~ 6 at all energies considered. However, for lower
angular-momentum states almost no similarity exists
between our numbers and those coming from the Born
approximation. It is surprising, therefore, to 6nd such
close agreement in the two calculations, in the case of
electrons, for total 1s—2s and 1s—2p excitation cross
sections. Seaton's calculation is a 6rst Born approxi-
mation sometimes modi6ed to preserve unitarity.
Because a second Born approximation made by
Kingston, Moiseiwitsch, and Skinner" does not improve
matters, we conclude that perturbation methods may
not be of great value in dealing with strongly coupled
states.

The elastic 1s—1s cross section results for electrons
and positrons are not greatly modified by the inclusion
of the 2s and 2p states, although we believe our results,
including these states, are probably accurate within
a few percent.
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APPENDIX

We give in Table IX (p. 1273) R-matrix elements for
electron-hydrogen scattering obtained in our is —2s—2p
close-coupling approximation. Our notation conforms to
that of Seaton et u/. "For a given total angular momen-

turn L there are Gve states designated by the index v

and given as follows:

1$
2$
2P
2P
2P

k1
kp
k2
k2
k2

l
l

l—1
l+1

l

The quantity denoted k~ is the wave number in the
incident channel, and k2'= k~' —0.75. The state denoted
v=5 is not coupled to any other and is of interest only
for a determination of 2p —2p transition rates. Since
we have not considered such transitions, we have not
calculated the associated matrix element 855. For L/0,
states v=1, 2, 3, 4 are coupled and give rise to a sym-
metric 4X4 E. matrix. When L=O, however, the state
v=3 is not involved and the dimensionality of the E.
matrix is then 3X3; in this case the missing elements
are recorded as zeros in Table IX.

Table IX lists results for both singlet and triplet
scattering. At k'= 0.81, 1.0, and 1.21, we give values for
L=O to 5; at k~=1.44 and 2.25 for L=O to 6; and at
k'=4 for L=O to 7. In only one case, L=3 singlet at
k'=0.81, did our iteration method fail to converge; the
entries for this case are results interpolated from neigh-
boring k' and L values and are probably accurate to
about 10%%u&. The k'=0.81 values were, at all I. and in
both spin states, the most diflicult to obtain, and the
results at this energy in those cases in which convergence
was achieved are expected to be accurate to about 2
or 3%. At all other energies we believe the accuracy to
be better than 1/o.

To evaluate the 1s—2p and the 2s—2s excitation
cross sections given in the body of the paper, contri-
butions from angular momenta higher than those given
in the table are required. For this purpose we use Born-
approximation results calculated by Seaton et al."
(which are fairly accurate for 1.~&6 or 7) supplemented
by is—2s—2p close-coupling no-exchange results
(which are readily obtained with our code) for I values
up to about 15 at the highest energy.
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TAozz IX. Reactance matrix elements calculated in the is—2s —2p close-coupling approximation for six electron
energies above threshold. See Appendix for description of notation.

k'=0.81
Singlet
L=O

1
2
3
4
5

k'= 0.81
Triplet
L=Q

2
3

5

Rgg

0.8189—0.0560—1.2834
=0.03
+0.0107

0.0057

16.655
0.4098
0.0686
0.0287
0.0109
0.0057

R12

—0.2763—0.0070—1.8061
0

0.0001
0.0001

—0.3650
0.1860—0.0415
0.0114
0.0005—0.0002

Rgg

0
0.1596

10.695
= —0.00—0.0064—0.0014

0
0.0699—0.0098—0.0742—0.0080—Q.0015

R14

0.5863
—0.0591—3.7558
=0.004

0.0005
—0.0004

0.3940
03315—0.0243
0.0148
0.0008

0

—1.0994
Q.6131—2.1310

=0.01
0.0317
0.0146

—0.6858—0.3167
0.6684
0.1314
0.0345
0.0147

0
0.0020

15.004
=0.75

0.4733
0.3885

0—0.5277
1.2533
0.4895
0.4674
0.3881

1.0211
0.5759—5.6676

= —0.7—0.4566
—0.3769

—0.0094—1.1184—0.4545—0.5315—0.4551—0.3768

Rgg

0—0.8728—82.956
=0.6

0.4399
0.2718

0
0.6800
0.1447
1.2602
0.4558
0.2727

0—0.6716
29.565

=0.15
0.0169
0.0162

0
—2.2293

0.5451—0.1056
0.0136
0.0161

Rg4

0.5841
—1.0264—11.605

= —0.75—0.3641
—0.2427

1.4022—3.1550—1.1398—0.5763—0.3633—0.2426

k'= 1.0
Singlet
L=O

1
2
3
4
5

0.0360
0.0149
0.0076

—0.0012
0.0002
0.0001

0.2891 —0.0059—0.0160 —0.1564
0.1447 0.0671

0.0000
—0.1742—0.3623—0.1031—0.0410
—0.01/4

+1.7014
—0.5403

0.2294
0.0186
0.0051
0.0016

0.0184
0.3901
0.5420
0.0185
0.0387
0.0242

0.0000
0.9745
0.4618
0.6801
0.46/0
0.3763

+1.4779
1.1385—0.3424—0.6861—0.4780—0,3858

0.0000
1.2562
1.3645
0.4310
0.3166
0.2198

O.QOQ

2.2451—0.5159
0.1738
0.0636
0.0402

—5.5243
0.5796—1.1545—0.8646—0.4432—0.2838

k'= 1.0
Triplet
L=O

1
2
3

5

k'= 1.21
Singlet
L=Q

1
2
3

5

k'= 1.21
Triplet
L=Q

2
3
4
5

k'= 1.44
Singlet
L=O

1
2
3

5
6

k'= 1.44
Triplet
L=O

1
2
3
4
5
6

7.2054
0.5704
0.0695
0.0370

+0.0152
0.0077

0.1443—0.0352
0.1385
0.0416
0.0188
0.0099

3.8892
0.5011
0.1099
0.0401
0.0188
0.0100

0.2624—0.0160
0.1125
0.0403
0.0208
0.0118
0.0071

2.8588
0.4640
0.1117
0.0422
0.0208
0.0118
0.0071

4.5532—0.7812—0.1040
0.0180
0.0047
0.0011

0.5051—0.2222
0.0372
0.0151
0.0034
0.0009

0.5389—0.4922—0.0643—0.0020
0.0047
0.0023

0.7389—0.3206
0.0189
0.0178
0.0065
0.0024
0.0009

0.4270—0.3508—0.0859—0.0160
0.0010
0.0025
0.0015

0.0000—0.379i
0.2716—0.1441—0.0488—0.0193

0.0000
0.0016—0.4403—0.1683—0.0778—0.0403

0.0000—0.2499—0.3593—0.1527—0.0850—0.0424

0.0000
0.0538—0.4712—0.2037—0.10/1—0.0623—0.0381

0.0000—0.1997—0.2087—0.1541—0.1002—0.0626—0.0390

—2.5610—0.5817
—0.0977

0.0334
0.0080
0.0021

+1.6317—0.4943
0.2197
0.0505
Q.Q141
0.0051

—0.1942—0.2857—0.0004
0.0243
0.0140
0.0058

+0.8292—0.4079
0.1707
0.0666
0.0239
0.0101
0.0047

—0.0879—0.1884—Q.Q175
+0.0185

0.0169
0.0097
0.0050

16.781
4.8984
0.8925
0.4537
0.1321
0 QAAA

0.1545
0.5497
0.6649
0.1315
0.0669
0.0344

1.0557
3.3613
0.9102
0.4960
0.2203
0.0899

—0.4261
0.8996
0.7111
0.2889
0.1276
0.0598
0.0300

0.0746
2.5955
0.8577
0.5008
0.2700
0.1326
0.0630

0.0000
2.0335
1.2522
0.1954
0.3643
0.3530

0.0000
0.9197
0.4610
0.5670
0.4368
0.3638

0.0000
1.3002—0.0685
0.2089
0.2922
0.3100

0.0000
1.0677
0.3541
0.4265
0.3835
0.3399
0.3014

0.0000
1.0886
0.1362
0.2081
0.2528
0.2738
0.2708

—10.317
3.1094
0.0208—0.2622—0.4066—0.3726

—0.5242
0,8650—0.0424—0.6064—0.4703—0.3877

—1.4925
1.3528
0.1476—0.1711—0.3251—0.3428

—1.5288
0.6438
0.0809—0.4079—0.4156—03713—0.3241

—1.3268
0.8208
0.0769—0.1336—0.2622—0.3039—0.2969

0.0000
0.3618

—6.8871
1.2761
0.4684
0.2533

0.0000
—0.3344

1.0982
0.4121
0.2765
0.1920

0.0000—0.5887
6.3689
1.0480
0.4746
0.2603

0.0000—1.1786
1.1423
0.4626
0.2769
0.1838
0.1296

0.0000—1.2793
3.0325
0.9202
0.4653
0.2669
0.1661

Q.QQOQ

0.8896
1.3483—0.2678—0.0083
0.0263

0.0000
1.4811—0.3949
0.1493
0.0776
0.0541

0.0000
0.3358—0.7887—0.2087—0.0405
0.0160

0.0000
1.2674—0.3691
0.0436
0.0588
0.0541
0.0456

0.0000
0.3090—0.3669—0.1676—0.0552
0.0024
0.0238

6.2190
2.2052—0.5346—0.4271—0.3854

—0.2747

—5.9143—0.1953-0.7879
—0.9043—0.4855—0.3122

0.7018
0.9143—0.0141—0.2931—0.3321—0.2724

—2.9887—0.1574—0.4009—0.6927—0.4610—0.3187—0.2296

0.3798
0.6843
0.0351—0.1901—0.2635—0.2474—0.2044
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TABLE IX (continued)

k'= 2.25
Singlet
L=O

1
2
3

5
6

Rl1

0.1199
0.0453
0.0474
0.0275
0.0186
0.0128
0.0090

1.4076
—0.4175
—0.0482—0.0092

0.0013
0.0028
0.0022

0.0000
0.3105—0.3461

—0.2124
—0.1456—0.1040—0.0762

Rg4

+0.7505—0.2410
0.0710
0.0564
0.0374
0.0236
0.0148

R22

—3.7442
1.0097
0.7669
0.4641
0.2788
0.1633
0.0943

0.0000
2.0162
0.1290
0.2186
0.2438
0.2498
0.2449

R24

—3.0550—0.0245
0.0955—0.1191—0.2232—0.2626—0.2669

0.0000—6.9787
1.2149
0.5535
0.3231
0.2057
0.1374

R34

0.0000
2.05'?3

—0.2899—0.0963—0.0212
0.0143
0.0295

—1.5274—0.1582
0.0648—0.1667—0.2295—0.2260—0.1989

k'= 2.25
Triplet
L=o

1
2
3
4
5
6

1.6284
0.4118
0.1264
0.0479
0.0232
0.0137
0.0091

0.5991
—0.1984—0.0950—0.0396—0.0135—0.0031

0.0003

0.0000—0.1577—0.1377
—0.1402
—0.1197
—0.0954
—0.0738

+0.1035
—0.0870
—0.0140

0.0133
0.0196
0.0172
0,0128

—2.4569
1.5766
0.8137
0.5109
0.3349
0.2144
0.1327

0.0000
1.4653
0.1184
0.1637
0.1856
0.2019
0,2105

—1.9941
0.2185
0.0445—0.0774—0.1564—0.2051—0.2273

0.0000—5.9655
1.6006
0.7476

0.0000
0.8500—0.2211—0.1245

0.4402 —0.0672
0.2784 —0.0254
0.1823 0.0016

—0.1209
0.4535
0.1977
0.0074—0.0938—0.1387—0.1485

k'=4.00
Triplet
L=D

1
2
3

5
6
7

k'= 4.00
Triplet
L=D

1
2
3

5
6
7

0.8383
0.1417
0.0478
0.0218
0.0137
0.0094
0.0070
0.0055

1.2202
0.3621
0.1397
0.0580
D.0275
0.0145
0.0088
0.0061

—1.1673—0.2220
—0.0960—0.0451
—0.0206—0.0087—0.0031
—0.0007

—0.9043—0.1469—0.0891
—0.0542
—0.0306—0.01.60—0.0077
—O.OD33

0.0000
—0.1507
—0.1735
-o.a547—0.1335—0.2236—0.0962
—0.0814

0.0000—0.0344
—0.0929
—o.ao64
—0.1064
—0.0991—0.0886
—0.0776

—0.5836
—0.0332

0.0237
0.0354
0.0352
0.0306
0.0251
0.0200

—0.4699—0.0546
—0.0071

0.0119
0.0198
0.0215

+0.0201
0.0173

5.5326
1.2489
0.7166
0.4963
0.3574
0.2574
0.1838
0.1296

7.2115
1.3364
0.7381
0.5084
0.3709
0.2735
0.2007
0.1455

0.0000—0.4376
0.0493
0.1051
0.1325
0.1498
0.1605
0.1661

0.0000—D.4214
0.0605
0.0991
0.1183
0.1326
0,1435
0.1509

+1.9726
0.2813
0.0541—0.0321—0.0907—0.1317—0.1582—0.1728

+2.4055
0.2262
0.0331—0.0334

—0.0791—0.1138—0.1390
—0.1553

0.0000
4.3772
1.0251
0.5716
0.3694
0.2515
0.1757
0.1246

0.0000
4.7021
1.1013
0.6340
0.4200
0.2912
0.2063
0.1477

0.0000—0.7055—0.1920—0.1120—0.0662—0.0341—0.0113
0.0041

0.0000—0.5486—0.1580—0.1051—0.0720—0.0455—0.0242—0.0079

2.4729
0.5643
0.2546
0.1057
0.0135—0.0434—0.0748—0.0892

1.'?000
0.5790
0.3011
0.1569
0.0631
0.0005—0.0391—0.0620


