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Nonadiabatic Theory of Electron-Hydrogen Scattering. II
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The triplet S-wave electron-atomic hydrogen elastic scattering phase shifts are recalculated by a pre-
viously introduced nonadiabatic theory. The previous calculation has been improved in a number of respects
the most important of which is the utilization of noniterative technique for numerically solving the partial
differential equations. (This technique is expected to be useful for a large class of linear second-order ellip-
tic partial differential equations. ) Phase shifts are computed to better than four significant figures. The
results are quite close to the variational results of Schwartz but on the whole somewhat larger. The devia-
tions are considered significant, and the various approaches are discussed. Specifically our triplet scattering
length {in Bohr radii) is a~ ——1.7683, with an extrapolated value at ——1.767.

I. INTRODUCTION

HE extension of the relative partial wave treat-
ment to the (electron-hydrogen) scattering prob-

lem was introduced' to allow for the calculation of phase
shifts of sufhcient accuracy for experimental purposes
and to allow for meaningful comparison by approximate
theories. The completion of the original program' has
apparently met the purposes for which it was intended. '

With regard to the original calculation it was clear
from the first4 that the devices that were introduced to
elicit information about the higher order corrections,
which, exactly, involved the solutions of two-dimen-
sional partial di6erential equations, limited the accuracy
to significantly less than that to which the method was
intrinsically capable. In addition a variational calcula-
tion' has appeared in which the estimated accuracy wa~
much higher than in reference 2.

The va.riational calculation utilized (in Kohn's varia-
tional principle) a Hylieraas-type wave function with an
increasingly large number (X) of parameters. The esti-
mate of the error was based on the device, first exploited
by Pekeris, ' of observing the results as a function of E.
However the variational calculations pertaining to
scattering are not compelling to the accuracy claimed
for at least two reasons. First the variational results at
nonzero energies show a kind of wild behaviour as a
function of the nonlinear parameter which has required
a very intuitive method of interpretation. ' (For k&0
one does not have the cushion of a guaranteed lower
bound on the phase shifts. ) 21ore important, however,
is the fact that a Hylleraas wave function does not
naturally describe the complete wave function corre-
sponding to a scattering problem. At zero energy, in
fact, it has conclusively been demonstrated that the

' A. Temkin, Phys. Rev. Letters 4, 566 (1960).This method is
called the "nonadiabatic theory. "

'A. Temkin, Phys. Rev. 126, 130 (1962). This paper will be
referred to as I. Equations referring to it will be prefixed by a I.' P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).' Cf. reference 2, footnote 17.' C. Schwartz, Phys. Rev. 124, 1468 (1961).' C. L. Pekeris, Phys. Rev. 112, 1649 (1958), and subsequent
papers.' C. Schwartz, Ann. Phys. (N. Y.) 15, 36 (1961).' A. Temkin, Phys. Rev. Letters 6, 354 (1961).

long-range adiabatic tail is essential for highly quanti-
tative purposes. Although the variational calculation in
its final stages did include such a term at zero energy, it
did not include it for nonzero energies; it is still very
much in question to what extent this term enters at
small but finite energies.

For these reasons it has seemed necessary to carry out
our intention of numerical integration for the higher
order correction. The calculation has been restricted to
the triplet case as discussed in the next section. In Sec.
III we discuss the method of numerically integrating the
partial differential equations. Finally in Sec. IV we
present results and discussion.

II. REVIEW OF THE NONADIABATIC THEORY

It will be recalled that the nonadiabatic theory starts
with a decomposition of the S-wave function

pe

%(r~rg~p) = g (2l+1)"%~(r~rp)P~(cose|p), (I2.3)

from which by substitution into the Schrodinger equa-
tion an infinite set of coupled two-dimensional partial
differential equations (I2.4) results. One de6nes a zeroth
order problem by neglecting the coupling terms of the
3=0 equation:

where
(

2
A a+E+—C'p&P& (r

harp)

=0,
r2

8'/Br p+ 8'/Br pp. —

(I3.3)

The zeroth-order wave function; Co&", is required to
have the asymptotic boundary condition corresponding
to a scattered wave:

lime p( ~ (r~rp) = sin(krq+5p)Rr (rp).
r1~00

(I3.4)

80 is the zeroth-order phase shift, and it can be inter-
preted as the phase shift of a rudimentary type of three-
body problem, to which it turns out, many previous
approximations were unknowingly addressed,
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The basic relation of the nonadiabatic-theory is given

by

ALE I. Zeroth order double precision results for
0.2 atomic unit (a.u.).

2
sin(h —bo) = ——P

k &-i (21+1)'
00 rl

2

dry dr2 C 0'O' 4 (, (I3.5)
t+1

Expansion

2
23
2, 3, 4
2, 3, 4, 5
2, 3, 4, 5, Ip

Determinant

0.154X10 '
0.315X10 6

0.541X10 '4

0.418X10
0.246X10 "

Diagonal sum

0.358X10
0.141X19
0.231X10
0.137X10 s

0.553X10 7

50

2.71098
2.679565
2.6794215
2.6794197
2.67962

~here 8 is the exact s-wave phase shift. The integration
domain is con6ned to the region r~& r2. The convergence
of the terms on the right-hand side was established by
noting that the significant contribution to each integral
comes from two regions. One is the adiabatic region,
ri&&r2 and r2 small. We shall have much to say about
this contribution in connection with the shortcomings of
the Hylleraas wave function variational approach, how-
ever for the purposes of the present nonadiabatic theory
these contributions can readily be accounted for, and
can be shown to go down rapidly as a function of /. The
other region which must be considered is for inter-
mediate values of rj and r~. This gives the essential
contribution to the deviation of 5 from 50. The con-
vergence of this contribution can be made plausible by
noting that each 4 & equation has a centrifugal barrier
term —/(1+1)(r& '+r2 ') which successively diminishes
the amplitude of C~ in that region. This argument is
analogous to the argument that the contributions of
successive partial waves go down for low impacting
energies in the complete description of the scattering
process. It should be emphasized, however, that there is
not a one-to-one correspondence in this analogy, for the
equations of partial waves are uncoupled, whereas the
relative partial wave equations are coupled. Thus,
whereas one can assert rigorously that only partial 8
waves contribute to the zero-energy cross section, it is
not true that only the 5 relative angular momentum
state contributes to the S-wave phase shift at zero
energy. What is here being asserted is that the contri-
butions from higher relative angular momentum states
diminish in a usefully convergent manner.

There is an additional circumstance, which was not
really emphasized in I, which renders the argument of
convergence particularly cogent in the triplet case. In
that case we have the boundary conditions

4((r~ ——r2)=0, l=0, 1, (I2.6)

(I4.3)

From inspection of (I3.5) one can see, by virtue of the
r2'/r~'+' factor, that the region r2(rr would tend to be-
come increasingly important for the higher relative
partial waves. However because of the boundary con-
dition, the contribution from this region must in fact be
small; therefore the main contribution to each integral
must come from r2 signi6cantly less than r~. But in that
region r2'/r &'"' certainly diminishes rapidly as a function
of I. Thus one has every reason for believing the con-

2, 3, Ip
2, 3, Ip, Ij.

0.621X10 " 0.823X10 ' 2.6794200
0.329X10 '~ 0.142X10 7 2.6794192

2, 4, Ip 0.123X10 " 0.773X10 2.6794191
2, 4, Io, Is, IIo, I20 0 638X10~' 0.742X10 2.6794191

vergence will be exceedingly rapid in the triplet case.
The same arguments should also render our perturba-
tion theory

= Q gf+&1+ (s
j=o

particularly e6ective.
These reasons plus the calculated values which are

presented below give a strong expectation that including
through quadratic terms, will yield more than four
place accuracy in the phase shifts. This accuracy is re-
quired in order meaningfully to be compared with
Schwartz's results.

The original calculation has been improved in two
main respects. Firstly we have generalized the zeroth
order technique of solution to double precision arith-
metic on the IBM 7090 computer of the Theoretical
Division of the Goddard Space Flight Center. In the
single precision program we were plagued with vanishing
determinants which used up very rapidly all the 8
signi6cant 6gures that the machine could store. In the
double precision program the 16 signi6cant 6gures were
sufEcient to yield zeroth-order phase shifts from better
than 4 to almost 8 signi6cant figures.

To illustrate the gain in accuracy of our zeroth-order
results by making the program double precision, we
present in Table I a typical set of results for 0=0.2. The
middle two columns refer to quantities labeled "det"
and Iy in I. The first of these gives an indication of the
number of significant figures lost in the evaluation of the
determinant det. For example in the row corresponding
to the expansion 2, 3, 4, 5, the main diagonal of
det, Q; &'(ME), ;, is approximately equal to 0.6&&10 ',
6guring an average of 0.5)(10 ' as the average value of
a diagonal matrix element. Comparing this with 0.42
&10 ",the actual value of the determinant, we see that
approximately 16 significant 6gures have been lost.
This is the maximum that the double precision arith-
metic aGords, and the conclusion is reinforced by re-
ferring to the next row, 2, 3, 4, 5, Jo. Here almost 25
signi6cant figures have been lost, and the corresponding
diagonal sum increases. If the elements of the calcula-
tion have sufficient (infinite) accuracy, it is clear that
the addition of a term to an expansion can only decrease
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the diagonal sum. Thus the 80 for that expansion is very
unreliable. In each of the groups of rows separated by
blank rows each subsequent row augments the previous
one by an additional term, and except for the above-
noted case the diminishing of diagonal sums occurs.
This should be compared with Table III of Temkin and
Hoover' in which a similar set of results based on a
single precision program was presented. There an in-

crease in the diagonal sum occurred in third rom. In the
present case, we could with some legitimacy claim
i)()

——2.6794194(3); however the value b(} 2 6——794. 2 is
quite adequate for our purposes.

The main advancement we have achieved in the way
of computing the complete S-wave phase shifts is the
numerical integration of the higher order equations.
These are elliptic equations, and it is well known that
the usual way of numerically solving an elliptic equation
is by some sort of relaxation or iteration technique. The
novel feature of the technique we have used is that it is
not iterative. Because it has worked where a relaxation
technique has utterly failed to converge, and because it
is applicable to a whole class of linear second-order
equations, we have given some detail in the next section
to the numerical solution.

III. SOLUTION OF THE PARTIAL DIFFERENTIAL
EQUATIONS

The higher order eftects in our expansion are given by
the formula

1 oo

sin(i) —52) = ——Q X" Q 2(22&2+1)-'&2
P v i m+p, =r

w& 2, p&0

f'I r2
C ()(2& 4 (4'&dr(dh'2. (I5.6)

0 rl

(For the purposes of the discussion in Sec. IV we
emphasize that this X expansion is a modification of the
ordinary l expansion in relative partial waves, which is
expected to hasten the convergence in the triplet case.
It also has additional advantages discussed in I.)

The partial differential equation for Cp&0~ has been
repeated in Sec. II. We repeat here the remaining
equations:

[1112 2(rl 2+r2—2)+2f2 1+++1(0&
=2(3)—'(2r2r 1-4()(2&, (I5.2)

[A,2+2r2—'+EjC,('&=2(3) "2r2r1 %1«&, (I5.3)

[A,2
—6(r(—2+r2 2)+2r2 '+E+2('&

=2(5)-'&'r22r;%()('&, (I5.4)

[512—2(r( '+r2 ')+2r2 '+E]41&'&——,r2'r( '41«&

= 2(3) "'r2r '41}o('&+4(15) '('r r '4 ('& (I5 5)

'A. Temkin and D. E. Hoover, in Methods in Cmnpltational
Physics, edited by 3. Alder, S. Fernbach, and M. Rotenberg
I Academic Press Inc. , New York (to be published) j, Vol. I.

In principle these equations are to be integrated over
the infinite region 0&r2&r~& ~. In practice, of course,
one can only integrate up to a finite point r&= R. If R is
suitably large, one can perform the integrals in (I5.6)
from R to ~ by replacing the functions by their adia-
batic forms:

4 p('&—sin(kr(+h())R&2(r2),

2 sin(4, +4,},'4' r, '+')
@ (o)— e"' +

(21+1))"r('+' 1+1 l

(I4.2)

/= 1, 2 (I5.10)

2 cos(kr(+(&()) r2
4&,( & — (144g ) e "' —+r22 .

V3 2
(I5.11)

The 80 being known, these equations with r I =R then
define the boundary conditions on the numerical solu-
tion in the region 0&r2&r~&R. It must be emphasized
that as long as R is finite there is an approximation
involved in these equations as boundary conditions. For
these forms require not only R —+ ~, but also that r2&&R.
However for numerical purposes one must know the
boundary conditions for all values of r2&R; the most
natural thing to do is simply to use the above equations
for all values of r2. If R is large enough, one can be sure
that the error thus incurred is very small, because in the
region r2&R both the above functions and the true
functions will be negligibly small.

The important question concerning R is how large is
large enough? The time required for numerical integra-
tion eGectively limited us to an R=10. It was our
original intention to use the numerically integrated 4 0( )

in the quadratures (I5.6) together with the remaining
numerically integrated functions. Our suspicion in this
regard was aroused when at k=0.4 we found that

R rIr—(C (} )2dr(dr2
0 rl

from the boundary values imposed on the numerical
solution via (I4.2). The results are given in Table II.

The important thing to notice is that the values along
the line r&

——10 coming from the analytic Cp(p) change
sign at r2=5 whereas those delned by (I4.2), being
proportional to R~,= 2r2e "&, do not. %'e concluded that
this change of sign which was not taken care of in the

was half the value that we got using the analytic ex-
pansion of Cp() that we had as a by-product of the
calculation of bp. We were therefore led to examine the
deviation of our original Cp"),

4 ()('& = sin(kr (+i)())R(,(r2)



XONAD IABATI C THEORY OF ELF CTROX —H SCATTF RI XG 1253

TABLE Il. Comparison of boundary values at rI= 10 ao (4=0.4 a.u.}.

ro (ao) 1 2 3 4 5 6 7 8 9 10

4'o&o& (10,ro) —0.01913 —0.01363 —0.00685 -0.00259 -0.00042 0.000486 0.000722 0.000612 0.000334 -0.000003

sin (10k+ho) Ri. (ro) —0.01853 —0.01363 —0.00752 -0.00369 —0.00170 —0.000749 —0.000321 —0.000135 —0.0000056 0'

a The expression on the left is not 0 at this point; however, for the purposes of numerical integration this point, being at ra =ri, was automatically taken
as zero by our program.

rl r2
(C o&o&)'—dr~dr, . (I5.14)

In the original calculation we used this relation to find
the nonadiabatic sects of Cl(0). In the present case,
(I5.14) together with its counterpart for Co& ', plus
additional sum rules that one can derive, serve as a
check of the numerical integration. Now in the above
noted case it was observed that the Cl(0) found from
(I5.2) using the incorrect C o&@ gave approximate
equality in the sum rule. At work here was undoubtedly
the phenomenon that the (incorrect) 4o&'& is an im-
portant enough inhomo0;eneous term in the diBerential
equation to influence C 1( ) to be incorrect in just such a
way as to give equality in (I5.14). This experience pre-
vented any complacency on our part that the satisfac-
tion of sum rules of the numerical function was a
foolproof guarantee that the functions were correct.

The k=0.4 case is extreme in the sense that at no
other energy have we observed the analytic Co(') to
change sign in such a prominent place along the bound-
ary. (The change apparently stems from the fact that
4»'o& has a node very close to r&——10 at this energy. ) Ac-
cordingly the diGerences between the integrals on the
right-hand side of (I5.14) using the numerical versus the
analytic Co(0) at other energies diGered only in the
second significant figure. However since we require
practicaHy three significant figures in the integral

r2
C 0(0)~l&')drldr2

rl

00 r1

10

r2
C o —4~'"dr~dro, (I5.7)

we could not use the numerically integrated Co&0).

%e therefore decided to use the Co(0' gotten from the
best expansion (I4.4) we had, and numerically integrate
for the remaining functions. Our unfortunate experi-
ence with the dipole sum rule gave us some confidence
that having a reliable Co(' would make up for any

boundary condition (I4.2) was responsible for the in-
accuracy of the numerically integrated Co&0).

The double integral in which we observed the dis-
crepancy is, of course, part of the dipole "sum rule"

o0 rl — ( 1 1
4'oN' —2l —+— C,,&o&dr,dr,

0 — kr1 r22 2

+ +g(&a)o =f(~,x),
Bx Bp

(3.1)

then the equation can be written as a matrix equation

Ap= k. (3.2)

In the above A is an cV2)&$2 matrix operating on the
solution P at the AT2 interior points. k is a column vector
depending on the inhomogeneous term and the boundary
values (assumed known). E2 being of the order of the
square of the number of mesh points (X) along one
boundary, a direct inversion of (3.2) is considered
unattainable. It is for this reason that an iterative
technique is usually employed.

In our own case it was found that various iterative
techniques would not converge. %'e therefore utilized a
direct inversion technique. The point is that although A
is of gigantic dimension, it is of a special form and most
of its elements are zero.

' Because of limitations of size and content the detailed de-
scription of this technique is not being included here. Nevertheless
we feel that this method is of great importance to physicists as well
as others faced with the problem of solving elliptic partial differ-
ential equation. The interested reader is referred to our NASA
Technical Note D-j.702 (unpublished).

deficiencies in the boundary conditions for the other
functions. The sum rules, of course, still are a necessary
condition to be satisfied; however, in view of the nu-
merical integrals having to be cut oft at R, they did not
aGord a critical test of the accuracy. %e found that we
did have to go a mesh size k=0.1 to get reasonable re-
sults. The most natural tests of accuracy, further
halving the mesh size, integrating out to double the
value of R, etc. , were precluded by machine storage and
particularly time considerations. As it was, it took
ninety minutes to integrate a differential equation on
the IBM 7090, so that at nine energies and five equa-
tions per energy, we had already used a vast amount of
time. As we have said, we feel quite confident that we
have attained a requisite accuracy, but our present
inability to carry out further checks provides the most
serious weakness in the present calculation. %e hope to
carry through some of these checks as bigger and faster
computers become available.

%'e shall only include a few remarks concerning the
numerical solution of the partial differential equations. '
It is well known that if one uses a linear finite difference
formula to represent the partial derivatives in a linear
elliptic partial difI'erential equation:



A. TEM K I N AX D E. SULI IVAN

TABLE III. Rbsumb of higher order results.

k
(a.u.)

0a
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0—10

—0.20256
0.01895
0.03136
0.03530
0.03373
0.03129
0.02939
0.02766
0.02605

hap
10—~

—0.3526
0.01049
0.00510
0.00166
0.00159
0.00188
0.00131
0.00085
0.00096

0—10

—0.012304
0.001168
0.002016
0.002418
0.0024685
0.002384
0.002263
0.002145
0.002047

pe (2)

10—~
—0.00322

0.000199
0.000119
0.000029
0.000026
0.000041
0.000028
0.000015
0.000019

0—10

—0.001032
0.000369—0.000325

—0.00132—0.00228—0.00140—0.00141
—0.00132
—0.00130

pe 0(1)
10—~

—0.00822
0.000129

—0.000052
—0.000021
+0.000019

0.0000049—0.00000875—0.0000003
—0.0000045

h k =0 entries are negative.For the purposes of the scatt '
gerin length, t e

r in our own equations the matnx can
'h 1 ent hi h

d' l l etthemselves matrices. T d' m. The dia ona eem
matrix manipulation, anmatrices. Usmg some mat p

the roblem to the sequenti 1 in-gt p
of the same dimension ann

"Th h d'e dia onal "elements. ' us e
1 h fof (3.2) in our case mvo ves

9 99 to1X1i Thi o ldmatrices varying from 99X9 t
be readily handled on our computing mac ine.

IV. RESULTS AND DISCUSSION

e have tabulated our results for the
ul fo hboh bder corrections. The form a or

Th e i t ointe-given in the previous sect~on. e rem
grals are

ortant eGect for high powers oo Xduetocreasingly importan e
h h enter. (It is alsothe increasing num erer of terms w ic en

Rect. ) The finali ht have the opposite e ect.
hb in each row is then t

we believe it is meaning u .the accuracy that we e
'

take this too ation of the convergence, we a eh16of5unitsint e as gma u e ai yo
for the p ase s ih h shifts. (The scattering eng w'

d h t this P ) series is notIt must be reemp hasize t a is
tl in powers1 to the more traditional series stnc y

'

be thought of as derived by trun-g
cat.ing the original set of Eqs. Lcf. I q.
I,=I.; i.e.,

2 2
&u—&(&+1)(r| '+r2 ')+—+—~~~ C'~

gg ()
k+5

R r1 r2
@ (0)~ (0)dr dr0 2

0 0 rl
m 0

M, C„, 3=0, 1, , I.. (4.1)

gg (I)—
AVE

00

r2'
@0 )~i( drydr2

r2'
C,(»—e,«)dr, dr, ,

rl
(15.8) ssumin that one could solve each o pf these roblems

which would approach the exact phase s t:
lim 5(L,) =5.
~oo

8 0

Beyond that, Schwartz" has re-
2

is of course our
3

' '
cently used his variatsonal tec 'qy

' '
echni ue to solve for 5(&).r],

e si ni6cance of the breakup of the integrals at R= 10

be overstressed that for small a signi ca
gthe re ion R(r~& oo.

n Table IV we have collecte resu s oIn a e
multi 1 ing successive powersconvergence of the terms mu ip y g

biatic series Lcf. I equation
er ence a pears to be even more rapi a

f ) In second order this
~ ~

niversit of Michigan Engineering.Ho sho e, inT Unw 'y

published)

k
{a.u.)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

hp

2.3482
2.907728
2.67942
2.46158
2.25800
2.07102
1.90189
1.75070
1.61666

—0.55516
0.02944
0.03646
0.03695
0.03532
0.03317
0.03070
0.02853
0.02701

X2

kg (1)+kg (2)

—0.02477
0.001865
0.001758
0.00111
0.000235
0.00104
0.000872
0.00084
0.00076

1.7683
2.9390
2.7176
2.4996
2.2936
2.1052
1.9335
1.7801
1 QAAA

'2 C. Schwartz, Phys. Rev. 12, 1015 (1962).

TABLE IV. The convergence of the nonnonadiabatic series.
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T~LE V. Comparison of Schwartz's and nonadiabatic results.

Non-
adia-

k Schwartz batic
~a.n.~ ~a ~~o+~~a.&»

Schwartz

Z s&'&a

Non-
adia-
batic
gsgo&e)

Schwartz
b

Non-
adia-
batic

0
Q.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.5670

0.0362

0.0340

0.0302

0.0250

0,5644
Q.Q2986
0.03608
0.03561
0.033Q6
0.03178
0.03038
0.02721
0.02571

0.0126

0.0015

0.0018

0.0008

0.0017

0.01552
0.001367
0.002135
Q.002447
0.002495
0.002425
0.002291
0.002160
0.002066

1.7686
2.9388
2.7171
2.4996
2.2938
2.1046
1.9329
1.7797
1.643

1.7683
2.9390
2.7176
2.4996
2.2936
2.1052
1.9335
1,7801
1.6444

There is, however, a somewhat more fundamental,
albeit more idealized, sequence b~L~ which can be de6ned.
Assume one had the exact wave function 4'(r&, r2,8&2).

Then one could obtain the exact 4 &(r&r&) by suitably
projecting P&(cos8&2) on O'. One could then obtain a
sequence of b(L~ from the basic relation

For these reasons it can hardly be expected that there
would be equality between the corresponding entries in
Table V. Nevertheless the rather wide deviation of the
individual entries bespeaks of the possibility that the
agreement to almost 5 significant 6gures in the final

phase shifts may be somewhat coincidental. For the
purposes of later discussion it should be noted that our
quadrupole contribution is larger than all the remaining
multipoles in Schwartz's calculation. (Thus his results

suggest a more rapid rate of convergence of the l ex-

pansion than our own!)
Schwartz has also commented" on the relative angular

momentum expansion in these types of problems. (The
part of his scattering calculation which concerns the
triplet phase shift has been given in Table V.) The bulk
of his calculation is concerned with the second order
energy (for the singlet spin state):

L 2
sin(8 —8o) = ——g

&(pJ-+ I)"&2

02r n
E2—— + dn (4.2)

r2'
40&'& C,dr, dr2. (I3.5)

r 1+1

Clearly the second of these sequences of 8&L) cannot be
worse than the first (although the first obviously comes
from a vs, riational principle).

In Table V we have collated the results of Schwartz's
and our calculations which bear on the latter sequence
of 8(L). The column marked hb is the difference Bt1)—bo

in Schwartz's calculation. "The approximation here is
the neglect of the back coupling of the higher 4 ~ which
distinguishes between the 6rst and the second. sequences
of 8&z~. The analog of 68 in our case is 6'80+5'ho&". Here
the back coupling is consistently taken into account, but
we have only included two terms of a (presumably
rapidly convergent) infinite series. In the column
marked lV80(@ we have presented only the 6rst term of
the relevant in6nite series. The corresponding column
of Schwartz has been obtained by subtracting his 6nal
phase shifts from 8~1~. If his ansatz for the wave function
were exact, one could conclude that this was the con-
tribution of all remaining multipoles,

Q g&o8

However the ansatz far the complete wave function
contains (presumably) about the same number of
parameters as that used in obtaining b(1) ~ Therefore it is
by no means clear that projecting out 4» from his 0 wiH
give the same accuracy as his explicitly calculated B(1).

"Some time ago we requested Dr. Schwartz to utilize his
Hylleraas variational approach to calculate 80 by omitting all
terms depending on rI2. Dr. Schwartz kindly carried out these
calculations which served as a check on our original zeroth-order
results (reference 2). The calculations were subsequently expanded
to comprise the contents of Tables II and III of reference 22.

Using the well-known expansion of 2/r&2 in Legendre
polynomials,

2 oo r(
P&(cos8&2),

r12 l~ r) +

he can put (4.2) into the form

E~= Q E2(t),
l~

(4.3)

E,(t)= (45/256) (—I/l') (4 4)

This then, defines, the convergence of this speci6c
problem, rather than any inaccurate calculations for

"C. Schwartz, Methods in Competatiolal Physics edited by
B. Alder, S. Fernbach, and M. Rotenberg )Academic Press Inc. ,
New York (to be published) j.

where the E2(l) can be well defined. "With each E2(l)
there is associated a wave function 4&(l) which, aside
from the angular dependence Pq(cos8&2), is a function of
the two radial variable r1 and r2. Reduced to its bare
essentials, Schwartz's argument runs as follows: if one
treats each l problem variationally with the usual type
of smooth polynomial trial functions, then the l=0 and
l=1 problems can be well approximated whereas the
higher l problems become increasingly dificult. The
reasons for the increasing difhculty of approximation by
conventional means is due to the fact that the functions
4', (I) have discontinuities in their second derivates
coming ultimately from diferent analytic forms of
r&'/r~'+' in the regions r&)rs and r&(r2 The dis-.
continuities correspond to the%'&(l) becoming more and
more sharply peaked about the line r1——r2. On the basis
that the bump itself provides the dominant contribution
to the energy, Schwartz has derived the asymptotic
formula for large l
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E2(l) for /) 1, which in general will tend to give the idea
of a much more rapid convergence. "

Formula (4.4) applies to the speciffc problem of the
second-order energy in the singlet (space-symmetric)
state, however it is not unreasonable to assume l "
characterizes the complete energy (or other physical
property) in the l expansion. Whether l " constitutes a
rapidly convergent series depends on the type of
problem with which one is dealing. In bound state
problems where much greater experimental accuracy is
in general available, one must be quite demanding in
this regard. Even here, however, the convergence of
(4.4) is not in principle uncompetitive with traditional
techniques. Thus if one associates the inclusion of an
additional / component with the inclusion of an addi-
tional parameter in conventional expansions, in which
the use of 100 and' even 1000 parameters" has now been
accomplished, one would get a competitive 8 to 12
signi6cant 6gure accuracy. The fact that one cannot use
a (presently) conventional approach in accomplishing
this, is not an a priori objection to the rate of con-
vergence of the I expansion.

In his discussion of the extension of the relative
partial wave treatment to the scattering problem, we
6nd that Schwartz has insufficiently stressed the differ-
ent physics involved. First it is clear that because of the
disparity in experimental accuracy one does not need
anything like the accuracy of a bound state problem to
correlate theory with experiment.

In order further to discuss the scattering case, it is
necessary to clear up some points. In scattering calcu-
lations rp2 times the wave function has a nonvanishing
component:

llmrlfg% =2 Sin(krl+5)Ry (t2)
r I~oo

which must be included in order to make any kind of
analysis. In discussing the aspects of r&re below, we
shall always disregard this nonvanishing component.

The main difference between the bound state wave
function (with any kind of forces) and scattering wave

I~ Reference 12 must be read very carefully here; otherwise it
may give the erroneous impression that

Z E2(l)—(2/3) 5 E2(l)
lM lM

which, if it were true, would be a more serious criticism of the
convergence. %'hat, in fact, is being asserted is that Schwartz's
conventional calculation of

&E (l)

must be in error in such a way as to give a spurious rate of con-
vergence. Nevertheless one can be quite sure that the correct

Z E2(l) & {0.99) Z Eg(l}.
lM lW

'e C. L. Pekeris, Phys. Rev. 115, 1215 (1959).

functions (involving Coulomb forces) is that the bound
state wave function vanishes exponentially in all asymp-
totic regions of configuration space whereas the scat-
tering wave function does not. It has been one of the
primary points of the nonadiabatic theory in the de-
composition of r&r2%' in terms of P~(cos8&2), (I2.3), that
the associated C & can be shown to have slowly vanishing
adiabatic forms

limit
r'I~00

2 s'n(k, +8) r, '+' r, '+')e"' +
(2l+1)'" rg'+' l+1

where a(R) comes from a wave function which is more
sharply cut off and hence more characteristic of a
problem in a 6nite "sphere" of radius E. This predic-
tion' was tacitly con6rmed by the calculation of
Schwartz' in which, when the variational counterpart of
4& was included, his scattering length was reduced by
over 5%. Thus, whereas the nonadiabatic theory in-
corporates both short-range correlations (via the con-
vergent expansion in /) and long range effects naturally,
the Hylleraas type wave function by itself cannot
practically deal with the latter. LTables II and III of
Schwartz's paper~ include 4 ~ in the calculations of the
k=0 entries for X(s+p) as well as X (complete). ]

That a Hylleraas-type wave function does not natu-
rally describe the long-range correlations can be further
brought home by reference to the paper of Ohmura and
Ohmura. " In their deduction of the singlet scattering
length, these authors required the coefficient C(~) in
the adiabatic form

e &" Rg, (r2)
lime=C(~)

r2
(4.4)

of the H wave function. Here y is the square root of the
electron amenity and being small it makes the term
simulate the nonvanishing term in a scattering calcula-
tion. This form is not the analytic form of the Pekeris or
Hylleraas wave functions both of which have the
exponential dependence

expL —
2 I

~l"'(r~+r2) j,
where E is the total energy of the H ion. In order to
evaluate C(~), Ohmura and Ohmura used the 161 and
203 parameter Pekeris wave functions. ' They concluded
that, whereas the wave function reproduces the adia-
batic form (4.4) quite accurately in the region r& 10——

"A. Temkin, private communication to C. Schwartz.' T. Ohmura and H. Ohmura, Phys. Rev. 118, 154 (1960).

It has further been derived as one of the main results of
this theory that the scattering length due to the dipole
term will be diminished by an amount

9 1 a+co
a=a(R) —— + ),2 R 2R'
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00 T1 r2'
c,o(0)~2drgdr 2

rl'

-15 "sin(kr+80) sin(kr+b)dr

r6 —~0

12 (rp=0), deviations in the variational approxima-
tions for r~& 12 were quite noticeable.

We shall now show that the inability of Schwartz's
zero-energy wave function to describe the adiabatic
part of the quadrupole term can explain the diRerence
between his triplet scattering length 1.7686 (in units of
Bohr radii), and our own, 1.7683. To repeat, at zero
energy Schwartz's%' is made to contain 4»'~" & but not
4»&~"b~. Using the same type analysis that we made on
the dipole eRect, we can write the long-range contribu-
tion of the quadrupole term as

tering length is outside of Schwartz's limit of error. ' We
are inclined to think that the unaccounted for higher
multipole may subtract an additional unit in the fourth
signiicant 6gure (cf. the k=0 row of Table IV). We
would extrapolate the triplet scattering length to be (in
units of Bohr radii)

a)——1.767.

A question remains at nonzero energies as to the eRect
of the slowly vanishing multipoles. The answer obvi-
ously depends on the accuracy in question. Schwartz
finds' that the eRects are washed out" to his accuracy
whereas our own calculation suggests that particularly
the dipole contribution is not negligible. It may very
well be that our inclusion of these effects as opposed to
Schwartz's inclusion of the higher multipoles balance
each other out, and that both calculations give lower
bounds for the phase shifts.

1 1 (u+ao)—15 + 0 ~ ~

3E' 4 R4

If we associate Schwartz's value with a(R), a very
reasonable choice of R (R—25) will reproduce our own
value for u. Although from the experimental point of
view the diRerence between the two numbers is com-
pletely negligible, it is worth noting that the new scat-
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