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The general theory of perturbed angular correlations has been applied to the special case of a static
combined magnetic dipole and electric quadrupole interaction of comparable strength. Particular emphasis
is given to the important case of an external magnetic field applied to a source with randomly oriented
electrostatic gradients (polycrystalline source}. Expressions for the differential and integral attenuation
factors are derived as a function of the ratio y=co~/cog of the magnetic {au~) and the electric interaction
frequencies {co+), and for several values of the electric interaction parameter x=cojt and x=cagv, respec-
tively. Numerical values for the attenuation factors are computed for the spins 1, 3/2, 2, and 5/2 for 30
values of y and 24 values of the parameter x. The results are displayed in form of representative curves.
As an example of the application of the general results, angular correlation functions are calculated for the
two cases of a magnetic field perpendicular to the detector plane and parallel to the emission direction of one
of the observed nuclear radiations.
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radiations involving an intermediate nuclear
state of lifetime z may be influenced by extranuclear
fields. The theory of angular correlations perturbed by
an interaction of the nuclear moments with such fieMs
has been treated by several authors. ' ' The results of
the theoretical and experimental investigations ob-
tained so far are described in some review articles4 '
which present a good survey of the present situation
concerning perturbed angular correlations.

The theory of the influence of an external magnetic
field on angular correlations has been treated by
Alder. ' The perturbation of a correlation by virtue of a
static electric quadrupole interaction has been calcu-
lated by Alder et al.' for a polycrystalline source and for
single crystals with diGerent orientations relative to the
plane of the detectors. In this paper, the authors also
treated the special case of a combined magnetic and
electric field directed parallel to each other. Abragarn

~Work partially supported by the U. S. Atomic Energy
Commission.

t This work has been reported at the Annual Meeting of the
American Physical Society in New York, 1962, Bull. Am. Phys.
Soc. 7, 19 (1962}.' K. Alder, Helv. Phys. Acta 25, 235 {1952).

s K. Alder, H. Albers-Schonberg, E. Heer, and T. B. Novey,
Helv. Phys. Acta 26, 761 (1953).' A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953).' R. M. Steffen, Suppl. Phil. Mag. 4, 293 (1955).' H. Frauenfelder, in Beta- and Gamma-Ray Spectroscopy, edited
by K. Siegbahn (North-Holland Publishing Company, Amster-
dam, 1955), Chap. 19.' K. Heer and T. B. Novey, in Solid State Physics, edited by
F. Seitz and D. Turnbull {Academic Press Inc. , New York, 1959),
Vol. 9.' S. Devons and L. J. B. Goldfarb, in Fncyclopedia of Physics,
edited by S. F10gge {Springer-Verlag, Berlin, 1957), Vol. 42.

and Pound' have given a more general reformulation
of the perturbation problem in angular correlations and
presented a more detailed discussion of the electric
quadrupole interaction in liquids and in polycrystalline
sources. These authors also estimated the influence of
an applied magnetic field in the presence of an internal
static electric quadrupole interaction in a polycrystal-
line source for the two limiting cases AH)&cog a,nd
~~&&co~, where coyl and cog are the magnetic and electric
interaction frequencies, respectively. The general case
of a static combined electric and magnetic interaction
of comparable strength, however, has not been treated
as yet.

The magnetic dipole interaction has been used in
many experiments for the determination of a large
number of magnetic moments of excited nuclear states.
With the application of refined measuring techniques,
this method has become very powerful. In all those
cases where the mean life of the excited state is sufII-
ciently long to influence the angular correlation by an
external magnetic field, also a perturbation due to the
electric quadrupole interaction must be expected. In
most cases, the presence of the quadrupole interaction
interferes with the determination of magnetic moments
and the quantitative knowledge of the quadrupole
interaction is required to obtain accurate va, lues of the
magnetic moments. In general, this involves a separate
measurement of the electric quadrupole interaction to
apply the necessary corrections. Quantitative investiga-
tions of the electric quadrupol. e moment have been
done in a few cases only. This is mainly due to the fact
that only the product Q8'V/Bs' of the nuclear quadru-
pole moment Q and of the gradient 82V/Bs2 can be

E. Bodenstedt, Fortschr. Physik (to be published).
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FrG. 1. Cascade of two
nuclear radiations.

determined. The field gradient O'V/Bs' is very difficult
to compute and, in general, a precise determination of

Q is almost impossible. On the other hand, there exists
for some nuclei the possibility to eliminate the computa-
tion of the field gradient by measuring the ratio of the
quadrupole moments of two diGerent levels, assuming
the gradient to be the same in both cases.

The eGect of the quadrupole interaction can be kept
small in many cases by the use of liquid sources, where
the random motion of the field-producing ions causes
a "smearing out" of the electric field gradients at the
nucleus. The disadvantage of liquid sources, however,
are their relatively small specific activities and the need
for sometimes complicated chemical procedures. Higher
specific activities ean be obtained with powder sources.
This may be of importance in measurements of mag-
netic moments of excited states, since smaller sized
sources would allow to employ smaller pole gaps of the
electromagnets which are used to produce the magnetic
field at the nucleus to be investigated. Smaller pole gaps
facilitate the production of higher magnetic fields. The
use of solid polycrystalline sources is also anticipated
in connection with small superconducting magnets.

Polycrystalline sources were rarely used for magnetic
moment measurements for the simple reason that no
theoretical calculations were available which would
permit an interpretation of the experimental results.
It is the purpose of this paper to present the theory and
numerical results for the general ease of a static com-
bined magnetic dipole and electric quadrupole inter-
action of comparable strength and with randomly
oriented axes of the electrostatic field gradients. ' The
results suggest a simultaneous measurement of the
magnetic and the electric interaction frequencies by
using polycrystalline sources in an external magnetic
field. The theory includes the case of an electrostatic
gradient axis at an arbitrary constant angle P with
respect to an applied magnetic field (single crystal
source). In view of space limitations, however, the very
extensive numerical results for this single-crystal case
are not included.

The results for the "polycrystalline" case are pre-
sented in such a way that there is no restriction con-
cerning the direction of the magnetic field with respect
to the detector plane. By chosing the angles 8 and y in
the spherical. harmonics corresponding to the geo-

9 The authors vvere informed that the same problem is under
investigation by H. Paul and Vf. Brunner, Ann. Physik 9, 316 and
323 (19').

metrical arrangement the perturbed angular correlation
can be calculated for an arbitrary direction of the
magnetic field with respect to the detector plane. As an
example, the correlation functions are calculated for the
two most important cases, (1) a magnetic field per-
pendicular to the detector plane, and (2) a magnetic
field parallel to the emission direction of a detected
radiation.

Numerical results for the attenuation factors are
given in form of curves for the nuclear spin values
&=1, 3/2, 2, and 5/2 as a function of the interaction
ratio y=~~/~s and for various values of the electric
interaction strength. Detailed tables with the nu-
merical values will be made available in an AEC re-
port. ' Calculations of the attenuation factors for higher
spin values are in progress.

II. THEORY

1. General

In the following, a cascade of nuclear radiations R~
and R2 is considered, involving the states A, B, C as
the initial, intermediate, and final state with the spin
and magnetic quantum numbers I&R, IM, and I25,
respectively (Fig. 1). The states A and C are assumed
to be isotropic. The emission of the cascade radiations
R& and R2 is described by the Hamiltonians H& and H2,
respectively. If no external interactions are present
during the lifetime 7 of the intermediate state 8, the
unperturbed angular correlation can be represented in
the form

Il'(&i, &~)= P (As I &il B~)(B~I&2
I Cs)

ZS~m'

X(AsIHiIB~)'(B~
I
KICs)*. (1)

The state vectors IB~) form a complete and ortho-
normal set in the intermediate state B. If the states
IB~(0)) change by virtue of an interaction of the
nuclear moments y, and Q with extranuclear fields
during the time t (t=0 is defined by the emission time
ofR,) to IB (t)),

IB (t=o)) '- IB (t)),

then the perturbed angular correlation of R~ and R2
(emitted after the time t) is given by

~(&i,&2) = 2 (As IHil B~(0))(B~(t)
I &el Cs)

RSMM'

X(AslHilB~ (0))(B~ (t) IH2ICs)* (2)

In the case of static interactions, the evolution of the
time-dependent state vectors IB~(t)) ca.n be repre-

"R. M. Steffen, E. Matthias, and %. Schneider Atomic
Energy Commission, Division of Technical Information Reports
No. 17089, Part 1 (I=1 and 2) and No. 17089, Part 2 (I=3/2
and 5/2) (unpublished).
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l
aM(t)) =2 A..„(t)

I
aM-(0)). (3)

sented as a linear combination of the state vectors F coeScients
lBM (0)) at time t=0 A), =F)„(L)L)I)I),

A ), F)——, (L2LRI2I),
M"

As long as classical GeMs are considered, the indices
M and M" in (3) are the projection quantum numbers
of the nuclear spin I along a certain Gxed axis 02'. The
time dependence is described by the coeKcients AMM (t)
which are the matrix elements of the evolution operator

A (t) =exp) —(i/i't ) Ht], (4)

A,g= (B, l Al8), ) (6)

The matrix elements AM M." and AMM"* can now be
expressed in terms of the eigenvectors and the eigen-
values of the interaction Hamiltonian H: The unitary
matrix, which diagonalizes H, is denoted by 6,

UHU-I=E

where F. stands for the (diagonal) energy matrix. It
can be shown by expansion of the e function that

fl' expL —(i/ft) Ht] L(-' = expi —(i/))t) Et].

where H is the interaction Hamiltonian of the static
perturbatiou Co.mbining (2) and (3) one gets for the
angular correlation

W(&»&2)= g (AElII&l&M)AMM" (&M"lII2lCE)
RSMM"
M'M'"

X (A El II(l I3M') M'M'"( M"'
l 2l CE) (5)

with

III', p
"~»——Q (Ik(M'u(

l
IM) (Ik,M"'u,

l
IM")

MM"

XAMM-*AM M -. (12)

In view of the properties of the Clebsch-Gordan co-
eiIicients, the indices M' and M"' are related to M and
M", respectively, by M=M'+p, & and M"=M"'+p, 2,
i.e., the summation over M' and M'" can be omitted.

If there is no perturbation present in the intermediate
state, the evolution matrix reduces to the unit matrix
A(0) = 1, a,nd consequently, M =M" and M' =M'"
which gives p, &=F2=@. By virtue of the properties of
the Clebsch-Gordan coefFicients, one obtains k~ ——k2 ——k
and the factor IIII„I,"'» takes the form

III~ ~ »= [(2I+1)/(2k(+1)]b(,(, (13)

Introducing this result into Eq. (11) and using the
addition theorem of spherical harmonics, one gets the
expression for an unperturbed angular correlation

which are tabulated by Ferentz and Rosenzweig. " If
one or both of the radiations are mixtures of difI'erent

multipoles L, and L„', one has to substitute for AI„

A k„——
l 1/(1+ 8„'-)](F),„(L„L„I„I)

+2b.F),„(L.L,'I,l)+8,'F),„(L„'L„'l„I)) .

The influence of a perturbing interaction between the
nuclear moments and extranuclear Gelds is described
by the factor

It follows from Eq. (4) that

A = Il=' expL —(i/h) Et]I'.

The matrix elements of A are given by

n'

E(i/))) E»(u „4
n

W(Q»Q2) = W(8)
A, (R,)A), (R2)F),Leos(Q»Q, )]. (14)

A, even

For a nonvanishing perturbation, the general expression
for the attenuation factor IIII„I„»» is obtained by

(10) combining Eqs. (10) and (12)

III)„),"'»(Pyt)

The u;I, and the E„are elements of the unitary matrix
U and the diagonal matrix E, respectively.

By application of the methods of Racah algebra. ,
'

Eq. (5) can be written in the following way:

W(Q), Q,)= Q A)„A(,

XIII„„»»Y'„~(a,)I"„»'(a,), (11)

where the average over the two polarization directions
of the y quanta has been taken. The factors AJ„and
AI„describe the radiations 8& and E2, respectively, and
are deGned by Alder. ' For pure y-multipole radiation
with multipolarity L& and L2, they are given by the

= 2 (»)M'»IIM)(»2M"'u2IIM")
nn'

Xu.M(Py)u. M *(Py)u;"M -(Py)

Xu„,M, +(Py)E((l)))(En—En~)( (15)

This formula is identical with Eq. (14) of Abragam and
Pound' and is valid for all types of static perturbations.
In order to investigate the influence of a particular
perturbing interaction on the angular correlation, it is
necessary to calculate the eigenvalues E„and the
eigenvectors u;k of the interaction Hamiltonian.

"M. Ferentz and N. Rosenzweig, Atomic Energy Commission
Report AIL—5324, 1955 (unpublished).
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2. Simultaneous Static Electric Quadrupole
and Magnetic Dipole Interaction

The electric Geld gradients are assumed to be of
static nature and. randomly oriented in space, while
the magnetic Geld is considered to point in a Gxed
direction. Experimentally, this case can be realized by
using a polycrystalline source placed in an external
magnetic Geld for the angular correlation measurements.

The direction of the magnetic Geld is chosen parallel
to the s axis of a fixed coordinate system S, i.e., the
magnetic part of the interaction Hamiltonian is diagonal
in S. Furthermore, let us deGne a coordinate system S'
fixed to the microcrystals, which can be transformed to
S by the rotation group D(O,P,y) (cf. Fig. 2. The angles
in this figure should be labeled 2~—P and 2s —y.).
Assuming axial symmetry of the electrostatic field
gradients with respect to the s' axis of the S' systems,
the components of the Geld gradient in one microcrystal
are completely determined by O'V'/8 "s. In addition, it
is assumed. that the total interaction Hamiltonian can
be represented in the form

action ratio y is defined as"

y=~e/~R,

where a&ir is the magnetic interaction frequency (Larmor
frequency)

~ir =p&0/&I. (20)

As was discussed elsewhere, " the assumption of axial
symmetry leads to the conclusion that the eigenvalues
of H(p, p) are independent of y. By virtue of the fact
that the angle y occurs in the matrix elements only in
the form e'&' ' ', H(P, y) and H(P, O) are connected
through a unitary transformation S(y),

~(y) H(P, y)~ '(v) = H(P,0),
where

0

(21)

0

H = Hmagn+ Heiy (16) The unitary matrix U(P, y) which diagonaiizes H(P, y)
is then given by

i.e., the following calculations are only valid for those
cases where the presence of the magnetic Geld does not
alter the electric Geld gradient.

As shown in detail in a previous paper, " the matrix
elements of the total interaction Hamiltonian for this
problem are given by

yW, +( /;)u2( 1)r

It follows that

~'(P,v) = U(P,0)~(v) (22)

& (P,y)H(P, T)f '(P,v)=f (P,0)H(P,0)U '(P0),
which shows that the eigenvalues E(P) of H(P, y) are
independent of y. Furthermore, since H(P, O) is a real
matrix, the unitary matrix U(P,O) is also real. The
eigenvectors of H (P,O) are denoted by u„(P).

It is convenient to introduce the matrix

)& L(2I+3)(2I+2) (2I+1)2I(2I—1)j'" IC(P,y) = (1/rush) H (P,y), (23)

I 2 I
X V er. '—m(P ) (17)—m m —m' m'

The quadrupole interaction frequency ~g is here
dehned as"

O'-V'

(dg = 8Q
Bs" 4I(2I—1)

Ho

where O'V'/Bs" describes the axially symmetric electro-
static gradient in an individual microcrystal. The inter-

"E.Matthias, W. Schneider, and R. M. StefFen, Phys. Rev.
j25, 261 (1962). (Note the misprint on p. 265 of this paper.
Sentence after Eq. (29) should read: Since the magnetic field
is axially symmetric, the angle p occurs in H, ~ in the form
expliy (m' —m) j.)"Note that our definition of aug is somewhat diferent from the
conventional definition of the quadrupole interaction frequency
~q. Our ~E is 1/3 of the conventional co@ for integer I, and 1/6
of the conventional coq for half-integer I. The definition PEq.
(18)jwas adopted because it is independent of the character of I.

I'ro. 2. Extranuclear fields in one microcrystal.

"Equal strength of magnetic and electric interaction in the
conventional definition of the electric quadrupole interaction
frequency is represented in our notation by y=3 for integer I
and by y =6 for half-integer I.
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which depends on the interaction ratio y and P and p
only. The eigenvalues of E(P,y) are D(t3) =F(P)/o)ok,
and the eigenvectors of E(P,y) are the same as those of

H(P,p), namely, according to Eqs. (21) and (22)

u.ir (P,y) =u. )I(P, )e'

Substituting this expression into Eq. (10), we obta, in
for the time evolution matrix

,4(p)e f M'ye —iDn (()—)zu, „,(p)e( )r'"y.

which implies that

(11»i(»"'(&))v=(III( oi-".'"'(&))7 . (2g)

Furthermore, the interference terms vanish if one of the
k's (either ki or ko) is zero. This can be proved in the
following way:

Due to the property of the Clebsch-Gordan co-
e%cients

(IOM'0
i IM) = f),)r )i,

the attenuation factor in (26) has the form

(p)ei)ryeiDa(p)xu „8(p)e (op'y— (24) IIIoo' (P 7)

where we have introduced the interaction parameter

x=~gt. (25)

III„,»»(8 q)

The time t is the time interval during which the nuclear
state is exposed to the interacting fields. Inserting (24)
into the general form of the attenuation factor (15),
one obtains

(Ik,M u,
~

IM )u„,„.()3)"u„,„(P).
M"nn'

Xei(i)a i)n') *&(v()r"' )r") p —u. (p)u, (p) (29)

The unitarity of the matrix U gives

2iV @n.lfln'M ~nn' (30)

Using this argument twice and remembering that also
Ue'&~ is an unitary matrix if V is unitary, one obtains
n=n', M"=M"' and thus

MM"
nn'

(IkiM'ui
i
IM) (IkoM"'u.

i
IM")

IIIoo,~(tl, y) =Q (IkoM"0
~

IM"). (31)

Xu.u(P)«.M-'(P)u;u- (P)u- u *(i3)

2I+1
(IkoM 0~1M )(IOM 0~1M )= 1')i i) (32)

M" (2k, +1)'"Because we are interested in the perturbation in poly-
crystalline sources, it is necessary to average over the
Euler angles P and y. If one averages (26) over y from
0 to 2x only those terms give a contribution for which
M —M'=M" —M"'; this implies that only attenuation
factors with p, ~= p,2= p occur.

can be veri&ed, which gives

2I+1
111oo, (P,V) = ~i,o.

(2k +1)'" (33)

From the properties of the Clebsch-Gordan coe%cients

i(Da Dn )x (—7(or M' )(r"+))r"')— —
(26)

the relation
e e*

(IIIo o »»(P))„

= P (Ik)M', ~IM)(IkoM'", ~IM")'
MM"

nn'

Xu.)(r (P)u u"*(P)u. u- (P)u- M *(i3)

X&((Da Dn ) z (27—)

Because of the reality of the eigenvectors the asterisks
in (27) can be dropped. "

It follows from Eq. (26) that a combined magnetic
and electric perturbation causes the occurrence of
interference terms with kIWk2. The interference terms
Illo o "'"'(Py)(k)Wko) have the following symmetry
properties. By exchanging all the indices k, p, , and M
it follows directly from Eq. (26) that

111i,i "'"'(ff —V) =111» i "'"'(f3 V)

This means that all interference terms with k~ ——0, k2&0
or k~/0, k2 ——0 vanish.

In an analogous way, it can be proved that the
interference terms vanish for the unperturbed case.
Then Eq. (26) gets the form

IIIo i "'"'(P,y,0)
=Q ir))r" (Ik)M'ui

~
IM) (IkoM"'uo

~

IM")
X& y(M (M' 3i"+I"')P— —u „(P)u (P)

XP. «. )r (P)u. v«(P)
=Q, r(Ik M'u(IM) (Ik..M'u

~
IM),

which leads to

IIIk, o,»"'(p,q, 0) = i)„,„„(34)
(2ki+1)'"(2k,+1)'"

From the Eqs. (33) or (34) the normalization of the
attenuation factor for k~= k2=0 can be found

"The common factor 271. arising from the integration over a
and y has been dropped.

IIIoooo = 2I+ 1,

which also follows directly from Eq. (13).

(35)
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Splitting up the attenuation factor (Eq. (26)) into
a real and an imaginary part and integrating over p
and y one obtains

(III»»"' '(t)) p, „

c»»"&")(p,t) sinpdp+i cp,»"(') (p, t) sinpdp
0 0

=ox,a,"(~)+&4,',"(~),

where (r) and (i) denote the real and imaginary part,
respectively. In this formula the following abbrevia-
tions are introduced:

'»a ""(p~) =Z ~a a """'(p)
na'

Xcos{[D„(P)-D;(P)j.x},
"(*')(p t) =p ~» """'(P)

Xsin{[D (P)—D (P)] x}, (37)

p„„"-'(p) = P (Ik,M'&~IM)(Ik, M"'"~IM")

x N."(P) N."-(P)~.~ (P)~- ~-(P)

From Eqs. (36) and (3'I) the perturbed deferential
angular correlation can be obtained. To get the per-
turbation for the ~ntegraI case, the expression

must be evaluated, where ~ is the mean life of the inter-
mediate state B.This yields

are for vanishing interaction (cog=0 and &o"=0, or t=o
and r=o, respectively) given by [cf. Eq. (34)j

"'"'(0))s. =(fff "'"'(0))p.
=2(2I+1)/(2k+1), (42)

where k j =k2= k.
According to Eqs. (11), (36), and (39) the perturbed

digerentia1 correlation function may now be written in
the 6nal form

W(Q&, a2) = Q Ag, (R&)Ag, (R,)
ktka

X [ox,',"(x,y)+~b~, a,"(x,y)j
X F","(e),v() F»"'(6,v2), (43)

where x=cugt. For the Hme-integrated angular correla-
tion one has to replace the perturbation factors in (43)
by a&,»&(x,y) and b»»"(x,y), respectively, with x=cosr

The angular correlation function (43) refers to an
arbitrary geometrical arrangement in which the ex-
ternal magnetic 6eld may be chosen in any direction
with respect to the plane of the detectors. The argu-
ments 9 and q of the spherical harmonics specify the
directions Q~ and Q2 in which the nuclear radiations
are observed (cf. Fig. 14).

It can be proved that Eq. (43) reduces to the usual
expression for a polycrystalline source if no magnetic
interaction is present. For y=0, the interaction Hamil-
tonian (17) can be diagonalized by a unitary transforma-
tion with the rotation matrix D(r)(~):

(D"'(~)H'y=o)D"' '(~))ki

=P Dp„(/)(a))H„„(y=o)Di„"'(i»). (44)
mm'

(f1'»»"'"')s, ~, i

=d»»"+&~»a, ", nn'M
M'M"M"'

Thus, the attenuation factor in (43) can be written as

i„,»"("&(P)sinpdp+i 8&,»"('&(P) sinpdp (39) a»» (x,o)+sb»» (x,o)

(Ik,iV'piIM) (IkpM"'piIM")

with

'...,"(")0)=2 ~...."""'0)
1+{[D-(P)-D.(P)l'}

'

[D (P)—D;(P)$ x
c»»""'(p) =2 ~»»""" (p)

1+{LD-(P)-D- (P)1 *}'

XD ~"'(~)D ""'(r»)D ~'-"'(m)
„(r) (~)e(i/a)(z~ —zn) t (45)

Because of the properties of the rotation groups, "one
can reduce the product of four matrix elements to a
product of two. Applying the orthogonality relations
of the rotation group and of the 3-j symbols, Eq. (45)
becomes

IIIO" sinPdP=2(2I+1). (41)

In view of Eqs. (35), (36), and (39), one 6nds for both
the integral and the diGerential attenuation factors

a,„"(x,O)+'b"'"(x,O)

2(2I+1) I I k '
e(i/A)(E E).i (46)—

2k+1 I S K

' A. R. Edmonds, Angular 1IIomeetum in Quaetunt Mecharucs
Also, with this normalization, the attenuation factors (Princeton University Press, Princeton, New Jersey, 1960),
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TxaLE I. Properties of the attenuation coeKcients.

Vanishing perturbation or f= r =0
for any kI=km=k and p

Interference terms k1/k~ for vanish-
ing perturbation or t=v =0

CkIky =CkIk2 AkIk2

2(v+1)

2(2r+1)

2k+1

~kIk2"= &kIk2 " 41k2"= —~kIk2 "

2(2I+1)

2(++1)

where k=k~=ka. 1'he perturbation factor is no longer

p dependent and the summation over p, makes it
possible to apply the addition theorem of spherical
harmonics which gives

@'(&i,&a) =Ra &a(K)~a(%)ga(x)
XPakcos(Qg, Qa)], (47)

with I I k '
ga(x) =2(2I+1) Q e(ila) &sa Ea ) i (—4g)

n —nI /

This expression for ga(x) is identical with the attenua-
tion factor for polycrystalline sources, given by Abragam
and Pound' t formula (20')j apart from the different
normalization factor 2 (2I+1).

It should be noted that the formalism used in this
paper requires a derivation of the attenuation factor
for the pure polycrystalline quadrupole interaction
which differs from the usual way of treating this prob-
lem. There the electric field gradient axis chosen parallel
to the quantization axis is kept fixed in space and one
averages over all directions of Q~ and Q~.

The electric quadrupole interaction is degenerate
with respect to its sign which implies that the imaginary
part vanishes for y=0, and the perturbation factor is
given by the uaaa(x) only. In order to get the conven-
tionally used attenuation factors Ga(x) normalized to
Ga(x=0)=Ga=1 from the aaa", the following relation
must be applied:

Ga(x) =P(2k+1)/2(2I+1)laaa'(x). (49)

The integral attenuation factor Ga(x) is obtained by
taking the corresponding factors daaa(x).

III. NUMERICAL COMPUTATIONS AND RESULTS

For the computation of the factors given in (36),
(37), (39), and (40) a general program has been set up
in the FORTRAN automatic coding system II. In
one single run of this program, these factors are calcu-
lated for a specific nuclear spin value I and for a series
of values of the parameters x and y. The computations
include three main parts, namely,

(1) the diagonalization of E LEq. (23)j,
(2) the calculation of the factors given in (37)

and (40),

(3) the calculation of the attenuation factors given
in (36) and (39).

After a detailed examination of the different ordinary
diagonalization methods, a modified version of the
Jacobi method turned out to be the most suitable for
the present case. For the calculations presented in this
paper, the eigenvalues are computed to better than
10 ' and the corresponding eigenvectors to better than
10 '." A general subroutine for the calculation of
Clebsch-Gordan coeKcients for all spin values has been
incorporated in the program. The computations were
carried to a maximum value for ki and k2 of 4. In view
of the symmetry properties of the factor (IIIa,a,») the
range of the values k&, k&, p, y, x, and P can be restricted
as follows:

(a) Three combinations of k~ and ka must be con-
sidered Pcf. Eqs. (28) and (33)]:

k] k2 2 j ky k2 4 j ky 27 k2 4

(b) From the properties of the Clebsch-Gordan co-
eKcients it is obvious that the index y in (27) is de-
termined by

—min(k, ,k,) &y &min(k, ,ka).

However, one easily verifies that only terms with p, &0
have to be computed. Starting from Eq. (26) the
following property of the attenuation factor can be
derived:

(1114 ""(~)) . '=(III " "(~)),
(III,a,"")p, „,*=(IIIa,a, »)p, „,,

This implies that the real and imaginary parts in Kq.
(43) for +p and —p are related by

bk, k,"=—bk, &,—, (51)

with the corresponding relations for the integral factors.
Consequently the imaginary parts vanish for p, =0.
Table I summarizes some of the properties of the
attenuation coeKcients.

(c) Only positive values of x and y have to be con-
sidered. For the electric interaction the sign degeneracy
of the sublevels m in H, i makes the attenuation factors
independent of the sign of ~g. Thus, from investigations
of a combined perturbation only the magnitude of the
electric quadrupole interaction can be obta, in'. P



1206 ALDER, MATTHIAS, SCH NEI DER, AN D STEFFEN

. I=~g y=4.0
INTEQRAl

I.o

0.8 -g X ~ O, I

O7. ~i
0.6
0.5-
04

C22'» O.3-
0.2-
O. I

0~
0,8
0.7 .
0.6- X ~ I.O

Q5
o4-

g
0,3 .

0.2
O. I

0
0.8 '

0.7 . X 05.0
0.6-
0.5 '

0.4 .

0.2 .
O. I

.
0

c
0.8
P,7 X ~ I O.O

0.6-
0.5

I.G 0.90330,70505G4 Q302 Ql 0
cosp

I= ~i2 y
= 4.0

DIFFERENTIAL

Lo
0.9 '

X RO. I

p
0.6 '

0.5 .
0.4 .

C2208 I p 3 .
0.2
O. I

c'
0.8 '

0.7
0.6 X R 1.0

03-
0.2
0. 1

/
Op\/0.8

O.? X ~ 5.0

0.6
0.5

0.3 .
0.2

O.e '
0.7 . X i IO.O

0.6 .
I

0.5
0.4
O.3
O. Z

IAI 09 t08 Q7 Q6 05 Q4 Q3 02 Ql 0
COSII9

I.5-
al 0,2 0.5 OO 2p 5D 10 20 50 loo

I I f
/

I I I
f I I [ 7 I t 1

Ia ~ 0

-0.5—

022
2.0 "

1.0—

a5 '-

-05—

A &Sr
UUU

c5-

IO—

0.5—

X ~ 2.0 ps0

to

0.5 l. . .YJ ~l ~ 1

V

change of the sign of AH, however, changes the sign of
the imaginary parts b~, ~, , whereas the real parts
u~, j„,f' remain unaGected.

(d) As can be seen from formulas (17) and (23), the
angular dependence of the matrix elements E ~ is
determined by costI. Therefore, cosP is chosen as the

FIG. 3. The real parts c»'(")(p) and c220&")(t,p) of the attenua-
tion factors for a single-crystal source oriented in various direc-
tions p relative to the magnetic 6eld axis for some interaction
parameters x. The vertical lines indicate the integration steps.

—0.5

- i,p
O.i 02 05 ~ 0 2J) 5.0 lO 20 50 100

II

IA)—

0.8—
0.6—
0.4—
0.2—
0

Q„
I I I I I I I I I

I.O 2,0 3.0 4.0 5.0 60 7.0 8.0 9.0 IO.O

I 5

I.O-

0 . 5—
022(x,y) (

p-0

Io IOO

I.2
I.O—

0.8—
0,6—
p4-
0.2—
0
e

X.~ 0

I I I I I I I I I
I.O 2A) 3.0 4.0 5.0 6.0 7.0 8.0 9A) IO.O

l.2
I.O

O.e
0.6
0.4—
OZ—

I I I I I [ I I I

l.o 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9Q IO.O

l.2 X~O

l.o
0.8
0.6
0.4
0.2 —

~0 I I0 I.O 2.0 3.0 I I I I

4,0 5.0 6.0 7.0 8.0
I

9.0 IO.O

FIG. 4. The real part a»&(x,y) of the attenuation factors f'or
the integral correlation with I=1, plotted as a function of y
=00+/~E for some s|;lected values of the parameter x=coE7-.

O. 5!
0 I I III

O. l

I, ow

0, 5~
r

I. 5

IO

IO

IOO

IOO

I 0-

0.5 ~

O~l I II
0.05 O. I 0.2 0.5 I 2

IO

10 20 50 I OO

Y

Fro. 5. (a) The real part c22&(x,y) of the attenuation factors
for the differential correlation with I=3/2, plotted as a function
of y=co~/coE for some selected values of the parameter x=coEt.
{b) The real part a»&(x,y) of the attenuation factors for the inte-
gral correlation with I=3/2, plotted as a function of y=o0~/coE
for some selected values of the parameter x=~E7..



O-l 0.2 0.5 I.O 2.0 5.0 l0 2 0 5 0 l00variable for the integration over P. It can easily be
veri&ed that

1 I I T~ ~ ~ ~ W PT I
I

2.0
r

IS
X80.I

k=2

jr x/2

(III, ," (P))P(cosP) = 2 (IIIk,k, (P))„d(cosP),
0.5

ai
2.0-
l.5-

I.O

which reduces the required machine time by a factor
of 2.

To cover a wide range of electric and magnetic
interaction strengths, the attenuation factors have been

xs 0.5
k=2

0.5
0

e
2.0

k=4

X=

x

I

50 10 20 50 100
I I I I I I

02 05 10 20005 0 I

f I f I ~ ' ~ ~ I I
I I I ~ I

IS
I.O—

0.5
0

c'

x= l.05

4=2
k=4

k*4I,O-

Ok&(x, y) .
p ~ ~

20-

0 IX =

I
I [ I

I « I a i ~ i I I i s I i t&il

OS-

0

I 0-

Ql 02 OS I.O

k=4

20 50 l00
I ~

2,0—
I i s I i I sI &t I i i i&1 I I i I i i is[

20 50 I
Y

Ip—

k ~ 4
O.l 0.2 O.S I.O 2.0 SB 10 20 50 lg

Ip I i i ~ I

20—
I a i I i i&II i i I aa«l I » I i iiil

1,5

1.3—
Ig
I.I

1,0—
0.9—

g9 08-
kk 0.~—

0.6—
0.5—
0.4—
0.3—
02—
0.1

OD~
0.6
0.5—
0.4—
03—
02
O, I

0.0
06—
0.5
0,4-
0.3—
OZ—
0.1

OX[~0.6—
D.S
0.4—
OQ—
pg
0.1 I-

0.0

x ~ O.[

IQ-
k=2

k*4

p, as isl
005 OI

I

50 100
I i i

20
I i ~ s i I I i i I I I

50 10
I

02
I

2005 10

I I i I I ~

i I I ~ I I I

x ~ 0.5
[.4
1.2—
lp-

0,8—
0.6—
0,4—
0.2 "

X ~ O. l

I
I I 1 ~ I

I
~ f F l

X ~ ID

t

2.0 5.0 IQD ZQA) 5057 !00
I

0.1

I I \ I ~ I I I I ~~ ' [

0.8
0,6
0.4—
0.2-

0 ~ I I

Ql

X ~ 4.0
Xi05

'
I I

OP 1.0 2.0
' '

I

5.0 10 20O.I
I ' ' I 'I

50 IOO
I

022.0 5.0 IO 20I,O0.2 50 100

(b)0,8
0.6
Q4—
0.2—

0 I

Ql

FIG. 7. (a) The real part az&'(x, y) of the attenuation factors for
the integral correlation with I=5/2, plotted as a function of
y=a~/aE for some selected values of the parameter x=coE7..
(b) The real part dg, i&{x,y) of the attenuation factors for the inte-
gral correlation with I=5/2, plotted as a function of y=p3~/cog
for some selected values of the parameter x=QQEr.

X ~ 1.05

f [ 1

QZ 05 I

j I I
' 1

2.0 5
I ~ ' I

20 50 IOQlp

0.8
0,6 "
0.4 X ~ 4,0
0.2

I . . ~ ! 044[
0.05 OJ 0.2

1 . . ~ . i

20 50 [OpQS I 2 5 IO

computed for 30 y values between 0 and 1.00, and 24 z
values covering the range from 0 to 5. From the experi-
mental point of view it seems to be sufEcient to tabu-
late the results only for x values up to 5. Tables of the
attenuation factors will be available for the spin values
1, 3/2, 2, 5/2, and 7/2. [0 If special experimental condi-
tions require numerical values which are not covered

(b)

FxG. 6. {a) The real part a~I, (x,y) of the attenuation factors
for the integral correlation with I=2, plotted as a function of
y=ro~/QQE for some selected values of the parameter x=ouEr.
{b) The real part a~I,&(x,y) of the attenuation factors for the
integral correlation with I=2, plotted as a function of y=~~/QQE
for some selected values of the parameter x=cvgr.
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in the semiclassical picture of the vector model means
that the spin is precessing around the magnetic 6eld
axis and the interaction Hamiltonian is essentially
diagonal. In the differential case, the same principal
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periodic oscillations. Obviously, the measurement of the
differential angular correlation is more sensitive for the
determination of the interaction strengths because of
the more complex structure of the curves Lsee Fig. 5 (a)].
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In Figs. 8 and 9 the real parts a~4& of the interference
terms of the attenuation factors are shown. These
terms give an appreciable contribution only in the
region where ~g and co~ are of comparable strength,
and vanish in the asymptotic regions where cog)&co~ or
~g&&co~~. The absolute values of even the largest inter-
ference terms, however, are an order of magnitude
smaller as compared to the aqua" terms. Since (k„),„
&2I, interference terms are only present if I&2.

The imaginary parts $q, i,,"of the attenuation factors
and of the interference terms are plotted in Figs. 10
to 13.
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domly oriented electric quadrupole interaction and a
magnetic dipole interaction with an arbitrary direction
relative to the detector plane. From the experimental
point of view, the anisotropy and the rotation of the
angular correlation in a magnetic field are the most
interesting quantities; therefore, we find it worthwhile
to give expressions for these quantities as an example
of the application of the theoretical results. This will
be done for the two most important cases: (1) a mag-
netic field applied perpendicular to the detector plane,
and (2) a magnetic field parallel to the emission direc-
tion of one of the detected radiations.

1. Magnetic Field Perpendicular to the
Detector Plane

As can be seen from Fig. 14, the arguments 8 and q
Frc. 14. The propagation directions QI and Q2 of the two of the spherical harmonics define the emission direction

cascade radiations. Q& and 02 of the two p rays. If the direction of the mag-

IV. EXPERIMENTAL APPLICATIONS
netic field is chosen parallel to the s axis of the system 5,
the detectors are placed in the x-y plane. Thus, 8~=82

As mentioned above, the formula (43) can be used to =x/2 and y&—+2= 0» (see Fig. 14), and Eq. (43) takes
calculate the angular correlation function for a ran- the form

W, (O)=P A„a, (a„„»+ib~,»,»)~V, , » e'»8
ktk~

(52)

A»„p, ——Ap„(Ri) Aa„(Rg),

1V„„»=(—1)»Y„»(~/2,0) I'„-»(~/2, 0)

(—1)'"&"'+""+»L(2ki+1)(2k2+1) (ki—p)!(k2—p)!(ki+p)!(k2+p)!]'"
4 (ki —~)!!(k2—~)!!(ki+~)! '(km+~)!!

for p =even, " (53)

=0 for p= odd.

Thus, in the case of a magnetic field perpendicular to
the detector plane, only even values of p, must be
const. dered.

The normalization factor in (52) satisfies the same
conditions as the attenuation factor does Lcf. Eqs.
(28) and (50)), namely,

Expression (54) may be written in a somewhat dif-
ferent form which displays the rotation of the angular
correlation pattern about the magnetic field axis

W i(e) =Q A», a,&~,a,»L(~~,a,»)'+ (b», ~,»)']'"
k 1k'

+kIkg @Ikey and ~' kIkg ~ k2kI where
Xcos[v(O —&Oi, &,»)], (55)

The real part of the correlation function (52) can be
written in the form:

W.(O) =P A~, ag'~, i„»
ktkg

X(a»,~,» cospo. bl„k,» sinpO—). (54)

The sum over p extends over all values —min(ki, k2)
&p(min(ki, k.).

'7The definition of (k+p)!! is 1X3X5+7 ~ ~ for odd and
2)&4&(6)(8 for even numbers (k+p).

t tpaAnOk k ] bk k /gk I; (56)

A = [Wi(s.)—Wi(ir/2)]/Wi(ir/2)

can be calculated

For the integral correlation the corresponding expres-
sions hold. In Figs. 15(a) and 15(b) the displacement
angle 60~22&'& is shown for the diAerential and integral
correlation for the case of k, =2.

From Eqs. (54) or (55) the general expression for the
anisotropy
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FIG. 17. (a) The anisotropy A=tW&(~) —+x(~/2) j/Wx(~/2)
of the differential angular correlation with magnetic field per-
pendicular to detector plane for I=3/2. (b) The anisotropy
A LWJ. (m) —Wz(II /2) j/W& (Il /2) of the integral correlation with
magnetic field perpendicular to the detector plane for I=3/ .



1212

O.I2

O.l I

Eq. (52)]

O.IO
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0.08

0.07
A

A(x,v)
0,08
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or using Eq. (51)

W~(O) =P Ag, p,.Vg, l,&ay, g," cosgO.
Atkg

(60)

The expression for the anisotropy in this case is, of
course, the same as before [cf. Eq. (57)].

OQ4

Og5

OA)2

O.OI

0
0

2. Magnetic Field Parallel to the Propagation
Direction of one of the Radiations

In this case, the arguments of the spherical har-
monics area~= cp~=0, 82=0 (see Fig. 20). Since F~"(0,0)
= [(2k+1)/47r]'"b 0 and Yl,'(82, (p2) = [(2k+1)/4')'"
XI'~(cos82) the general expression [Eq. (43)] reduces
tol8

W~ ~ (0)=P A~(R&)A ~(I4) (2k+ 1)a~~'P~(cosO~). (61)
FIG. 18. The anisotropy A = I 8'~ (x)—W~ (~/2) j/W~ (~/2) of

the integral angular correlation with magnetic field perpendicular
to detector plane for I=2.

A(0) = (12A22+5A44)/(8 —4A22+3A44). (58)

Thus, in the parallel field case, the influence of the
perturbation is represented by the factors a~P(x, y)

Inserting the factors az, z," for the unperturbed case or d&P(x,y) only.
from Table I the expression for the anisotropy reduces to

As can be seen from Eq. (57), the anisotropy of the
perturbed correlation is determined by the real parts
aI„k,& of the attenuation factors only. This is expected,
because the anisotropy is independent of the sign of the
azimuthal shift of the angular correlation.

In order to show the behavior of the anisotropy as a
function of the interaction strengths, it has been com-
puted for I=1 and I=3/2 for a typical value of the
coefFicient 322=0.20. The results are shown in Figs. 16
and 17 as a function of y for some selected x values.
Figure 18 displays the anisotropy for a 4~2 —+0
gamma-gamma cascade involving quadrupole radiation
(A22 ——0.1020, A 24

——0.1825, A42 =0.00507, A 44
——0.00906).

The anisotropy of a pure quadrupole-quadrupole gamma
cascade between nuclear states 3/2 ~ 5/2 ~ 1/2 (A ~~

=0.1020, A24=0. 1178, A4$ —0.3770, A44 ———0.4354)
is shown in Fig. 19. The diferent behavior of the inte-
gral anisotropy for integer and half-integer spin values
is remarkable. The reason for this efrect is probably the
different sign degeneracy of the m sublevels (no de-
generacy of the m =0 state).

In our discussion so far, it was assumed that the
experimental arrangement is such that the detectors
can distinguish between the two radiations involved in
the angular correlation measurement. If the two de-
tectors respond to each of the radiations with equal
eKciency, the angular correlation is given by [cf.

-O.OI
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FIG. 19. The anisotropy A=@V&(~)—~z(~/2} j/~x(~/2} of
the integral angular correlation with magnetic 6eld perpendicular
to detector plane for I=5/2.

"The constant factor 1/4r has been dropped.
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6eld axis is much faster as compared to the "quadru-
pole" precessions, and the influence of the quadrupole
interaction is smeared out. Since the magnetic 6eld is
parallel to one of the propagation directions, which
can be chosen as the quantization axis for the angular
correlation problem, the population of the nz substates
with respect to this axis is essentially stationary if the
magnetic interaction is much larger than the quadru-
pole interaction in the individual microcrystals.

The curves of Figs. 4 to 7 show clearly that the
expected effects are large for both the difI'erential and
the integral correlation. Thus, it seems possible that
such "decoupling" experiments may become a valuable
tool for the simultaneous determination of both the
magnetic and electric interaction frequencies.

FIG. 20. Magnetic 6eld parallel to the propagation direction of
one of the radiations in a nuclear cascade.

From Figs. 4 to 7 it can be seen that for large values
of y, i.e., large magnetic interaction the aI,~' and BI,P
reach the unperturbed values asymptotically. This
effect is due to some kind of "decoupling" phenomenon"
which may be interpreted semiclassically. For large
magnetic interaction, the precession about the magnetic

'9 R. Stiening and M. Deutsch, Phys. Rev. 121, 1484 (196i).
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