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Cyclotron Resonance Studies of the Fermi Surfaces in Bismuth
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Experiments on cyclotron resonance of the Azbel'-Kaner type were performed on pure Bi at 34.5 kMc/sec.
Angular variation of the cyclotron masses for both the electrons and the holes with the magnetic 6eld in the
binary, bisectrix, and trigonal planes were studied. For the electrons in Bi, the tilt angle of the Fermi surface
in the crystallographic coordinate system was directly measured. The mass parameters in Cohen's nonellip-
soidal-nonparabolic model were determined for the 6rst time. The inverse effective mass tensor components
in Shoenberg's ellipsoidal-parabolic model were completely determined by using the tilt angle. The results
indicate that the ellipsoidal-parabolic model is unable to explain quantitatively all the angular variation
in the electron cyclotron masses. One particular case of Cohen's model corresponding to electron Fermi
surfaces at centers of the six pseudohexagonal faces of the Brillouin zone was shown to be in better agreement
with the experimental results. Angular variation of the light-hole cyclotron masses with 6eld in the three
crystallographic planes were 6tted quite satisfactorily by the one-spheroid model. No resonance of a heavy
hole was observed in this experiment.

I. INTRODUCTION

~YCI.OTRON resonance provides a useful tool for~ exploring the Fermi surface in metals. For a given
direction of the external magnetic 6eld H, measurements
of the cyclotron mass m~= (1/2s.)(Ba/BE) a,t resonance
give the energy derivative of the extreme cross-sectional
area of the Fermi surface in momentum space perpen-
dicular to II. The details of angular variation of nz* can
be conveniently used in conjunction with other informa-
tion to establish the shape of the Fermi surface.

Early studies' ' have demonstrated that the Fermi
surface for electrons in bismuth can be satisfactorily
described by a set of equivalent ellipsoids in momentum
space with one axis in common with the binary axis and
the other two axes being tilted several degrees from the
trigonal and bisectrix axes. Recently, both experi-
mental" and theoreticaP work have indicated that
these Fermi surfaces may not be ellipsoidal-parabolic,
so that m* is energy-dependent and one needs more
parameters to specify one "ellipsoid. "

The de Haas-van Alphen (dHvA) effect4' and cyclo-
tron resonance~13 have been observed in bismuth. The
extreme cross-sectional area of the Fermi surface and
their energy derivatives measured by these experiments,
if completed for all orientations, enable one to map out
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II. FERMI SURFACES IN BISMUTH

1. Electrons

Shoenberg's extensive work' on the dHvA effect
have shown that one of the elliposids (ellipsoid I) can
be described in the crystallographic axis system by

2moE=y 0. y

a. 0
0 a„y.0 o.,„

0 i

O'zz

(2)

is the inverse effective mass tensor, mo the free-electron
mass, E the energy, and y is the quasi-momentum. The

"D.Weiner, Phys. Rev. 125, 1226 (1962).

the topology of the Fermi surface. To date, however,
all these measurements have been done with H along
the crystallographic axes or in the trigonal plane. These
results are by no means complete in themselves.
Furthermore, all of the previous data were interpreted
by using Shoenberg's ellipsoidal-parabolic model; one
usually multiplies the dHvA period by the cyclotron
mass to get the Fermi energy. For a nonellipsoidal-
nonparabolic Fermi surface, this traditional procedure
of obtaining the Fermi energy is incorrect and has led
to confusion.

In the present work, angular variation of the cyclo-
tron masses for both electrons and holes with H in the
binary, bisectrix, and trigonal planes were studied. The
tilt angle of the electron Fermi surface in the crystallo-
graphic axis system was directly measured without
having to extrapolate by using the ellipsoidal-parabolic
(EP) model as was done in all previous work. These
results, combined with values of the Fermi energy and
the thermal energy gap recently measured by other
experiments, '" enable us to obtain all the parameters
in Cohen's nonellipsoidal-nonparabolic (NENP) model'
and thus to completely specify the Fermi surface for
the carriers we have observed.
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other two ellipsoids (ellipsoids II and III) are generated
by rotating (1) through &120' about the trigonal (s)
axis. Cyclotron masses derived from this model can be
found in reference 8.

In Cohen's NKNP model, as judged from the band
calculation of Mase" and Harrison" and the recent
analysis by Jain and Koenig, "one of the Fermi surfaces
for electrons can be expressed, in Cohen's notation
(with ms' ——m ),I by

TR160NAL
AXIS

pr' ps' ps' E f ps' '1
+ + =»+——

I

2m, 2ms 2ms Es E2ms Es
(3)

where 1, 2, 3 refer to the principal axis system of the
ellipsoid, the m's are the effective masses at the bottom
of the conduction band, and E, is the energy gap.
Expressions for cyclotron masses derived from (3) are
given in Appendix A.

2. Holes

From the k p approximation and by analogy with the
conduction band of germanium, it seems reasonable to
expect the valence band to be parabolic. Jones' first
suggested such a model for the hole Fermi surface which
can be represented by

2meEs= pip*'+pep, '+pap*', (4)

where Es is the hole Fermi energy and the P's are com-
ponents of the hole inverse effective mass tensor. As is
shown later, in contrast to the large uncertainties en-
countered by Brandt et al. ,

" this model (with P~
——Ps)

agrees with our results very closely.
Probable locations of these Fermi surfaces in the

Brillouin zone are shown in Fig. 1.

III. EXPERIMENTAL

1. Sample Preparation

Zone-rehned pure bismuth was obtained from the
Consolidated Mining and Smelting Company of
Canada, I.td. Single crystals of the required orientation
were grown on a hot plate by a seeding technique. Good
single crystals of sizes about 25 mmX15 mm)(5 mm
obtained by this method were then cut into a size of
about 15 mm&15 mmX5 mm suitable for the experi-
ment by a spark cutter or by a high-speed abrasive
wheel with reasonably slow cutting rate. Preliminary
crystal orientation was determined by cleaving in liquid
nitrogen followed by etching in 35% HNOs. This sample
surface was then electrolytically polished using the
method given by Tegart. " The sample was 6nally

's S. Mass, J. Phys. Soc. Japan 13, 434 {1958) 14, 584 {1959)."W. A. Harrison, J. Phys. Chem. Solids 17, 1 1 (1960).
~r A. L. Jain and S. H. Koenig, Phys. Rev. 127, 442 (1962)."N. B. Brandt, A. K. Dubrovskaya, and G. A. Kytin, Soviet

Phys. —JETP 10, 405 (1960).
I' W. J.Tegart, The Electrolytic and Chemical I'olishi ng of 3Eetals

ie Research and Industry (Pergamon Press, Inc. , London, 1959).

FIG. 1. Probable locations of Fermi surfaces in the Brillouin
zone. The six half-elliposids for electrons are designated by I, II,
III at the centers of the six pseudohexagonal faces. The two
half-elliposids for light holes are at points A, centers of the two
perfect hexagonal faces.

examined by x rays to ensure that it be strain free and
of the required crystal orientation. Single crystals of
similar size grown by the same method have been re-
ported" with residual resistance ratios of about 400
between 300 and O'K.

2. Experimental Apparatus

The experiment was performed with standard micro-
wave technique at frequencies near 35 kMc/sec. Varia-
tion of surface resistance as a function of Bwas observed
by detecting the change in Q of a rectangular cavity of
which the Bi sample serves as the bottom wall. The
cavity and the sample were immersed in liquid helium,
the temperature of the liquid helium was lowered to
below the X-point so that the disturbance due to
bubbling at the liquid surface was suppressed. The
microwave power from a stabilized klystron was
branched at a magic tee, and part of the power was
transmitted to the cavity while the other part was fed
into a matched load. The rejected power from the
cavity was detected in the fourth arm of the magic tee
by a crystal detector. The magnetic 6eld was measured
by a Bell model 120 gaussmeter using a Hall-e6ect probe.

During the experiment, the temperature of the liquid
helium was reduced to around 1.5'K by pumping, and
when equilibrium had been reached, the frequency of
the klystron output was tuned to the frequency of the
cavity resonance and stabilized by an automatic fre-
quency control unit suggested by Kip." The output
voltage of the crystal detector was fed into a Keithley

~ A. N. Friedman and S. H. Koenig, IBM J. Research Develop.
4, 158 (1960).

"We are indebted to Professor A. F. Kip for this private
communication.
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model j.50AR microvolt-ammeter which was used as a
chopper ampliGer. As the magnetic Geld was swept, the
output voltage of the microvolt-ammeter and of the
gaussmeter were used to drive an X-Y recorder.

IV. RESULTS AND DISCUSSION

For a metal under anomalous skin-eGect conditions,
Azbel' and Kaner22 have shown that the surface im-
pedance can be expressed as

Z(H) =R(H)+iX(P) =Z(0) (1 e'~'—"'"'e '~'~")"' (5)

In the derivation of this basic equation, it has been
assumed that (i) the carriers obey the quadratic dis-
persion law and (ii) b&&r, I, where r is the radius of the
Larmor orbit, I the mean free path of the carriers, and
b is a skin depth. The surface impedance is a minimum
at resonance, i.e., when ~=neo„n being a nonzero
integer. When condition (i) is not ful6lled, a resonance
can only be observed at extremal values of co, which in
this case is a function of momentum. The condition (ii)
is well satisfied in most metals at liquid-helium tem-
perature. But in the case of Bi, even though b«l at low
temperatures, the requirement that b«r can easily be
violated at moderate magnetic GeMs. For Bi, we can

take p 10 " g-crn-sec " b 10 4 cm, r=pc/eB, and
then we get r 8 for H of the order of several hundred
gauss. Thus, Kq. (5) will give only a qualitative picture
of the phenomenon for Bi as was considered by Azbel'
and Kaner. "Nevertheless, we would expect Eq. (5) to
hold at very )ow magnetic Gelds and the classical con-
ditions to be predominant in the high-Geld region.
Unfortunately, since for Bi many resonances occur in
the intermediate range of Gelds, neither extreme case
by itself completely describes the behavior of the surface
impedance.

In a moderatly high Geld region, we can construct a
simple model to explain the behavior of the surface
impedance. Let us divide the electrons into two groups:
those whose orbits are within the skin depth, and
another group whose orbits are centered at a depth r
below the skin depth. The first group of electrons behave
more or less classically since they remain within the
skin depth and do not give rise to a signiGcant reso-
nance-like behavior of the surface impedance. The
second group of electrons spend only a small fraction
of their orbiting time within the skin depth, and can
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~ M. Ia. Azbel' and E. A. Kaner, Soviet Phys. —JETP 3, 772
(1956); 5, 730 {1957).

Fro. 5. Power absorption vs magnetic field with the magnetic
6eld directed along the bisectrix axis and perpendicular to the
microwave electric Geld.

~ M. Ia. Azbel' and E. A. Kaner, J. Phys. Chem. Solids 6, 113
(1958).
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be considered to be described by the anomalous con-
ditions, and it is this group which is primarily responsible
for the oscillatory behavior of the surface impedance
predicted by (5). As the magnetic Geld is increased, the
number of the classically behaving electrons increases
while that of the other electrons decreases. Thus, over
some region of 6elds, the surface impedance passes from
the anomalous conditions to the classical conditions.
It must be remembered that 8 varies with the magnetic
held and thus an exact analysis of the behavior of the
surface impedance with magnetic 6eld is considerably
more complicated.

The situation is further complicated when more than
one type of carriers is present and gives rise to inter-
ference in oscillations of the surface impedance. In this
case, it is di6icult to apply the Azbel'-Kaner theory to
the experimental results even in the low-6eld region.

Typical experimental curves of power absorption,
which is proportional to the surface resistance, are
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FIG. 7. Plot of R(H)/E(0) vs H for two independent
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FIG. 6. Power absorption vs magnetic Geld with the magnetic
Geld directed along the trigonal axis and perpendicular to the
microwave electric Geld.

shown in Figs. 2—6. Measurements were done at
T 1.5'K and at a microwave frequency 34.5 kMc/sec
with an cur estimated to be 20. It can be seen that
periodic oscillations occur at low helds with the shape
resembling those predicted by (5) (Figs. 3 and 7). For
H higher than 200 0, the oscillatory behavior becomes
complicated probably because of the physical argument
given above. It has been found experimentally" "that
many maxima in the absorption curve are better delned
than the minima, as is also seen in our data. If we use
the positions of the maximum in power absorption to
identify the resonances, we can Gnd many subharmonics
in a series of peaks. without a theory giving the quanti-
tative behavior of the surface impedance in Bi over the
whole range of magnetic helds, we adopt the same
criterion to obtain the cyclotron masses as was used by
Aubrey and Chambers. "Cyclotron masses are obtained
either from the fundamental peak (first maximum in a

series) or by averaging over the periods of oscillation
when a long series is observed.

For example, from Fig. 2 we obtain hve peaks in the
low-held region for a magnetic held parallel to the binary
axis. These maxima occur at H=134.2, 61.8, 38, 27.1,
21 G; they are identihed as the series of fundamental
and subharmonics of the electron resonance, with m=1,
2, 3, 4, 5, respectively. If we plot 1/H vs the integer I,
we should get a straight line of slope e/m~arc. This plot
is shown in Fig. 8. From the slope we have determined
m*=0.0107mp. This is the case when there is only one
cyclotron mass involved. However, it is frequently ob-
served in the experiment that several masses are present
in the same curve, in which only one or two subhar-
monies can be identihed for each mass. In those cases,
the position of the fundamental peak instead of the
slope of the straight line is used to determine m*. This
procedure of identihcation may lead to a systematic
error in m~ by as much as 20%.

However, in the case when the angular variation of
m* calculated from certain models are compared with
that observed in this experiment, the mass parameters
in the diGerent models are determined from the same
observed maxima in the power absorption curve for II
along some particular directions. Based upon the as-
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sumption that the systematic error in m* is presumably
insensitive to the angular variation, comparison of
calculated and observed values of m* for H in the other
directions are then essentially subject to the random
experimental errors, which are estimated to be around a
few percent. Thus, although the absolute uncertainty in
mass determination is large, comparison of angular
variation can still be made with reasonable accuracy
provided all the points to be compared are determined
by the same criterion.

For each given relative orientation of the bismuth
crystal and the dc magnetic ield H, linearly polarized
microwave 6elds are set at two different directions, one
with H J E,q and one with H J H, f. No signihcant change
in either the position or the intensity of the resonance
lines was observed in our experiment by measuring the
power absorption. This is in contrast to the case of
copper, '4 in which the resonances are largely due to the
stationary orbits and there is a change in the intensity
of absorption with two different directions of polariza-
tion. Another possibility is that mode mixing takes
place in the resonant cavity. Since the bismuth crystal
is anisotropic, linearly polarized waves become ellipti-
cally polarized in the cavity and the effect due to differ-
ent linear polarizations is washed out.

The fact that there is no change in the intensity of the
resonance lines also indicates that electron spin reso-
nance and combined resonance" were not observed
since these resonances occur only v ith H J H, f. Failure
to observe these two types of resonance is presumably
due to insuf5cient sensitivity in our experimental
arrangement.

Ke now consider the following cases.

1. H in the Binary Plane

A. E/ectrons

Since n„,=a,„are the only nonvanishing off-diagonal
components of the inverse effective mass tensor, the
principal axis (123) system is generated from the crystal-
lographic (xys) system by a rotation through an angle
8& about the binary (x) axis; 8& is the tilt angle. Hence
for H in the binary plane, the angular dependence of
m* in the principal axis system differs from that in the
ryan system only by a constant angle of rotation; the
cyclotron mass is a maximum when H is parallel to
axis 3 and a minimum when H is parallel to axis 2.

In the EP model, when H is in the binary plane,
ellipsoids II and III always give the same cyclotron
masses. Thus, in general, there are two cyclotron masses
due to all the electron ellipsoids. %hen H is parallel to
the trigonal axis, these masses become degenerate. In
the previous work on cyclotron resonance, " " the
value of m* for H parallel to the trigonal axis is used as
one of the four conditions to determine the mass param-
eters. In our case, in order to make a convenient com-

~ A. F. Kip, D. N. Langenberg, and Y. W. Moore, Phys. Rev.
124, 359 (191'1).
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FIG. 9. Angular variation of the electron cyclotron masses with
II in the binary plane. 8 is the angle between II and axis 2. Direc-
tions of the bisectrix (Y) axis and the trigonal (s) axis are indicated
by arrows. Solid curve is the angular variation of m&* calculated
from the NENP model by using (A8) and the mass tensor com-
ponents determined in (19).Dashed curve is the angular variation
of mph'* (=myri*) calculated from the EP model using (1}and (15).

parison of the EP model with the NENP model, we
replace this condition by the value of m* for H parallel
to axis 3. Moreover, without relying on data from other
experiments, we use the measured tilt angle to be the
fourth condition.

The observed angular variation of m* for electron is
indicated by points in Fig. 9. %e identify axis 3 and the
trigonal axis, respectively, by observing through rota-
tion of H in the binary plane the directions along which
m* is maximum and along which all the electron cy-
clotron masses become degenerate. Ke measure the
angle between these two directions to be 6', this is in
close agreement with the value 5.7' obtained by Shoen-
berg. ' ' The accuracy in determining the tilt angle is pri-
marily limited by one's ability to prepare crystals of the
required orientation.

The following results obtained with H in the binary
plane are used to determine the effective masses:

H along principal axis 2: m2*=0.009+0.0009mo, (6)

H along principal axis 3: m3* ——0.11&0.01mo, (7)

eg =6'&0.2'.

In analyzing the data, the angular variation of m*
calculated from the EP model using the mass parameters
given by Gait et a/. "was used as a guide to select the
cyclotron masses and to associate them with the corre-
sponding ellipsoids. This method was used to obtain the
points shown in Fig. 9. However, for "ellipsoids" II and
III, the deviation from the EP model is large beyond the
region shown by Fig. 9 and the structure of the power
absorption curve is complicated by the presence of
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additional peaks probably due to spin resonance ab-

sorption or dielectric anomalies. Identification of as* for
these two "ellipsoids" becomes very dificult. At the
present time, no attempt has been made to definitely
identify these absorption peaks beyond the region which

we have plotted in Fig. 9. Of course, a calculation of the
angular variation using the NENP model may serve as
a guide to resolve this question, but as we see later, the
complexity of the electron Fermi surface in the NENP
model indicates that an analytical calculation of this
entire angular variation is almost impossible.

For H parallel to the binary axis, we have found that
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10'
30'
50'
60'
70'
80'
85'
90'

m*/m0 from
EP model

0.009
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0.014
0.0178
0.0257
0.0469
0.0752
0.11

m*/m0 from
NENP model

0.009
0.092
0.0104
0.014
0.0180
0.0260
0.0486
0.080
0.11

TAM.E I. Angular variation of m*/m0 for the "ellipsoid" I with
II in the binary plane calculated from the EP and the NENP
models. 8=angle between II and axis 2. Values at 8=0' and 8=90'
in both models are chosen to 6t the experimental data.

m~* =0.14&0.02mo. (9)

With the values given in (6) to (9), we can determine
all the mass parameters in the EP model (1) and in the
NENP model (3) when appropriate values of E and

E, are used.
Ke consider the EP model first. In the principal axis

system, components of the inverse effective mass tensor
are given by

m, * m2*~3',

n, =mp*/mp*mg*,

ap ——mp*/m4*mp*.

(10)

In the crystallographic axis system it can be shown that

where

tXzz= A] q

awr=n&P+a& 9r'
azz=ap4l +apP&

apz= (no ap) bl~

&= cose4, ri= sine, . (12)

From Eqs. (6)—(12), we obtain the following values for
the KP model;

ng 141, ap ——0.5—8—4, np =87.3, (13)

mq ——0.00709mo, mp= 1.71mp, mp= 0.0115mo, (14)

n, =141, a„„=1.53, n..=86 3, n„,=.9.01. (15)

In the NENP model, m* is given by (AS) for H in
the binary plane. From this expression, we get
H along axis 2:

the bottom of the conduction band:

ml 0 00354mo m2= 1.49mo, mp=0. 00573mp, (19)

ng= 282, no=0.671, no= 175, (20)

n, =282, n„„=2.58, n, .=173, n„,=18.1. (21)

It can be seen from Eqs. (16)—(18) that the cyclotron
masses at the bottom of the conduction band are about
half the cyclotron masses at the Fermi energy. In the
EP model, E/E, is assumed to be negligible, thus when
the cyclotron masses measured at the Fermi energy are
used to determine the effective masses at the bottom
of the hand, a factor of 2 is introduced on the effective
masses m& and mp Lcomparing (14) with (19)$.

With values given in (19) and E/E, =0.50, we apply
(AS) to calculate the angular variation of m* for
"ellipsoid" I with H in the binary plane. The result is
given by the solid line in Fig. 9. Agreement with the
experimental result is seen to be fairly good. In this plot,
the cyclotron masses for H along axis 3 and axis 2 are
chosen to fit the experimental points. The deviation of
the experimental values from the calculated curve in
the neighborhood of axis 3 may be either due to crystal
misorientation or to approximations in the theory or
our calculation.

In order to compare the NENP model and the EP
model in the present case, we have calculated the angu-
lar variation of no* in the EP model using the values
given in (13).From the EP model (1), it can be shown'
that

ms* ——(1+2E/E p) (memo) "'. (16) m*/mp= (cos'Hn&no+sin'gn, a,)
—'~' (22)

H along axis 3:
mo* ——(2/pr)(1+2E/E, )(m,mp/2)'~'G(0). (17)

Applying (A10), we obtain:

H along axis I:
mq* ——(2/n)(1+2E/Ep)(mpmp/2)'~'F(0) (18)

From Eqs. (16)—(18), using Weiner's value'4 of
EIE.=o 5o, Eqs. (6)-(9), and F(0)=G(0)=1.686, we
determine the following values for the NENP model at

Here 8 is the angle betv een H and axis 2 in the principal
axis system.

Values of m* calculated from both models are listed
in Table I. It should be noted that measured values of
m* at 8=0' and 8= 90' are used to deduce the n's which
in turn are used to calculate the angular variation of vs*.
%'e see that both models yield the same cyclotron masses
except in a region close to axis 3, where the values ob-
ta, ined from the EP model are smaller by 7%. When
comparing these calculated values with the experi-
mental points as shown in Fig. 9, we notice that in the
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region where these two models do not agree, the experi-
mental results reveal better agreement with the NKNP
model although the fitting is not perfect.

In order to obtain m* for "ellipsoids" II and III from
the NENP model, one has to perform rotations of (3)
through &120' about s axis in the crystallographic (xys)
system which di{fers from the principal axis (123)
system by a rotation of 8& about axis 1.The presence of
the term containing PI complicates the expression for
the Fermi surface under these rotations. In the (xys)
system, (3) becomes

(p '('+p I~'+6p 'p 'Pn' 4p —'p en 4p p—'&~')

(2mIEg)'

pI' p 'P+p 'n' 2p p—kn+ +"
2mgEg 2m+a

p„'g'+p, 'p+2PIIP, )g E 5 E
=—I1+—

I
(23)

2mgEg Eg E Egl

From this equation, an analytical form for m* with B in
an arbitrary direction seems almost impossible to obtain.

We thus used the KP model to calculate m* for
ellipsoids II and III with H in the binary plane. This
was done by rotations of (1) using the values determined
in (15) (appropriate formulas can be found in reference
8). The results are plotted as the dashed curve in Fig. 9.
When compared with the observed values of m~ which
are identified as belonging to these two ellipsoids, we
see that experimental points agree with the dashed curve
only in the vicinity of the bisectrix (y) axis. In other
directions, the values given by the EP model are too
sma11.

B. Holes

When H is in a direction near the trigonal axis, the
hole cyclotron mass is nearly equal to the electron
cyclotron mass. Thus, for the Azbel'-Kaner type reso-
nance, it will be difBcult to select the right mass with
H parallel to the trigonal direction. We, thus, start with
H along the bisectrix axis, since for H along this direc-

tion, the cyclotron mass of the holes is well separated
from that of the electrons.

We then follow the angular variation of the hole
cyclotron mass nsI,* by rotating the magnetic Geld
carefully towards the trigonal direction. With this
procedure we are able to identify the hole resonance
lines in the neighborhood of the trigonal direction. Our
results are shown in Fig. 10. Only two conditions are
needed to fix the inverse eGective masses in the hole
Fermi surface (4) since PI=PI. The following observed
hole cyclotron masses are used:
H along trigonal axis:

my*= 0.067&0.007mp.

B along bisectrix axis:

(24)

2. H in the Bisectrix Plane

A. E/ecrron. s

When H is in the bisectrix plane, no analytic form for
tv* can be obtained from the NKNP model. We, thus,
compare our results with the KP model. Since we have
shown that n2 is much smaller than 0.~ and 0.3, the EP
model is a good approximation when PI is small. This is

~ I I I I I I

my*= 0.226&0.02nsp. (25)

Analogous to (22), angular variation of mI, ~ in the
present case is given by

mII*/mI= (sin'ePA+cos'ePI') "' (26)

Here 8 is the angle between H and the trigonal axis.
From the values given in (24) and (25), we have deter-
mined that

PI=PI= 14.8, PI=1.32. (27)

These values are then used in (26) to calculate the
angular variation of mg, *.The computed curve is shown
in Fig. 10. The agreement with the observed values is
quite satisfactory.

I I I I I I I
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FIG. 10.Angular varia-
tion of the light-hole
cyclotron mass with H
in the binary plane. 8 is
the angle between H and
the trigonal direction.
The curve is a plot of
Eq. (26) using P&~Pq=14.8 and PI=1.32.

O.IO

0,05

FIG. 11.Angular varia-
tion of the electron
cyclotron mass with H
in the bisectrix plane. |5)

is the angle between H
and the trigonal direc-
tion. The solid lines are
calculated from the EP
model using (1) and
(15).
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the situation when H is nearly parallel to axis 2 and has
been shown by Table I. In the present case, with H
nearly perpendicular to axis 2, we would expect to see
deviations from the EP model.

Using the reciprocal mass parameters obtained in

(15), we have calculated values of m* for the three
ellipsoids from (1). The results are plotted in Fig. 11.
As was also found in the previous case, the EP model

gives m* too small compared with the experimental
values. The fairly good agreement observed in the
neighborhood of the binary direction is partially due to
the fact that the calculated value of m~ was chosen to
fit the experimental point for that particular direction.
Deviations from the KP model for B in the other
directions are observed as expected.

I'ro. 13.Angular varia-
tion of the electron
cyclotron mass with H
in the trigonal plane. 8 is
the angle between H and
the bisectrix direction.
The solid lines are calcu-
lated from the EP model
using (1) and (15).
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The same orientation studies as were done with H in
the binary plane were carried out for the hole cyclotron
masses with H in the bisectrix plane. Again good agree-
ment with the experimental data was obtained by using
the spheroidal model with the inverse effective masses
determined in (27). These results are plotted in Fig. 12,
where the solid curve is the same as that of Fig. 10.

3. H in the Trigonal Plane

A. E/ecIrorIs

The NENP model, owing to its complexity, gives no
analytical expression for m* in this orientation; thus,
we use the EP model to 6t our data. In this case, the
experimental points are in almost perfect agreement
with the theoretical curves derived from the EP model.
This is the particular case in which the EP model enjoys
great success.

The three curves shown in Fig. 13 are calculated
from Eqs. (1) and (15). The observed values of m* are
shown to be fitted very well by these curves. Small
deviations for H in the vicinity of the binary direction
are observed. It can be seen from Fig. 13 that the ob-
served points at tH=20', 40', 80', 85' are not 6tted as

well as those at other angles. Those small disagreements
may also reveal a deviation of the electron Fermi
surface from the EP model.

3fg= 0.15@op. (28)

Our results cannot determine the hole Fermi energy E&.
Using Brandt's26 value of the extremal cross-section
area and our values of the hole cyclotron masses, we

8. Holes

Within the experimental accuracy, the hole cyclotron
mass is shown to be unchanged when H is rotated from
the binary direction to the bisectrix direction. This
behavior of my,

* is shown in Fig. 14.
From these constant values of mq*, and the same

angular variation with H in the binary and bisectrix
planes as shown in Figs. 10 and 12, we now come to the
conclusion that the light hole Fermi surface is, indeed,
of spheroidal shape with its long axis directed along the
trigonal axis.

Using the values given by (27), we calculate the
density-of-state mass of the light hole to be

I t I I

0.25— 0.25 "

I'n. 12.Angular varia-
tion of the light-hole
cyclotron mass with H
in the bisectrix plane. 8
is the angle between H
and the trigonal axis.
The curve is a plot of
Eq. (26) using pl =p~
=14.8 and p~=1.32.
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Fxo. 14.Angular varia-
tion of the light-hole
cyclotron mass with H
in the trigonal plane. 8 is
the angle between H and
the bisectrix axis.
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TABLE II. Comparison of m /m0 obtained by other cyclotron resonance experiments with the corresponding
values observed in the present work.

Source

Aubrey'
Gait et al."
Present work

Electrons Holes
mr mrr mrrr mh

0.119 0.009 0.15
0.13 0.0105 0.25
0.14 0.0107 0.226

H([bisectrix axis
Electrons Holes

mr* mrr*& mrrr* mj,*

0.0078 0.0156 0.15
0.0091 0.0180 0.25
0.0091 0.0196 0.226

Zj~trigonal axis
Electrons Holes

mr*, mrre, mrrre m7,

~0.06 ~0.04
0.08 0.068
0.081 0.067

a See reference 12. b See reference 13.

obtain the value of E~=0.0j.2&0.002 eU by assuming
a parabolic valence band which is reasonable.

Cyclotron masses for the electrons and the light holes
obtained by other cyclotron resonance experiments are
listed in Table II in comparison with the corresponding
values determined by the present work.

C. Dielectric Anomalies

The absorption peaks at 5000 with II in the
trigonal plane (Figs. 4 and 5) can be interpreted as
"dielectric anomalies. "The presence of these absorption
peaks has also been observed in other cyclotron reso-
nance experiments in Bi at diferent frequencies. ""

This behavior in Bi can be qualitatively explained by
the classical magneto-ionic theory. %hen a plasma con-
taining more than one kind of carriers of the same sign
but with different charge-to-mass ratios is in the presence
of a dc magnetic field and high-frequency electromag-
netic waves, cancellation of the total dielectric constant
will take place depending upon the concentration and
cyclotron frequencies of these charge carriers. This gives
rise to a large power absorption when the dielectric
constant becomes small. However, for a plasma in solid
Bi at low temperatures, the classical theory is unable to
calculate the exact position of this absorption peak
because of the complication due to the anomalous
skin effects.

With H in the trigonal plane, the EP model has been
used successfully to identify every resonance line ex-
pected from the electrons and the holes as shown in
Fig. 13. %e may associate the remaining absorption
peaks, which are not explained by the EP model, with
the dielectric anomalies. We have found that the posi-
tion of this particular absorption line remains almost
unchanged when H is rotated in the trigonal plane.

Using this interpretation, we have identified all ab-
sorption peaks with H in the trigonal plane. For B in
the other two planes, because of the complexity of the
NENP model and the inaccuracy in tl;e EP model,
some absorption peaks cannot be interpreted unam-
biguously. Identification of the dielectric anomalies in
those cases becomes difFicult.

total volume in momentum space enclosed by one
"ellipsoid" from

V = (gsr/3) (2mrmsms)"'E"'(1+6E/5Eg). (29)

Using values of E=0.022 eV and E/E, =0.50 as deter-
mined by other experiments, "we obtain the following
value of the electron concentration per "ellipsoid":

n, = 2 V/h'= (1.29+0.2) X 10"/cm'.

In the EP model, we have

V = (4x/3)(2msE)"'(urnsas) '"

(30)

with values of the a's given by (13) and E=0.022 eV,"
we obtain

n.= (1.35&0.2) X 10"/cm'. (31)

Comparing either value of n, obtained here with the
total electron concentration E per cm' deduced by
Jain and Koenig"

E=3.9X 10"/cm', (32)

with E~——0.012 eV, we obtain

ns = (3.5&0.4) X10"/cm'. (33)

Comparison of (32) with (33) indicates that there can
only be one spheroid for the light-hole Fermi surface.
This result also reveals the possibility of the existence
of another hole band with perhaps 10% as many holes
in order to maintain charge neutrality by assuming
there is only one electron band as we have discussed
before.

we see that there can only be three ellipsoids for the
electrons in Bi as has already been shown by Jain and
Koenig.

We calculate the hole concentration by using the
values determined in (27) and the following expression
for volume in momentum space:

Vs ——(4n/3)(2msEs)"'(Pr'Ps) "'

4. Number of Ellipsoids

From the values of mr, m2, and m3 determined in
Eq. (19) for the NEAP model, we can calculate the

"G. E. Smith, J. K. Gait, and F. R. Merritt, Phys. Rev.
Letters, 4, 276 (1960).

'6 N. B.Brandt, Soviet Phys. —JETP ll, 975 {1960}."D. H. Reneker, Phys. Rev. 115, 303 (1959).



CYCLOTRON RESONANCE STUDIES OF FERMI SURFACES I N Bi 1131

TABLE III. Comparison o& de Haas-van Alphen data' with the The following relation is useful:
NENP model using the mass parameters determined in (19).

Calculated
value

Observed
value'

1—k'x' "' 1 1—k' 2k' —1
I= x2 dx= — K(k)+ 2(k)

1—x2 3 k' k'

H 78' from
trigonal

H 168' from
trigonal

Cyclotron mass
dHvA period
Cyclotron mass
dHvA period

0,0092m p

7.6X10 ' G '
0.029m p

2.5X10-5 G-1

0.0088m o

7.8X1~ G- wh

0.025mo
2.75X10 ' G '

w'/2

E(k) =
(1—k' sin'82) "'

a See referenCe 14.

5. Comparison with the de Haas-van Alphen
Effect Data

2(k) =
7r/2

db/ (1—k' singing)'/2

In order to demonstrate the consistency of our deter-
mination of the mass parameters in the NENP model,
we now use the values of m1, m2, and m3 determined in

(19) to calculate the values of the cyclotron mass and

the dHvA period in pure Bi to make a comparison with

the corresponding values observed in the dHvA effect
experiments by Weiner. "

In the principal axis system, Keiner" observed the
dHvA oscillations for two directions of the magnetic
fjleld in the binary plane and making angles 78 and
168, respectively, with the trigonal axis. Referring to
Fig. 9, since the solid curve is symmetric with respect
to axis 3, these two directions correspond to 8=18
and 9=72', respectively. Results of our calculation are
listed in Table III together with Keiner's observed
values, the agreement is reasonably good.

are elliptic integrals of the erst and second kinds. Let

k2 —~2/(~2+'/12) t2 —~2(1 2 2) ~

we obtain

a = (4 cos'8l/2m2E, )(2mlE, )1/2(/43/k) I. (A6)

Taking the derivative of (A6), we get

8a 4(mlm2) "' 2E 1
1+—(2b "') 1/2E . (A7)

BE cos81 E, (1+T1)1/2

where

Tl= (bl +Vl)/(bl Vl) 4

thus the cyclotron mass m* for the present case can be
written as

m*= (2/ )(gr1+2E/E )(8ml/m22)' G/(28, ), (Ag)
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2E mpm 2m 3
1/2

m*= 1+ . (A9)
E, m3 cos281+m2 sin'6I1APPENDIX A

Let e be the area of intersection with a plane through
of the surface descrihed hy (3) and denote the

Similarly, for a Plane through axis 3 making an angle

angle between th1s plane and axis 2 by 81, then it can
be shown that m*= (2/2r)(1+2E/EV)(mgmg/2)"'F(83), (A10)

4 cos281
a= (2mlE )'" $(t'+ X2)(/4' —t') j"'dt (A1)

2m2E~ p

where
1

F(88) = (cos88bg" 4) 'K
(1+Tg) '/'

where
/4'= (bl'"—vl)2mgE /COS'8l

X' = (bl"'+ vl) 2moE, /cos'8l,

bl= (ElE,)(EIE,+1)+V1',

vl ———2'L1+(m2/mg) tan'8, ].

b = (E/E, )(1+E/E,)+(A2)

(A3)

(A4)

(A5) and F(0)=G(0).

Tg (b8 +V3)/(bg V3)

vg
———2'L1+ (m, /m, ) tan'8, ],


