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Electron Transport Phenomena in Zinc at Liquid-Helium Temperatures*f
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The magnetic-field dependences of the electrical and thermal resistances, the thermoelectric power, the
Hall, the Righi-Leduc, the Peltier, the Ettingshausen, and the Ettingshausen-Nernst effects at liquid-helium
temperatures in magnetic fields up to 14 kG, have been investigated in a single crystal of zinc. The measure-
ments were taken with either a constant heat current or a constant electric current Rowing perpendicular
to the hexagonal axis and with the magnetic field parallel to the hexagonal axis. Original observations of
de Haas —van Alphen type oscillations were made in the Righi-Leduc, the Peltier, and the Ettingshausen
effects. Respective periods of 6.14, 6.28, and 6.45&20 ' G ' were found. Like the Hall e6'ect, the Righi-
Leduc effect changes sign at about 5500 G. The Ettingshausen and the Peltier effects are strongly oscillatory
with little monotonic variation with field. The oscillations in the Peltier effect and the thermal magnetoresis-
tance exhibit a phase inversion near 5000 G similar to that in the Ettingshausen-Nernst effect and the mag-
netoresistance. This change in phase is correlated with the change in sign of the Hall and the Righi-Leduc
effects at about the same field value. The longitudinal and transverse Lorenz ratios are equal and remain
practically constant in high fields at a value of 2.35)&20 8 V'/deg', i.e., 4% smaller than the free-electron
value. An extrapolated value of the lattice conductivity at 2'K is 0.02 W/deg-cm, i.e., about 0.02% of the
zero-Geld electronic thermal conductivity. The thermoelectric effects are compared by means of the Onsager
relations. Excellent agreement is found for the phase and amplitude of oscillations. The different kinetic
coefficients relating Quxes to affinities were computed to facilitate comparison with theory. Curve fitting
of the conductivity coefficients to Sondheimer-Wilson theory was attempted in terms of a four-band scheme.
Analysis of the oscillations was attempted in terms of recent theory. The Righi-Leduc and the Hall conduc-
tivities, the Ettingshausen-Nernst, and the Ettingshausen e6ects (the transverse effects) strongly disagree
with the expectation of any of the available theories, each exhibiting oscillations whose amplitude is several
orders of magnitude larger than that calculated from any of the various theories. The results for the longi-
tudinal effects (the thermal and the electrical conductivities, and the thermoelectric and the Peltier coeK-
cients} are consistent, within the experimental error, with recent quantum-mechanical conductivity theories.

I. INTRODUCTION

'HE oscillatory magnetic-Geld dependences of the
magnetoresistance, Hall efI'ect, thermoelectric

power, and Kttingshausen-Nernst e6ect were studied in
a single crystal of zinc by Bergeron, Grenier, and
Reynolds. ' In the course of their analysis, it became
clear that any satisfactory comparison with theory
would require a determination of all the components of
the 6X6 tensor which relates the electrical and the
thermal currents to the electric Gelds and the tempera-
ture gradients in the metal. Experiments on zinc from
which these components are calculated are reported
herein.

TABLE I. Definition of the measured coefficients
with conditions of measurement.

Name Measured coefBcients Conditions

possible eGects have been described by Callen' and Jan. '
Those which have been measured in the present work
are dehned in Table I together with the conditions of
their measurement. Linear relations can be established
between the components of the GeM vectors and those
of the current vectors. These relations can be written in
various forms, depending both on the theoretical ap-
proach to the problem and on the particular experi-
mental conditions.

Isothermal electric
resistivity

Isothermal Hall
resistivity

Adiabatic thermal
resistivity

Adiabatic Righi-Leduc
resistivity

Adiabatic Peltier
coefficient

Adiabatic Ettingshausen
coefficient

Adiabatic thermoelectric
coefficient

Adiabatic Ettingshausen-
Nernst coef1icient
Adiabatic condition: m

Pll ~l j~l

P21 =E2j'Jl

+11—Gl /+~1

Y21= G2j~i

J2=Gi=G2=0II. DEFINITIONS AND FUNDAMENTAL RELATIONS

The transport of an electric current density J and
a heat current density w in a homogeneous isotropic
conductor in the presence of a transverse magnetic
field 8, i.e., a magnetic Geld perpendicular to the
direction of the currents, gives rise to a group of effects
characterized by modiGcations of both an electric field
E and a gradient of temperature, the negative of which
is designated by 6. The Geld vectors K and 6 are not
parallel to the current vectors J and w'. The diferent

J2=G1=G2=0

~1=J2=~2=~2 =0

Jl J2 2O2 ~2

'lrll GljJl ~2 ~l ~2 2

~21 G2/~ 1 ~2 gaol 2o2 ~2

&11 +1 /&1 ~l ~2 ~2 ~2

621 E2 /Kl Jl =g 2o2 —K2 0
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isothermal condition: G2=0.2=0;

H. B. Callen, Phys. Rev. 73, 1349 (1948); 85, 26 (1952).
J. P. Jan, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1957), Vol. 5, p. 1.
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ELECTRON TRANSPORT PHENOMENA I N Zn

Kinetic Equations (Form I)

As usual in the thermodynamics of irreversible proc-
esses, the Quxes are written as linear functions of the
amenities:

tensor
1 0

0 1

J=em* —a"6 and the antisymmetric tensor

w*= —m "I*+X"G. (1b)
0 1

Here e is the isothermal electric conductivity tensor;
a" is the thermoelectric power tensor; ~" is the Peltier
tensor; and 2" is the thermal conductivity tensor under
isopotential conditions. The components of these four
tensors are hereafter called the kinetic coefFicients.

The quantity K* is dehned as the negative gradient
of the electrochemical potential p, of an electron, where

p is the sum of an electrostatic component p, = —eP (P is
the electronic charge) and a chemical component p„.,
which is a function of the temperature and the electron
concentration. In terms of the free-electron theory, p,
is the Fermi energy. K* is then

E*=—e
—'v(p, +p,) = E—e-'vp .

The quantity w* is the entropy current density times
the absolute temperature:

w =w+e Ip,J;
the second term above is the current density of Fermi
energy.

Symmetry Relations

The system of linear equations, Eq. (1), simpliGes
when the current vectors are in the x1x2 plane and the
magnetic field is in the x3 direction, where xix2x3 is a
Cartesian coordinate system (see Fig. 1). The transport
phenomena become two dimensional and can be de-
scribed in Eq. (1) by 2X2 tensors. There are then only
16 kinetic coefficients. In the case of an anisotropic
medium, this reduction to tw'o dimensions is possible if
there is isotropy in the x1x2 plane, or if the x3 axis is a
crystalline axis of threefold, fourfold, or sixfold
symmetry.

Isotropy in the x1x2 plane implies the symmetry
relations

—1 0

~= a11~+aiB. (6)

Relations (8) reduce the number of independent coeK-
cients to six. In the present work, the validity of Eq. (8)
was considered as one of the points to be investigated
and, therefore, eight independent coeScients were
determined experimentally.

8'i edemann —Franz I.am

The thermal and the electrical conductivity tensors
2" and e are not related through Onsager's relations
but can be related by a generalized form of the Wiede-

Such tensors form a group isomorphic with the complex
numbers a=a»+a»i and may be manipulated in a
like manner.

Onsager's Relations

The systematic application of Onsager's reciprocal
relations' to Eq. (1) gives

(7a)

(7b)

Te;g"(H) =s p;"(—H). (7c)

Equation (7c) combined with the symmetry relations
gives

Te;g"(H) = s.;g"(H),

or in tensor form:

a;p ——(—1)'+'ap;, (i, k=1, 2)

a11 a22)

(4a)

(4b)

where a;g, designates an element of the 2)&2 tensors
deGned by Eq. (1).The coincidence of the magnetic Geld
direction with the normal to the x1x2 plane results in
the diagonal elements of the tensors being even func-
tions of B and the off-diagonal elements being odd
functions of JJ:

a;I,(H) = (—1)'+'a;I,( H), (i, k=1, 2). —(5)

Fir.. 1. A schematic repre-
sentation of the fields and
current quantities in a Qat
rectangular sample.

Lon
off

G& ~ 0:isothermal

w& ~ 0: odiabatic
I

I

l

I

I

The symmetry relations, Eqs. (4) and (5), reduce the
number of independent kinetic coeKcients to eight.
Each tensor is then a linear combination of the unit 4 L. Qnsager, Phys. Rev. 37, 405 (1931};38, 2265 (1931}.



1090 GREN I E R, REYNOLDS, AiN D ZEBOUX I

mann-Franz law' as

3"(H) =LTe(H),

where in free-electron theory L is a constant,

I. =(x'/3)(k/e)'=2. 45X10 'V'/deg'.

(9)

Questions arise as to the validity of Eq. (9) when the
influences of anisotropy, temperature, and applied
magnetic field are considered. Furthermore, these rela-
tions apply to purely electronic conduction processes
and the existence of lattice conductivity in the thermal
case must be either evaluated or proven negligible.
Assuming all conduction processes to be purely elec-
tronic, Kohler' and recently Azbel, Kaganov, and
I.ifshitz' have shown that the Wiedemann-Franz law
shouM apply to a single crystal, for arbitrary orientation
and magnitude of the applied magnetic field, provided
the conduction electrons are scattered without change
of energy.

The efkct of an applied magnetic field has been
treated in the Sondheimer-Wilson model for two over-
lapping bands and the explicit relations calculated
therefrom give the relative change of the resistivities. 7

Effective relaxation times which are different for the
thermal and the electrical conductivities are assumed
and the I.orenz ratio found is no longer independent of
the applied magnetic fieM.

The system of linear equations (1) agrees in form with
most of the theoretical derivations. Further, the di6er-
ent tensor elements are directly dependent on the num-
ber of carriers; each is a sum of the contributions of the
different groups of carriers.

(10)

where p is the isothermal electrical resistivity tensor, e is
the absolute thermoelectric tensor, ~ is the isothermal
Peltier tensor, and X is the thermal conductivity tensor.
The components of these four tensors are hereafter
called the isothermal coeScients. The advantages of
this formulation have been pointed out, for instance,
by iVlazur and Prigogine, and by Callen. ' Note that in
the case of the thermoelectric and the Peltier tensors,

' M. Ia. Azbel, M. I. Kaganov, and I. M. Lifshitz, J. Exptl.
Theoret. Phys. (U.S.S.R.) 32, 1188 (1957) Ltranslation: Soviet
Phys. —JETP 5, 967 (1957)j.

6 M. Kohler, Ann. Physik 40, 601 (1941).
7 A. H. %'ilson, Theory of Metals (Cambridge University Press,

New York, 1953), 2nd ed.
8 P. Mazur and I. Prigogine, J. Phys. Radium 12, 616 (1951).' H. B. Callen, Phys. Rev. SS, 16 (1952).

Kinetic Equations (Forms II and III)
Because the experimentalists usually determine re-

sistivities, two additional approaches are taken. In the
first one (Form II), the electric current density and the
gradient of temperature are the independent variables

and 8 = 0' F

and m =o'm

Also, the relations

(for the conductivity
tensors),

(for the thermoelectric
tensors),

(for the Peltier tensors).

y'= p+ e~' and 2."=2+m" (13)

are occasionally useful. When any set of eight inde-
pendent coe%cients has been determined, any other
coeflicient can be calculated through the use of Eq. (12).
These relations give Onsager's relations in the form

% =TE) N=TR. (14)

Further, the Wiedemann-Franz law, Eq. (9), has the
alternative forms

X(H) = LTa(H),

e(H) =LI'V(H),
(13)

since the differences between elements of 2" and X are
elements of the tensor a~" and are negligible compared
to the corresponding X terms.

Table I shows the measured coe%cients together with
the conditions of measurement. As indicated in Fig. j.,
the qualification "isothermal" refers to the condition
G2=0 and "adiabatic" refers to the condition m~=0.
Note that in the galvanomagnetic measurements, the
more complete isothermal conditions G~=G2 ——0 are
fulfilled.

III. APPARATUS

The electromagnet was an iron-core Weiss magnet
with 8-in. pole pieces separated by a 1~-in. airgap. It

the sects take place at the junction of two diferent
materials. One takes care' of the existence of the two
sides of the junction by replacing the tensors a and ~
by e&—e& and ~&—~&, where a& and ~8 refer to the
sample and e~ and ~~ refer to the other side of the
junction (i.e. , the copper leads).

The second approach (Form III) corresponds to the
conditions of measurement used in this work for the
thermoelectric and the thermomagnetic effects. Two
fluxes, heat current and electrical current, are imposed
on the sample and the potentials and the temperature
differences are measured. The appropriate kinetic
equations are

(Form III) 6=m J+'yw

where a' and ~' are the thermoelectric and the Peltier
tensors, respectively, y is the adiabatic electrical resis-
tivity tensor, and y is the thermal resistivity tensor.
The components of these four tensors are hereafter
called the adiabatic coeKcients.

Simple relations exist between the different tensors
defined in the foregoing. The relations used in the com-
putations herein are, in tensor form:
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could be rotated 360' about a vertical axis. Calibration
was by means of a nuclear resonance gaussmeter.

The sample was chemically cut from a single crystal
of zinc grown by a modi6ed Bridgman method from zinc
rods supplied by Johnson, Matthey, and Company.
The sample dimensions were 26.58)&8.10&0.345 mm.
The orientation was such that when placed in the cryo-
stat with its length along the vertical, the hexagonal
axis lay in the horizontal plane at an angle of 44' with

respect to the normal to the large face of the crystal.
Adiabatic conditions were obtained by placement of

the sample inside a vacuum chamber' sealed with a
gold ring.

The sample was mounted with its length parallel to
the axis of the brass vacuum jacket. The upper part of
the sample (Fig. 2) was clamped to a copper post ex-
tending up into the helium bath. Silicone grease was
smeared between the jaws of the clamp to improve
thermal contact under vacuum. A heater wound from
insulated resistance (Advance No. 40) wire was placed
at the opposite end of the sample. Both the current
through and the voltage across the heater could be
measured. The entire assembly was attached to a
stainless steel pumping line, which was separated mid-

way by an epoxy joint to provide electrical insulation
for the crystal holder. The leads passed directly from
the vacuum chamber into the helium bath through an

epoxy seal. "
The temperatures at appropriate points on the crystal

were measured by means of carbon-composition resistors
(Allen-Bradley, 50 0, 1/10 W). "Matched" pairs of re-
sistors, with closely identical behavior in the tempera-
ture range 1.3 to 4.2'K, were selected in a preliminary
run. To insure good thermal contact between the resis-
tance thermometers and the appropriate points on the
crystal, a closely 6tting, thin-walled, cylindrical sleeve
of electrolytic copper was machined for each of the
carbon resistors. A thermal lead made of No. 28 copper
wire was soldered along each sleeve. The end of each
thermal lead was soldered with tin solder to the desired
point on the crystal. Each resistor was coated with a
thin film of Hquid plastic insulating compound before
being placed in its copper sleeve. Each resistance ther-
mometer had two pairs of electrical leads attached across
its terminals. These leads were made of resistance wire
(Advance No. 40, 32 0/ft) to minimize any instan-
taneous heat Qow between the outside helium bath and
the thermometers. Two of the thermometric probes
were soldered along the direction of heat flow (separa-
tion: 1.65 cm) and the two others in the direction
perpendicular to the heat flow (separation: 0.81 cm)
along the edges of the sample.

The leads for electric potential measurements were
soldered directly to the copper thermal leads. In this
way corresponding electrical and thermometric meas-

"K. S. Balain and C, J. Bergeron, Rev. Sci. Instr. 30, 1058
(1959).

COPPER CI.AMP

EiEPZXXi~ YWXZZ~

COPPER POST CRYSTAl

CRYSTAL HOLDER NUMBER I

COPPER CLAMP
MNETER-

COPPER POST

CLIENT LEADS HEATER

CRYSTAL HOLDER NUMBER 2

Fro. 2. The crystal holder for the measurement of the thermal
magnetoresistance and the Righi-Leduc effects (number 1). The
crystal holder for the measurement of the Peltier and of the
Ettingshausen effects (number 2).

urements were made at exactly the same points on the
sample. The electrical measuring circuit, described in
reference 1, consisted of a "thermal-free" six-dial Rubi-
con potentiometer, a I.iston-Becker dc breaker-ampli-
6er, and a Brown recorder. A continuous signal was
achieved by an increase of the magnet current at a
constant rate.

The temperature measuring circuit was in the form
of a bridge, two arms of which were carbon-resistance
thermometers. The measurement of differences of tern-
perature AT of the order of magnitude of a millidegree
was, thus, reduced to the measurement of the difference
between the resistances of the carbon resistors. The
same chain of measuring instruments used for the
galvanomagnetic effects was inserted in the diagonal of
the thermometric bridge circuit to provide a continuous
recording of the voltage proportional to AT. The currents
in the thermometers were chosen in the range 8 to
40 pA and held constant within 0.5% during a set of
measurements.

Prior to each measurement, the bridge was balanced
by adjustment of the current in one arm so that a zero
signal corresponded to zero heat current and zero mag-
netic 6eld for the longitudinal effects, or to zero mag-
netic 6eld (with heater turned on) for the transverse
effects. This procedure effectively brought the charac-
teristic curves E(T) of the pair of resistance ther-
mometers involved into practical coincidence at the
average temperature of the measurement.

A separate potentiometric circuit allowed the meas-
urement of the resistance of each of the thermometers
separately. These measurements were taken regularly
during the decrease in temperature of the helium bath
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at the start of each run and. provided an accurate charac-
teristic curve for each thermometer. The behavior of
the thermometers was found to be quite reproducible,
in spite of repeated cyclings from room temperature
to helium temperature.

IV. RESULTS

The conditions of measurement, summarized in
Table I, were chosen for the particular effects under
investigation. All data were taken with the magnetic
field directed along the hexagonal axis of the zinc crystal.
This satis6ed the necessary symmetry conditions for
two-dimensional isotropy; also, the oscillatory behavior
of the effects in zinc becomes negligible when the mag-
netic field direction is o6 the hexagonal axis by an angle
of a few degrees. The orientation of the magnetic field
was accomplished by locating the sharp relative mini-
mum that exists in both thermal and electrical
magnetoresistance. ""

Bergeron, Grenier, and Reynolds' have shown that
the departure from the ideal case of Fig. 1 because of the
magnetic 6eld making an angle of 44' with respect to
the normal to the large face of the crystal. is accounted
for by use of an effective probe separation dcos 44' (for
the transverse effects), where d is the separation of the
transverse probes.

The e8ect due to a misahgnment of the transverse
probes, or that due to a misalignment of the magnetic
field with the hexagonal axis, is an even function of the
6eld. These effects are eliminated by the taking of two
series of measurements with +H and —IJ, respectively,
and the use of their diGerence. The justi6cation of the
procedure for all transverse measurements is also dis-
cussed in reference 1. The misalignment of the longi-
tudinal probes was negligible and the 6eld reversal pro-
cedure was unnecessary for longitudinal measurements.

The Electrical and the Thermal
Resistivity Tensors

The galvanomagnetic eGects were measured with
nearly perfect isothermal conditions, the crystal being
immersed in superQuid helium. The temperature of the
crystal was 2'I and the electric current in the csystal
was 0.5 A.

The thermomagnetic eGects were measured with the
crystal inside a vacuum chamber. The chamber pressure
was less than 4&(10 ' mm of Hg, the bath temperature
was 1.37'K, the mean crystal temperature was 2'K,
and the heat current was 2X10 4 VV.

The results for the thermal resistivity and the electri-
cal resistivity are shown in Fig. 3 plotted vs the mag-
netic field intensity. For a check of Eq. (15), the scales
have been adjusted in the ratio I- T, where I is the
free-electron value of the Lorenz ratio and T=2'K.

"E.S. Borovik, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 262
{1956)/translation: Soviet Phys. —JETP 3, 243 (1956)g.~ P. B.Alers, Phys. Rev. 101,41 (1956).
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Fio. 3. The Geld-dependent part of the magnetoresistivity
Ap» and the thermal magnetoresistivity Ap» vs the magnetic
field H at T=2'K. The scales have been adjusted in the ratio
L„T (L„ is the free-electron value of the Lorenz number).

The measurements gave directly the 6eld-dependent
part of the resistivities, i.e., yii(H) —y(0)=Alii and
pii(H) —p(0) = hpii, these quantities are plotted in Fig. 3.

The zero-field electrical resistivity was determined
experimentally with relatively high precision as
p0=4.5X10 ' 0-cm at O'K. The variation of the electri-
cal resistivity with the field is found to be fairly linear,
with p(H)/p(0) 38 at 14 kG. This value is comparable
to those of Alers" (Zn VI, at 3.5'K, p(H)/p(0)~10)
and Borovik" (Zn —10, at 4.22'K, p(H)/p(0)~33) at
the same value of the 6eld, while for a purer crystal
Renton" reports a much higher value (Zn —3, p(H)/p(0)
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I-—-20 +
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0 2 4 6 8 l0 l2 l4 l6
H(KGAUSS)

FIG. 4. The total Hall resistivity p» and the Righi-Leduc re-
sistivity p21 vs magnetic field IX at 2'K. The scales have been
adjusted in the ratio L„T.
"C. A. Renton, in Proceedings of the Seventh International Con-

ference on Lou-Temperature Physics (University of Toronto Press,
Toronto, 1960), p. 153.
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=208 at 7 lr.G). The measurement of the zero-Geld

thermal resistivity y(0) was, on the contrary, extremely
inaccurate; it was considered preferable to compute it
as y(0) =p(0)/L T, an assumption corroborated by the
results shown below. Though the presence of an oscilla-

tory component is faintly visible, this component can
be displayed unmistakably as shown in Fig. 5 of
reference 1.

The results for the Hall resistivity coeKcient p2i, and
the Righi-Leduc thermal resistivity coefBcient pm' are
shown in Fig. 4. The oscillatory behavior superimposed
on the gross variation is clearly evident in both eGects.
Both effects change sign for the same value of the mag-
netic Geld strength (H=5500 G) and the oscillations
are closely in phase

Measurements were also taken at 4.2 and 3.16'&.
The sensitivity of the thermometers is poorer at these
temperatures. The results indicated qualitatively that
the electrical magnetoresistance was practically inde-
pendent of the temperature, whereas the thermal
magnetoresistance varied as 1/T, as expected from the
Wiedemann-Franz law.

bC
y 200—
X
CP

I-
I

~ t50—

9
& l00—

Iw-

I II gg 30
g t

& gf+ g (easaecL I j

I

40

FIG. 5. The electrical and thermal conductivity coefIjtcients 0»
and X11 at 2'K vs the reciprocal of the magnetic field. The scales
have been adjusted in the ratio L T.

The Electrical and the Thermal
Conductivity Tensors

Knowledge of the elements of the resistivity tensors
allows the elements of the conductivity tensors to be
computed from the following formulas derived from
Eqs. (4), (6), and (12):

(16a)

(16b)

with p11 ~pll+PO and 'r11 +711+ra where &p11 +711,
and po are experimentally determined while yo is taken
to be equal to po/I. T.

The electrical conductivity o-ii and the thermal con-
ductivity P» are shown in Fig. 5 plotted vs the reciprocal
of the magnetic Geld. The values are plotted in the
magnetic Geld range most favorable for the observation
of oscillations. The absence of any sizable trace of
oscillation in the conductivities is striking; this is dis-
cussed in Sec. V. The results for the Hall conductivity
(0~2) and the Righi-Leduc conductivity (X~2) are shown
in Fig. 6, plotted vs H. The scales have been adjusted
in the ratio L T (T=2'I). These quantities go from
positive to negative values near 5500 G. At high Gelds,
the conductivities clearly go through a minimum. Their
oscillations are large and in phase. In view of the strong
oscillatory behavior of the Hall conductivity and its
relation to the oscillation in the number of carriers, the
behavior of the conductivities at very low Gelds was
investigated to detect the presence of high-mobility
carriers.

50 - IO-

$4o
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~IO

tP.
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Al0

0

I l I I I I

0 2 4 6 8 IO l2 I4
H IN KGAUSS

Fzo. 6. The Hall conductivity cr» and Righi-Leduc conductivity
X12 vs the magnetic field at 2'K. The scales have been adjusted in
the ratio L T.

Low-Geld measurements were carried out for the Hall
eGect and the electrical magnetoresistance only, since
the precision for these measurements is higher than for
the thermomagnetic e6ects and both sets of eEects are
related by the Wiedemann-Franz law. These results are
shown in part on the reduced scale of Fig. 6. A well-

defined maximum in 0.» appears, located at 550 G. More
detail of the lower Geld range is seen in Fig. 7 for the
two temperatures 2 and 4.2'K. The same Ggure gives
also the low-Geld values for vari~ at both these tempera-
tures. These features are interpreted in terms of the
Sondheimer-Wilson theory~ in Sec. V.

The two Grst curves shown in Fig. 8 are plots of the
purely oscillatory part of 0» and X» vs the reciprocal
of the magnetic Geld H. The scales are adjusted by the
Wiedemann-Franz coefBcient. It is interesting to note
the close similarity between the two curves.
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The Wiedema~~-Franz Law

The detailed comparison of the absolute values of
thermal and electrical sects has been made in terms of
the Wiedemann-Franz law. The point-by-point behavior

shown in Fig. 9 and provide the basis for the following
remarks.
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Fio. 9. The Lorenz ratios at 2'K vs the magnetic field.
„is the Lorenz ratio for free electrons.

The "longitudinal" ratio Lt stays within 4'%%uo of the
value L„=2.45&(10 ' V'/deg' (the free-electron value).
The "transverse" ratio Ls stays within 6 jo of the same
value. The region around 5.5 kG must be disregarded in

the case of L2, for both the Hall and the Righi-Leduc
effects change sign and the relative errors become very
large in that region. The general behaviors of Li and L2
are strikingly similar. They are both larger than L„at

hi h 6eld
low fields (H&3000 G for Lt and H& 2350 G f L

ig e s (H)6000 G), they are constant and equal
within the limits of experimental errors, their common
value being 2.35X10 ' V'/deg' about 4% less than L .
Note that the re re'ative precision of the measurements is
very high in the high-field region, where the magnitude
of the effects is large.

The strong anisotropy of the magnetoresistance in
zinc makes the results of the computation of the
%iedemann-Franz ratio extremely 't'

chan e
y sensi ive to any

c ange (between successive runs) of the crystal orienta-
tion. The resent rp esults are from recent measurements'4
where t e orientation has been carefull

' t '
y main aine;

ese recent data supersede the results reported earlier. "
As can be seen in Fig. 8, the Wiedemann-Franz law also
holds between the purely oscillatory parts of the Hall
conductivity 0-» and the Righi-Leduc conductivity X».

The Lattice Conductivity

of the
The closeness of the experimental values f L t thso i o at

o he orenz number L„ indicates that the 1

erma conductivity X, of the zinc sample at 2'K is
small corn aredp to the electronic conductivity
Figure 10 shows the results of two diGerent m th d

o determine the lattice thermal conductivity.

~ ~

ne etermination is based on thon e assumption that
, is independent of the magnetic 6eld. If X, obeys the

%iedemann-Franz law, then Xii——X +X becomes11 e g

Xtt(H) =ott(H)TL, +&g) (17)

where L is aa constant not necessarily equal to L . If
L, is independent of the magnetic field, a plot of htt(H)
vs &rt&(H) is a straight line whose intersection with the
vertical axis gives X,. It is seen in Fig. 10 that this
method is appropriate and gives X,=0.02 W/cm-deg.

The second method depends on 'A, tending toward

"N. H. Zebouni, C. G. Grenier and
Phy . S . 6, 10 (1961).

15 CC. J. Bergeron, C. G. Grenier, J. M. Reynolds and
Zebouni, Bull. Am. Phys. Soc. 5, 445 (1960).
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zero at very large magnetic fields. The total thermal
conductivity then tends towards X,. With an II ' be-
havior for X, assumed, a plot of All vs H ' gives X,. This
method gives X,=0.09 W/cm-deg. The latter estimate
is not as reliable as the former because very high mag-
netic fields were not available. Evidently X,. represents
less than 2/1000 of the total zero-6eld conductivity Xg,'

but at 14.2 kG, X, is up to about 7% of X»(H). Alers"
found X,=0.5 W/cm-deg at 3.5'K for his specimens
Zn VI and Zn VII, X,=0.2 W/cm-deg at 3.5 K for his
specimen Zn I and a still much smaller value for Zn I
when the magnetic field was misaligned by 5'. The usual
expression, X,=-2,CpA, gives 0.16 W/cm-deg, where the
specific heat C and the velocity of sound v are computed
from a Debye temperature 0=308'K and the mean free
path A taken equal to the thickness of the crystal.

The corresponding correction to the Lorenz ratio is
(11—I-e)/1-1= X,/41. With the value of 0.02 W/cm-deg
for )„this correction is negligible at low fields but it is
up to 7% at the highest 6eld value. On the other hand,
since the lattice conductivity does not contribute to
the Righi-Leduc conductivity, a value of Ll larger by
7% than J2 should be seen in this high-6eld range. No
such difference exists betwene I.l and I.2. Since the
precision of the measurements in the high-field range is
much greater than that of the extrapolated value of )„
this indicates a P, even small. er than the value 0.02
W/cm-deg obtained from the extrapolation.

with the associated expressions for the temperature
gradients Gl=yllzl*, G2=y21zl*. The condition J=O
gives w*= w.

The effective fields El and E2 measured across a
"thermal-free" potentiometer yield experimental co-
efficients (g»')e„p and (2»')e „by

El = (gl1 )exp211ly

+2 (&21 )exp2211.
(19)

These experimental coeKcients are characteristic of the
thermocouple circuit constituted by the zinc crystal and
the copper leads. It can be shown that, in terms of the
tensor elements of a, the thermocouple efI'ect is charac-
terized by the quantities e» —cc,, Hence, from the

The Thermoelectric and the
Ettingshausen-Nernst Effects

These effects were measured under the same condi-
tions as the thermomagnetic eHects. They were initially
measured by Bergeron, Grenier, and Reynolds, ' but a
new set of measurements on the same sample was taken
for use in this analysis. The experimental conditions are
Jl ——J2 ——J3——0, @2=0.The kinetic equations Form III
in Eq. (11) reduce to

~l &ll ~l/

~2 &21 &11

g xIO IN OHM CMII

300 Io 2D 30 40 5.0 60
I I I I I

' Z.O—
1(pi) Te)( + lg~

I.O—
(I/H )

0' I I

50 100

H x IO IN GAUSS 2

FIG. 10. The two methods of determining the value of the
lattice conductivity P, of the zinc crystal at 2'K. In the upper
curve the thermal conductivity, X» at 2'K, is plotted vs the
conductivity, 0». The intercept with the X axis gives a X, value
of 0.02 in watt units. In the lower curve the thermal coefFicient,
~», is plotted vs the reciprocal of the square of the field. Its
intercept gives a P, value of 0.09 watt unit.

relation c'= ya the experimental relations

or

( lg
&11 )exp 611 +llfcu&

I
621 )exp &21 +216cu)

(20)

(21)

follow. The magnitude of the quantity ec„was deter-
mined directly by measuring the thermocouple eBect
of the copper leads against superconducting lead" at
several temperatures in the liquid-helium range. A
linear dependence on the temperature was found:

oo„=—0.7'7)& 10 'T pV/deg.

This value yields terms p»ec„and &21ecu, negligibly
small compared to (g»'),„p and (ggl').„p. These two
quantities were then accepted without correction for
the all' and &21' coeKcients.

The experimental coef6cients (ell'), „p and (g21')exp
were measured at diferent temperatures in the liquid
helium range (1.3'K(T(4.2'K) and found to be
practically temperature independent, except for the
satellite peaks which were more pronounced at the lower
temperatures. The values of ~11' shown in Fig. 11 were
taken at 2.9'K and those of &21' shown in Fig. 12 were
taken at 3'K. A change in phase of the oscillations is
apparent around 4000 G, as noted previously in
reference 1.

The elements of the tensors t. and e" appearing re-
spectively in the kinetic equations Forms II and I were
computed from Eq. (12) for comparison with theory.
Figure 13 shows the behavior of the thermoelectric
power ail and the Ettingshausen-Nernst coefficient e21
at T=2'K. The latter coefficient shows a purely oscilla-

"F. J. Blatt and R. H. Kropschot, Phys. Rev. 11S,480 (2960).
Their extrapolated value for e,„=+0.29T pV/deg. It is about 25
times larger than the value found in this work and of opposite sign.
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FzG. 11.The experimental thermoelectric coeScient and Peltier
coefIicient vs magnetic Geld at T=2.9'K. The upper curve
represents the apparent adiabatic thermoelectric coefFicient &11'

multiplied by the mean temperature T of the crystal. The lower
curves represent the apparent adiabatic Peltier coefEcient mii' at
the same temperature T.

tory behavior with a set of satellite peaks. The ampli-
tude of the oscillations shows a saturation eBect. The
thermoelectric power e» also has a marked oscillatory
behavior superimposed on a small monotonic compo-
nent. The principal peaks of the thermoelectric power
are coincident with the satellite peaks of the Ettings-
hausen-Nernst coefficient. No explanation is apparent.
In Fig. 14, the longitudinal kinetic coefBcient e~~" and
the transverse coeKcient &2~" are shown as functions
of H. These are the coef5cients directly obtainable from
standard theoretical treatments. The notable feature
here is the saturation and decrease of the amplitude in
the oscillations of &2~" at large 6elds. The relation to the
similar behavior of the magnetic susceptibility in zinc"
is considered in the Discussion, Sec. V.

40—

+ 3O-I-

x 20

X lo—
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These measurements were expected to be extremely
dificult since associated with the e6ects of interest are
a simultaneous generation of heat by Joule's effect and
a Thomson eQ'ect. A 6rst attempt was made with the
arrangement shown in Fig. 2 (crystal holder number 1)
and under, the same high vacuum conditions described
in the section on electrical and thermal resistivity
tensors. The measurements showed the existence of
large thermal magneto resistance and Righi-Leduc
efI'ects, indicating a sizable Row of heat along the crystal.
To minimize any longitudinal heat Row (i.e., parallel
to J) due to the generation of Joulean heat, a thermal
junction (electrically insulated) was made between end
A of the crystal and the heat sink (copper post), and an
auxiliary heater was wound near end B. This arrange-
ment is shown in Fig. 2 (crystal holder number 2). The
auxiliary heater supplied a certain amount of heat to
end 8 of the crystal; the heating was adjusted until, by
reversal of the electric current, the remaining thermal
magnetoresistive eGect was established to be smaller
than the superimposed Peltier eEect. This procedure
depends on the fact that the thermal magnetoresistive
signal does not change sign while the Peltier eGect does
under electric current reversal. The experimental pro-
cedure consisted in taking the difference of two sweeps
with a reversal of the electric current. Since any residua&
Joulean heat current is not reversed when Jq is reversed,
the difference procedure eliminates both magnetoresis-
tance and Righi-Leduc eGects. However, both Peltier
and Ettingshausen eBects reverse sign when the electric
current is reversed and are isolated by the difference
procedure. Finally, the Thomson eGect, proportional to
JjhT, is unchanged if it is associated with the reversible
Peltier difference of temperature, and therefore is elimi-

The Pem, er and the Ettingshausen EQ'ects

The lower diagram in Fig. 2 shows the experimental
arrangement for the measurement of these eGects.
Electric current leads of copper were soMered to each
end of the zinc crystal. The measured quantities were
the differences of temperature which appeared along
the direction of Row of the electric current (Peltier) and
transverse to it (Ettingshausen).

z
-to r

Q

I
-40
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g -60
0 6 8
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'~ D. Shoenberg, in Progress ie rom Temperature Physics,
edited by C. J. Gorter (North-Holland Publishing Company,
Amsterdam, 1957),Vol. II, p. 259; I.M. Dmitrenko, B.I. Verkin,
and B. G. Lazarev, J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 328
(1958} /translation Soviet Phys. —JETP 8, 229 (1959)j; A. S.
Joseph and W. L. Gordon, Phys. Rev. 126, 489 {1962).

FIG. 12.The experimental Ettingshausen-Nernst coeflicient and
Ettingshausen coef5cient at 3'K vs magnetic Geld. The upper
curve represents the apparent adiabatic Ettingshausen-Nernst
coef5cient e~~' multiplied by the mean temperature of the crystal.
The lower curve represents the apparent adiabatic Ettingshausen
coefhcient ~21' at the same temperature,
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40—

0
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analogous to the thermoelectric relation, Eq. (20),

(e') p
——y(e —ec„l).

If the reciprocal relations Eq. (13) are assumed to apply
to the zinc crystal and the copper leads (the same copper
leads were used for both sets of measurements), the
result is

(24)
I l

0 2 4 6 8 IO

H tKGAUSS)
l2

F&G. 13. The thermoelectric power and isothermal Ettings-
hausen-Nernst coefficient vs the magnetic field at 2'K. The lower
curve is the thermoelectric power. The upper curve is the Ettings-
hausen-Nernst coeKcient.

nated. Et changes sign if it is associated with a difference
of temperature due to the flow of Joulean heat. This
part of the Thomson e6ect would not be eliminated by
the current reversal procedure but is minimized by the
preliminary adjustment described above.

The experimental conditions are defined by J2=mg
=me~ =0. The definition of the Peltier coefficient
s'» =G|/Ji implies the additional condition w&* ——0.
This condition is experimentally satisfied to a first
approximation. " The kinetic equation, Eq. (10),
(w*= —~J+XG) is now developed in the form

(xll zcu)+j+~11G1 ~21G2&

~2]J1+~2161+~1162)

where, by analogy to the thermoelectric effect, a
diagonal tensor" my„1 describing the Peltier behavior of
the copper leads is defined. The elements of the tensor
(~'), „are experimentally determined, and the following
expressions relate these experimental quantities to the
associated tensors ~. ~', and ~":

The elements of the Peltier tensor m11' and x~1' were
measured with the crystal at a mean temperature of
2.9 and 3'K and an electric current of 670 mA. The
experimental results are shown in Figs. 11 and 12 with
the corresponding experimental curve (e»'), ~ and
(e»'), ~ multiplied by the above mean temperatures of
2.9 and 3'K. The phase and amplitude of the oscillations
are in good agreement with Onsager's relations. The
amplitudes of the longitudinal effects (Fig. 11) are
matched within 5%; and those of the transverse effects
(Fig. 12) are matched within 1%. The apparent dis-

crepancy between the monotonic parts of the corre-
sponding coefhcients is probably due to a residual
Thomson effect or a possible temperature drift during
Peltier measurements. The monotonic variations of
+11' and m21' are, therefore, not as reliable as those
of +&11 and /&21 .

V. DISCUSSION

The Long-Period de Haas —van Alyhen Pockets

The pockets responsible for the long-period oscilla-
tions are probably due to a small overlap of the Fermi
sphere at the lateral edge of the third Brillouin zone,
this conjecture being in close agreement with the theory
(single orthogonal plane wave approximation) of Harri-
son, "the efI'ects of temperature studied by Berlincourt
and Steele, "and the effects of low pressure and high

(22)

The first relation can also be written as

(~')...=y(~-~c.l), (23)
"The kinetic equation (12) describing the situation in the

sample is GI ——mII'JI+pIIm» . Consider the difference of tempera-
ture ATI = —lGI, where l is the length of the sample and the total
currents II=AgI, QI* ——AmI*, where A is the cross-sectional area
of the sample, we have dT&= —II'II —I'QI» )Eq. (11)j, where
II'=le. II'/A, I'=lyII/A. There exists an external thermal circuit,
of equivalent thermal resistance F,xt, connecting the ends of the
crystal to a heat sink (copper post in Fig. 2), and for this external
circuit: B,TI= —I", tQI*. The comparison between the two previ-
ous equations gives —II'II/ATI=1 —I'/F, t, where ATI is the
quantity actually measured while —II'II is the one to be deter-
mined. But in the course of the measurements, it was estimated
that each one of the thermal junctions connecting an end of the
crystal to the heat sink had a thermal resistance about 150 times
larger than the "internal" thermal resistance of the sample itself.
It follows that I; t is at least 300 times larger than I', and that,
to a first approximation, —AT&—II'I1. This is clearly equivalent
to the condition QI*=m1 =0, as shown by Eq. 11."K. H. Zebouni, Ph. D. Dissertation, Louisiana State Uni-
versity, 1960 (unpublished).
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Fro. 14. The kinetic coefBcients of the thermoelectric
tensor at 2'K vs the magnetic field.

'0 W. A. Harrison, Phys. Rev. 118, 1190 (1960)."T. G. Berlincourt and M. C. Steele, Phys. Rev. 95, 1421
(1954)."K.S. Balain, C. G. Grenier, and J. M. Reynolds, Phys. Rev.
119,935 (1960).
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pressure" on the long period of the de Haas —van Alphen

type oscillation in zinc. These electron overlap regions
have the shape of needle-like pockets parallel to the
hexagonal axis. In a 6rst approximation, the pockets
are ellipsoidal with essentially a circular cross section
in the basal plane of area in momentum space 5 = eh/cP
= 1.68X 10 4' (erg-sec/cm)' as obtained from the experi-
mental period of 6.28X 10 ' G '. The ratio of the major
and minor axes of the ellipsoid is taken as 16.5.'4The
number of electrons per pocket is then 1.85)&10'~ per
cm', with the number of pockets equal to two rather
than the three proposed by Verkin and Dmitrenko. "
Hereafter, these pockets are referred to as the dHvA
ellipsoids.

The Conductivities

Since the Wiedemann-Franz law is satisfied within the
limits of experimental error, an analysis of the electrical
conductivity is sufhcient. The populations of the bands
will not differ for the galvano- and thermo resistivities. '2

Kith oscillations neglected, a 6t to the o.~~ curves
could be sought in an expression of' the Sondheimer-
Wilson type. '

~i2=(~)ec P mgE/(H'+H ),
H, =en&;*/er, ,

in which I; is the number of carriers (per cm') in the
band (+ for holes, —for electrons) and H, is the
saturation field. " Since such a formulation assumes

quadratic energy bands, the curve fitting should not be
expected to give a perfect band structure description.
Harrison" shows clearly that the complex band struc-
ture of zinc does not satisfy the quadratic condition for
which Eq. (25) is applicable.

In Fig. 7, the low-6eld values of o.~2 at 4.2'K show a
depression near 20 G followed by a bump near 60 G.
These features may be taken as indicative of high-
mobility electrons with some lower mobility holes. As
seen in Fig. 6, the Hall conductivity has a maximum
value of 32)&10' mho/cm at H=550 6, changes sign
around 5500 G, and reaches a minimum of —1.7)&10'
mho/cm around 10 000 G. This variation indicates the
presence of holes with intermediate mobility and low
mobility electrons. From the data at 4.2'K, the follow-
ing set of characteristic values is obtained:

'3 R. J. Deck, J. M. Reynolds, and C. G. Grenier, Bull. Am.
Phys. Soc. 6, 10 (1961);R. J. Deck, Ph. D. dissertation, Louisiana
State University, 1961 (unpublished) ~

'4A. S. Joseph, Technical Report No. 3, AFOSR-1757, Case
Institute of Technology, 1961 (unpublished); also, A. S. Joseph
and W. L. Gordon, Phys. Rev. 126, 489 (1962}."B.I. jerkin, I.M. Dmitrenko, Izvest. Akad. Nauk. (S.S.S.R.)Ser. Fiz. 19, 409 (1955) t translation: Bull. Acad. Sci. (U.S.S.R.)
Phys. Ser. 19, 365 {1955).j"D. E. Soule, Phys. Rev. 112, 698 {1958).

Carners

electron 1
holes 2
holes 3
electron 4

n; (cm '}
1.6X ].0»
17X10"

2.5X10»
4.4X 10"

II; (G)

20
64

580
5150

Precision in the determination of ni and n2 is poor for
the following reasons: (a) The experimental precision in
the low field range is relatively poor; (b) the two satura-
tion fields are almost equal; (c) the contribution of
carriers 3 and 4 is large. The 2'K data give approxi-
mately the same characteristic values for carriers 3 and 4
but a somewhat different set of values for carriers 1 and
2. There is greater uncertainty at 2'K in ni and n2 be-
cause of a lower value H2=40 G. The value mi is prob-
ably smaller than above.

A 6t for the ~» curve by a Sondheimer-Wilson type
expression

aii=ec P a,",H;(H'+H„'), (26)

is attempted. Here the n;, H, values are determined
from the o.» ana1ysis. The objections which apply to
fitting ai2 by Eq. (25) apply also to fitting o» by Eq.
(26). The factor a, is introduced in Eq. (26) to account
for the existence of noncircular orbits, " and for the
possible cases where electrons and holes of about the
same cyclotron frequencies and saturation fields have
compensating eGects in the Hall conductivity and addi-
tive effects in the longitudinal conductivity. A strangely
large value a~=5 is found at 4.2'K, while at 2'K a more
reasonable value closer to unity is found. The 2'K data
for o.ii indicate a value for II2 lower than that from the
4.2'K data and a value of a2 of the order of 2. The 2'K
data are considered more reliable than the 4.2'K data
since a strong electric current through the crystal was
necessary to produce sizable effects at 4.2'K and the
isothermal condition was therefore more nearly achieved
in the liquid-helium II bath at 2'K. For carriers 3 and 4,
the values of a; are, respectively, F3=2.6 and a4=3.0.

A point of interest in the zinc resistivity data which
still seems obscure is the occurrence of an apparent
saturation in the transverse magnetoresistance" ""
under the same experimental conditions and even in the
same sample" used in the present work. The absence of
the saturation in the present results can either be at-
tributed to some slight deterioration of the crystal or,
more likely, to some misalignment of the magnetic 6eld
in the present experiment. This saturation is generally
attributed to the ring-shaped hole pocket" "with a very
low value for the associated cyclotron frequency (very

"In the case the pockets present in the basal plane a sym-
metrical set of elliptical cross sections, the value of a is given by
a=$P(m /mp)'f2+(mls/m )"g, where m and mp refer, respec-
tively, to extremal values of the effective mass of the electron
on the ellipses; a= 1 for energy bands of circular symmetry.'8S. A. Ali, Ph. D. dissertation, Louisiana State University,
1958 (unpublished)."E.Fawcett, Phys. Rev. Letters 6, 534 (1961).
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TABLE II. Number of majority carriers in zinc found in the present work, compared to the two-band model data of different authors,
and to the number of overlapping electrons over the boundaries of the large zone' taking for the crystallographic ratio c/a= 1,8246 and
a single OPW approximation.

Present data
From Hall conductivity o»
FrOm COnduCtiVity 4r«

Alers' (Specimen Zn VI)
From magnetoresistance p11
From thermal magnetoresistance y11

Borovikd (Specimen Zn II)
From Hall angle p21/p11
Single OPW approximation

Holes (3)

n, =2.5X10'1 cm-3
a3n3=6.5X10'1 cm '

11 2X10"
9.14X10 1

10.5X10'1
9.1X1P'

F.lectrons (4)

n4 ——4.4X10» cm-3
a4n4=13.2X10"cm '

X1P2
22X10 &

10.5X10"
9.1X1P2

a H. Jones, The Theory of Brillouin Zones and E/ecderonic States in, Crystals (North-Holland Publishing Company, Amsterdam, 1960), pp. 137, 192.
b See reference 20. e See reference 12 ~

' See reference 11~

large saturation Geld). A diGerent interpretation is sug-
gested in the last part of the discussion. Such saturation
would require the existence of a fifth carrier system with
an extremely high value of the saturation Geld H5, the
fifth carrier system could change the above character-
istic values for carriers 3 and 4. Any tilting of the
magnetic field would cancel the saturation effect since
most of the orbits would then be around the arms of the
ring and would appear to be in the third carrier system.

The high-mobility electrons (carriers 1) as shown
above probably correspond to the dHvA ellipsoids over-
lapping the edge of the thrid Brillouin zone even though
the expected number of electrons, 0.37&(10" per cm',
is smaller than the value ni= 1.6X10"per cm' found
from the curve Gtting. The high-mobility holes (carriers
2) are probably part of the underlapping of the Fermi
sphere in the first Brillouin zone where spin orbit
splitting"" is included. This underlap may be esti-
mated to be around 1.2X10" holes per cm' (using
Joseph's'4 P4 period and geometrical consideration of
the shape of the underlap), i.e. , seven times the number
found in the curve fitting.

The less mobile holes characterized as carriers 3 prob-
ably consist of, partly, the less mobile holes in the
above pockets in the Grst Brillouin zone and, mostly, the
holes in the arms of the ring-shaped hole pocket in
the second Brillouin zone.

The low-mobility electrons (carriers 4) correspond to
the Fermi sphere overlapping in the third and fourth
8rillouin zones. This overlapping is quite complex;
however, the single OP& approximation gives an esti-
mate of 9.1&10"cm ', i.e. , twice the value found from
the 0.» curve fitting. The discrepancy here may arise
(a) because the estimate 9.1&(10" cm ' may be too
large, or (b) because the complexity of the band struc-
ture may result in many of the electrons in the overlaps
having a cyclotron mobility equal to that of some holes
in the ring's arm and thus, canceling in the a» analysis.

' M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544
{1960).

'A. S. Joseph, W. L. Gordon, J. R. Reitz, and T. G. Eck,
Phys. Rev. Letters 7, 334 (1961).

The 011 curve fitting values for can; and a4n4 are some-
what closer to the OPW estimate.

Several attempts have been made to compute the
band structure of zinc from galvanomagnetic effects on
the basis of a two-band model; these results, compared
with the present data for bands 3 and 4, are shown in
Table II.

The discrepancies appearing are to be expected since
Eqs. (25) and (26) are only rough approximations for
zinc and results depend largely on what effects are con-
sidered in the analysis. Nevertheless, results of the same
order of magnitude are found here. An increase in im-
purities or crystal defects should cause an increase in the
values for the diferent saturation Gelds and should
increase the value of the field at which the Hall effect
changes its sign. The present zinc crystal has shown an
aging effect over a period of six years. Earlier measure-
ments of the inversion Geld of the Hall effect gave suc-
cessive values of 4000 G,"4600 G, ' and finally 5500 G.
Also, slight increases of the residual resistance and the
Dingle temperature" were observed. A slightly purer
crystal used by Borovik" shows a value II=3600 G for
the Hall inversion field. The very pure sample of
Renton" shows a brusque appearance of the oscillation
of p11 at 2000 G which suggests' a Hall inversion Geld
somewhat less than 2000 G.

Oscillation in the Conductivities

The Kiedemann-Franz law also holds within the
experimental error for the details in the oscillations of
the galvano- and thermal conductivity tensor coeK-
cients (Fig. g). This behavior is expected for impurity
elastic scattering, ' ~ even though to our knowledge there
exists no treatment of the Kiedemann-Franz Iaw which
includes Landau quantization. Analysis of the conduc-
tivity oscillations is, therefore, restricted to the o-» and
cr11 coe%cients. In reference to the oscillations, the
notation 0. is used to represent the oscillatory part and

"C. G. Grenier, J. M. Reynolds, and S. A. Ali, Proceedings of
the Fifth International Conference on Low Temperature Physics
(University of Wisconsin Press, Madison, 1958).~ R. B.Dingle, Proc. Roy. Soc. (London) A 211, 517 (1952).
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0., the monotonic part; 8 represents the amplitude of
the oscillation.

Levinger and t rimsal" showed that oscillations in

the number of carriers induced by a varying magnetic
field causes oscillations in the Hall constant if the re-

maining bands can be treated as a reservoir. Lifshitz
and Kosevich" applied the same idea in a more com-

prehensive theory which treated all the isothermal co-
efIicients of the galvanomagnetic effects. The theoretical
results are summarized as follows.

The oscillatory part of the conductivity coefficients
is written as

0 aP ~fTaP+ ~10aP)

where the first term arises from the oscillation with

field in the number of carriers in the different bands for
the Fermi energy f constant, and the second term
accounts for the redistribution of the carriers in the
diGerent bands due to the variation of the Fermi energy
for P(+n;) constant. The first term is

htT P=~~i q; n, ,.aP-.

where n; is the oscillation in the number of electrons in
the pockets (i) responsible for the oscillation for

g = const and q; t' is the classical mobility of the carriers
corresponding to the extremal cross section of the pocket
perpendicular to the field. The redistribution of the
carriers in the difkrent bands yields

where the summations over i and i' are over all the
bands. The index zero refers to the zero-Geld condition;
the q;. t"s are classical mobilities; the n s are number
of electrons or holes; and the E s are the number of
states.

TABLE III. Comparison between the amplitude of the oscilla-
tions in the experimental Hall conductivity,

~ o»I,x1„ the ampli-
tude as computed from Lifshitz and Kosevich theory, ' t10]2t
LEq. (31)j the amplitude determined from the susceptibility
data, s liris, „„LEq. (36)g and the amplitude determined from
the Ettingshausen-Nernst coefFicient 3 Isis"

I I Eq. (43)j vs the
magnetic field. '

H Is'is lexp I uris I I eis leusc & Isis"
I

(kG) (mho cm ') (mho cm ') {mho cm ') (mho cm ')

3
4
5
6
8

10

16X104
24X 104
26X 10'
25X10'
22X 10'
19X10

20.8
21.8
21.2
20.0
17.0
14.0

1.5
1.85
1.85
1.7
1.2
0.9

11X10'
21X 10'
24X 104
23X104
18X10
12X 10'

' See reference 35.
b See reference 25.
e In the different computations appearing in Tables III and IV and

Fig. 8 (Curve Acta") the following characteristic values have been used.
For the ellipsoidal pockets of electrons giving rise to the long period de
Haas-van Alphen oscillations: Period P ~6.28 X10 ~ G 1; basal cross-
section area S~ 1.68 X10 ~~ erg~ cm 2 sec+~ (or 1.51 X10 4A ~ in wave
vector space); axial ratio R =16.5; number of electrons per pocket ep 1.85
X10» cm~; number of pockets p 2; cyclotron mass w~ 0.0068 mo,

chemical potential ft =4.3 X10 14 erg per electron; saturation field Hl
=m*c/err =20 G; relaxation time r& =2)&10» sec. For the low-mobility

electron band: Saturation field H4~6250 G, conversion units; o in mho
cm '=(1/9) X10»o in Gaussian units; e" in A cm 1 (deg) 1=(1f3)
)&10~ e" in Gaussian units; X in W cm 1 (deg) ' =10 'X in Gaussian units.

over i is limited to the i= j. term. Also, since H1, H2,
Hs«H (3 kG&H(10 kG) and zi, zs, zs«z, zs z, the
terms in i'= 1, 2, 3 can be neglected and

0 \s (ec/H)(H4—'/(H'+H4')5Rt. (31)

The value 8 for the oscillating number of carriers is
obtained through standard methods" ' and, in the
specific case of ellipsoids of electrons, described in con-
nection with the long period de Haas-van Alphen
pocket, is

Oscillations in the Hall Conductivity

No oscillations appear in the Hall conductivity 0.12

under asymptotic conditions, i.e., very high fields, since
q;"=if,"=&ec/H. Oscillations appear only if at least
one band is not under asymptotic conditions. In this
case, the relaxation times are assumed to be independent
of the energy and the classical mobilities are taken to
be &ecH/(H'+H ). Equation (27) for the Hall con-

ductivity oscillations becomes

o„=ecP;,; H[(H'+HP) '
—(H'+H,")—'j(z;./z)(&S, ) (30)

(+ for holes, —for electrons), where z; =
l
t)n; /dt',

and z=P, z,'. Since only the oscillations due to the
electron ellipsoids (electrons 1) appear, the summation

s' J. S. Levinger and E. G. Grimsal, Phys. Rev. 94, 772 (1954};
E. G. Grimsal, Ph. D. dissertation, Louisiana State University,
1956 (unpublished)."I,M. Lifshitz and L. M. Kosevich, J. Exptl. Theoret. Phys.
(U.S.S,R.) 33, 88 (1957) /translation: Soviet Phys. —JFTP 6, 67
(1958)$.

cS g 7r

Xexp 2trik —y i —+—— , (32)
ehH 2 4

where p=2 is the number of ellipsoids, R=16.5 is the
ratio of the axes of the ellipsoids, and X= 2zjs'sis*c2'/eI)H
is computed for en*=6.8X10 'neo and T=2'K. Com-
putation with H4=6250 6 limited to the fundamental
terms, k=1, yields for the amplitude of 012 the values
listed as a function of the field in Table III in column

lfT12 ~

As evident from Table III, the experimental values
0'is

~
exp for the amplitudes of the o» oscillation are

larger than those calculated by a factor of the order
104 even though they show a similar field dependence.
This discrepancy might be reduced by considering larger
eccentricities for the ellipsoids (R large). The limiting

"I.M. Lifshitz and L. M. Kosevich, J. Exptl. Theoret. Phys.
(U.S.S.R.) 29, 730 (1955) /translation: Soviet Phys. —JETP 2,
636 (1956)j."R. B.Dingle, Proc. Roy. Soc. {London) A211, 500 (1952).' M. Blackman, Proc. Roy. Soc. (London) A 166, 1 (1938).
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case is that of cylindrical pockets extending to the
Brillouin zone boundaries; this case gives values still
only of the order 10 ' times the experimental values.
Further, the cylinder scheme is ruled out by a vast
amount of susceptibility data. "

In their theory, Lifshitz and Kosevich" express the
oscillations in conductivity in terms of the oscillations
in longitudinal magnetization AM, . Since most suscepti-
bility data are obtained from torsion balance experi-
ments, a computation based on the two relations

n= BQ—/81,

C= —i1~1/8$,

(33)

(0 is the grand canonical potential, i is the chemical
potential, C is the torque, and f is the angle between
the field and the hexagonal axis) yields in the 6rst
approximation

ri= C(~S-/~I)/(~S-/W) (35)

i
oi~i,.„=Pc'0 'm*Lf(P) j 'i CiH 'H4'/(H'+H4')

~Pc'I'i 'm*H
~
hx

~

H4'/(H +H4'). (36)

Here P is the period of the oscillation in G ', f(f), a
function of f which can be approximated for small 0.

value and long ellipsoids by f(f)~ sin~sing cosP;and

hx = C/H' sing cosf. (37)

A better approximation is obtained by use of the exact
expression for hx." From the data of Verkin and
Dmitrenko25 for hx, the amplitudes for 0.» are computed
and listed in Table III in the column ~oi21«., The
values

~
aim~, „„and

~
ioi2~ agree within a coefficient oi

the order of 10; this indicates that the susceptibility
oscillations in a first approximation are enhanced by
oscillations in the number of electrons in the de Haas-
van Alphen pocket. " The large discrepancy between
theory and experiment exists here, too.

Calculations of 0~~ have also been made with the
theory of Lifshitz and Kosevich. The expected values of

~
ioii~ should be of the same order as

~
ioim~, i.e. , 10 '

times the
~
0 i&

~ ~i, values. The experimental data do not
exhibit any detectable oscillation (i.e. , ~oii~. i, (&%
of

~
iain~). Since an oscillation of

~
Oii~ of the magnitude

predicted by the Lifshitz-Kosevich theory would not be
detectable in the present experiment, no contradiction
to the theory exists on this point. Also, since the
Lifshitz-Kosevich theory predicts the amplitude of the
oscillation of o.» and cr» in bismuth quite well, " the
large oscillation of

~
ai2~ in zinc is not construed as

contradictory to the theory. Instead, a mechanism is
suggested later in the discussion which can account for
this discrepancy.

I D. Shoenberg, in Progress in j om Temperature Physics (North-
Holland Publishing Company, Amsterdam, 1957), Vol. II, p. 226
(a list of 12 references can be found in this review article).' B.Lax, Rev. Mod. Phys. 30, 122 (1958).

4' J. R. Sybert, Ph. D. dissertation, Louisiana State University
1961 (unpublished).

The lViedemann-Franz Lm

As pointed out already, the oscillatory parts of the
thermal and the electrical conductivity coefBcients are
in good agreement with the generalized 7Viedemann-
Franz law, ) =LTO, and the coefmjcient L is nearly
equal to the Lorenz number I„=(m'/3)(k/c)'.

It has been shown through Eq. (30) that the electrons
responsible for the oscillations in 0-» are mostly the
electrons in the dHvA pocket, heretofore called electrons
1, i.e., electrons of effective mass m~*=0.0068+so.The
question of the eGect of electron-electron Coulomb inter-
action on the de Haas —van Alphen effect and on trans-
port properties such as dc conductivity has been dis-
cussed recently. ~ Diverging points of view have been
expressed. Pippard has suggested that the above equa-
tion for L„should involve the eITective charge e~ rather
than the bare charge e. Stern's theory (in the absence
of electron-phonon interactions) predicts e*=em*/m,
which, in the caseof the dHvA pocket in zinc, would
lead to e&*=0.0068' and, consequently, a value of L&

(pertaining to electrons 1) much larger than I.„.Either
the Stern theory is in error, or the majority of the
electrons participating in the oscillation of the conduc-
tivities have m*=nso. A mechanism proposed in the
last part of the discussion to account for the large oscil-
lation in the Hall conductivity gives m*=mo for the
contributing electrons.

The Thermoelectric EBects

onsager's relations hold for the amplitude of the
oscillations. The discrepancy between the monotonic
parts of the a' and ~' is probably due to a systematic
experimental error, the source of which has not yet been
found. The e' part is probably the most accurate. In
the computation of the elements of the e" tensor, any
inaccuracy introduces the same order of inaccuracy in
the monotonic part of e~~". Since an accurate determina-
tion of the monotonic part of either e»" or e»" is quite
dHFicult, no analysis has been attempted. Under asymp-
totic conditions in the quadratic bands model, the co-
efficient c~i" ', cC/H, where——C-is the electronic specific
heat; nonasymptotic conditions lead to a somewhat
smaller value. For an average value4' for C of 595T
erg/cm'-deg, H= 5000 G, and T= 2'K, e,i" is calculated
to be 1.19 A/cm-deg or 8'Po of the experimental ampli-
tude. Because of the complex harmonic content in the
~2~" data, the existence of a monotonic part of this
magnitude is diKcult to ascertain.

~ See papers by L. M. Falicov on the velocity and eGective
charge of the particles near the Fermi surface, by E. A. Stern on
the effect of interactions on determination of Fermi surfaces, and
discussion, p. 67fI, in The Fermi Surface, edited by W. A. Harrison
and M. B. Webb (John Wiley R Sons, New York, 1960).

43 J. G. Daunt, in Progress in rom Temperature Physics, edited
by C. J. Gorter (North-Holland Publishing Company, Amster-
dam, 1957), Vol. I, p. 202 (J. G. Daunt gives table and reference
of diferent experimental determinations of C for zinc).
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ets" ——
—s,ssk'cT Q;l BE;/Bi lH ', (38)

where the oscillations appear through BE;/8$ Sinc.e
only the oscillations due to the electron ellipsoids
(electrons 1) appear, Eq. (38) reduces to

The Oscillations in the Thermoelectric EBects

No complete theory for the oscillations in the thermo-
electric effects is available. There exist some indications
that classical formulae44 can be carried over to quantum
theory. This procedure leads to an oscillatory term in
e21" related to the oscillation in the density of states as,
asymptotically,

I R12 lexp [1&12
{kG) LAcm '( K) 'j LAcm '{'K) ')

1&12
l susc

LA cm-1 ('K.)-1]

3
4
5
6
8

10

8.15
13.3
14.2
13.2
10'.5
7.7

16X10 '
14.2X10 4

13X10 4

12X10 4

10.5X10 4

9.4X10~

11.3X10 5

11.8X10 '
11X10 '
10X10 5

7.2X10 '
5.6X10 ~

& See reference 25.

TABLE IV. Comparison between the amplitude of the oscilla-
tion in the experimental Ettingshausen-Nernst kinetic coefficient

R&2" ~,„R, the amplitude as computed from the density of state
rRrs"

~ PEq. (41)), the amplitude as determined from the suscep-
tibility'

l
re»" l,„„LEq.(44)g vs magnetic field.

est s.skscT(Bts/Bf')H t— (39)
from Eqs. (31), (32), (39), and (40) as approximately,

4m442nn*T H'
1+

3e'hH H4'
(42)

Substitution of rr»l, „ for lto»l in Eq. (42) gives a
value for

l
ets" which should be correlated with

l
e»" l,». Equation (42) can be inverted to give a value

f»
l o»l in terms of

l
e»"

l ~n asan ehH»2 2~c aS t B,—=4pRA '
Bg c ehH Bi s k'" sinhk)r 3e'hH4 H H4 ~

012 = —— — 612 exp
4&k'cm*T H4 H If c 'r

Xexp 2trikl S —7 s . (40)——
~ehH 4 (43)

where n without index corresponds to the dHvA
pockets, Eq. (32). (Asymptotic conditions are certainly
obtained for this case.)

Equation (32) for n depends on I' through the ampli-
tude term and the phase. In BH/Bf, the most important
term arises from the derivative of the phase (S depends
on i)

Greater harmOniC COntent in the ~21" than in o.21 iS

expected as seen by comparison of Eqs. (32) and (40).
The difference in phase between the two effects of s./2 is
also expected. These expectations are born out in Fig. 8
as can be seen by comparison of the first and third
curves.

The amplitude of the oscillations
l

est"
l

are computed
for T=2'K, (BS /Bf') =2s.m*, m*=0.0068ms, t and the
fundamental term k=1 only. For these calculations,
Eq. (39) is written as

RR(2 )V es)" DS lilr',
3ehH' ch Bg sinhX

X sin —2s.y+ —. (41)
ehH 4

The computed values are shown in Table IV in the
column

l
t est"

l
. Again, a great discrepancy between

theory and experiment is found, the ratio of calculated
to experimental values being approximately 10 '. The
field dependences match relatively well.

A direct relation between lto»l and
l
ters"

l
is found

44 Y. A. ByChkov, L. E. Gurevich, and G. M. Xiedlin, J. Expt].
Theoret. Phys. (U.S.S.R.) 37, 534 (1959) ptraiIslation Soviet
Phys. —JETP 10, 377 (1960)g.

le» l.~~~= trskscs(eh) 'PT(m*)'IAxl (44)

This expression shows a field-independent proportion-
ality between e12" and Dy. But as shown in Table IV,
these quantities differ by the same order of magnitude
as found in Table III between lo»l, „~ and lotsl, o.

Comparison of the first and third curves in Fig. 8 shows
a close correlation between the two when H4 is taken to
be 6250 G. This value of H4 is close to the 5200 G ob-
tained from the Sondheimer-Wilson curve fitting. The
values of Al e»"l are also hsted in Table III. Good
correlation exists between E]2 and o.12, however, both
the Lifshitz-Kosevich theory for o» and the density of
state formulation for &21" fail to give the right order of
magnitude for the amplitude of the oscillations in zinc.
In the field range studied, 3000 G&H&10000 G, the
factor A is practically constant, hence, the close simi-
larity betWeen the o.12 and &12" OSCillatiOnS. AS pOinted
out earlier, the I.ifshitz-Kosevich theory predicts quite
well the oscillatory behavior of both o.12 and o.11 in
bismuth. Also, 4' good agreement exists in bismuth for
the oscillatory behavior of e»" for the density of state
formulation as above.

A direct relation between e12" and hg is obtained
from Eqs. (36) and (43) under the same assumption as
above. Except for a difference in phase and harmonic
content, the relation is
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The case for the oscillation in eii" in zinc is question-
able since the small oscillations found in the computation
of ~~i" from the experimental a', p, and y could be due
to accumulated experimental errors. For example, in
calculations for &~i", there exist two strongly oscillatory
terms which almost cancel each other. An error of 10'%%uq

in either of these terms could cause the eii" oscillations
shown in Fig. 14. Consequently, no analysis is made
for this coe%cient. The Zil'berman theory, 4' which con-
siders only O.i~ and ~ii" could not be compared with

experiment for the same reason.

Holes and Electrons Orbits in Zinc

The anomalously large amplitude of the oscillations
in the Hall conductivity is puzzling. All present theories
predict an asymptotic behavior given by the general
formula 0 i~ ——ee g;(& I)/H (with — for electrons,

+ for holes). Since P,(&n;)=0 is expected in zinc,
0» should vanish at high fields with zero oscillations.
Nonvanishing Hall conductivity and oscillatory be-
havior would appear only if some bands do not satisfy
the asymptotic conditions or if P;(&n, ) =m/0. In the
latter case, the asymptotic expression for a change in

conductivity 60.» associated with a change An in

P;(&n,) is Aai2=echm/H. To match b,oi~ with the
observed amplitude of the oscillation, the corresponding
An must be nearly 280 times the number of electrons
in the dHvA pocket. On the other hand, if the condition

g;(&n;) =0 is fulfilled under nonasymptotic conditions,
an equal variation in the number of holes and electrons
is required (dna', =An, ) and the value of An, will still
be larger than the An found in the preceding considera-
tion, i,e., of the order of 10' times the number of electrons
in the dHvA pockets.

A special mechanism is needed which will allow many
more electrons to participate than are normally expected
for standard processes. A mechanism is suggested which
will allow carriers normally behaving as holes to shift
into electron-behaving carriers as the field is increased.
In the single OP% approximation for zinc, the basal
representation of which is shown in Fig. 15, an electron
under the inRuence of the magnetic field (perpendicular
to the basal plane) moves in momentum space along
arc A of the Fermi sphere. Should the periodic lattice
potential associated with the Brillouin planes I' and
I"be zero, the electron would continue along the Fermi
sphere from A to C and behave as an electron carrier.
For a nonvanishing potential, Bragg reaction occurs
on I"and in the momentum representation, the electron
passes from A to 8' or, in the cellular representation,
from A to 8 and continues along the external cross sec-
tion of the hole ring, ""behaving as a hole carrier. The
periodic potential corresponding to the set I', I" is
known to be small and to give a small energy gap which
almost vanishes on the edge g of the zone, the intersect

G. E. Zil'berman, J. Exptl. Theoret. Phys. (U.S.S.R.) 29,
762 (1955) t translation: Soviet Phys. —JETP 2, 650 (1956)j.

F&c. 15. The Fermi surface for Zn in an extended zone schernc
(folded and unfolded Fermi surface) according to a single OP%
approximation. The de Haas —van Alphen pocket is in solid black.

of I', I"."An intermediate case with partial Bragg re-
Rection may occur, with the probability of Bragg re-
fection decreasing as point Q is approached and as the
magnetic field increases. Electrons in the second zone
in momentum space passing from A to C tunnel through
the edge of the third zone which contains the electron
ellipsoids. As the transit electrons (i.e., the electrons
bridging from A to C) are for a short while with mo-
menta and energy closely equal to those of the electrons
belonging to the de Haas —van Alphen ellipsoids, a strong
interaction is expected, making the transit electrons
sensitive to the Landau levels of the de Haas —van
Alphen ellipsoids. This might be expected to give rise
to a Bragg reflection deficiency or transparency with an
oscillatory character of a period determined by the
Landau levels in the small pocket.

If an amount Anq of carriers with an A —+8 hole
behavior shifts to an A —+C electron behavior be-
cause of the appearance of a transparency, the condi-
tion P;(&m,)=0 becomes P;(&n,)=—2hmi with an
asymptotic contribution to the Hall conductivity o.»
= —2echrii/H, and a negligible contribution to the con-
ductivity oii q,Ae, q——i,Ani, (w—ith Ari, hni, an=dmobil-
ities q, =qh). From the idea of an oscillatory field depend-
ence of the transparency, oscillation in 0.» related to the
An p, is expected with practically no oscillatory contribu-
tion in the 0~i. If the number An~ were large enough, the
experimental behavior could be explained by such a
mechanism. The mechanism of magnetic breakdown
invoked by Cohen and Falicov4~ to explain the giant
orbit in magnesium is somewhat similar to the above
mechanism except that the breakdown condition
M= AA, where AA is the energy gap, seems to lead to a
rather diferent representation of the transit electrons. 4'

4' H. Jones, The Theory of Brilloein Zones and I'/ectronic States
in Crystals (North-Holland Publishing Company, Amsterdam,
1960), p. 191.

"M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231
(1961).' If the probability of crossing the set P, P' should be taken as
the square of probability for the crossing of a single plane P under
the breakdown condition, a practically negligible effect of trans-
parency will take place at. the field used. More probably the set,
P, P', should be treated as a whole and the transition of the
electrons from band 2 to band 2 as a tunneling through band 3
instead of a band 2 to band 3 transition followed by an inde-
pendent band 3 to band 2 transition.
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The maximum number 6 n~ of low-Geld A —+8
hole-behaving carriers which can shift to a high-6eld
A —+ C electron behavior will probably correspond to
that outer ring of the Fermi sphere whose inner limit
is the cylinder of radius OQ passing through the edge of
the zone. An approximate computation gives 5, nq
=2X10" electron/cm', which is about 600 times the
number of electrons in the de Haas —van Alphen ellip-
soids, and about 3 times as much as the number needed
to account for the oscillations observed in O.i2. %here
the A —+ C behavior is complete, the expectation is that
P,(&n;)= —2hna= —4X10" cm '. This amount is
about 5 times smaller than the value n3—n4 ———19&(10"
cm ' obtained from the 0.» Sondheimer-%ilson curve
fitting.

Questions still exist as to how to interpret the trans-
port properties of a ring-shaped band. "The electrons
corresponding to the inner cross sections of the hole ring
(orbit D) should be electrons in character if they were
not constrained by the hole-behaving outer cross sec-
tion. If the outer part of the ring is allowed to have an
electron behavior, then the inner part will exhibit its
electron character and the value n3 —n4 found experi-
mentally would be quite reasonable. Also, an enhance-
ment of the oscillation amplitude might be expected.

The condition P;(&n~)WO explains also the satura-
tion found for the transverse magnetoresistance p» with
the magnetic field perpendicular to the basal plane,
Because of the thinness of the core of the hole ring, an
angle P of the magnetic held with respect to the normal
to the basal plane increased above 5 to 10 would cause
all the possible oribts related to the hole ring to be
around the arms of the ring and thus give a hole
character to the entire hole ring. The condition
P,(+rs;) =0 would then be ful611ed and the quadratic
behavior of the magnetoresistance restored at such 6eld
orientations. It is interesting to note that the oscillations
in the galvanomagnetic effects disappear for such
orientations.

Another feature of the mechanism is that it can
explain the puzzling properties of the susceptibility
oscillations in zinc, i.e., the decrease of their amplitude
as the Geld is increased. If more electrons pass through
band 3, either a larger broadening or a decrease in
occupancy of the Landau levels in this band would be

expected and would cause a susceptibility amplitude
decrease.

The consequences of such a mechanism on the be-
havior of the Ettingshausen-Nernst and the thermo-
electric effects are not clear at present. An enhancement
of the effects would reasonably be expected. Why a
phase difference of z/2 should exist between the ~~2"

and o» and also why these two effects correlate so well

by means of Eq. (43) are puzzles for later unraveling.

VI. CONCLVSIONS

Some of the conclusions which can be drawn from the
experimental results on electron transport phenomena
in zinc are the following:

(I) The Wiedemann-Franz law holds even in the
details of the oscillations of the different conductivity
coefficients. This is in good agreement with the general
considerations of elastic scattering by impurities at low
temperature and demonstrates the relatively negligible
contribution of the lattice to the heat conductivity.

(II) Onsager's relations hold in the very details of
the oscillations in the thermoelectric and the Peltier
tensor coeKcients, in agreement with the universal
validity of these relations. No I'mkehr effect was de-
tected in the oscillatory components.

(III) Interpretation of the amplitude of the oscilla-
tions in the transport phenomena in terms of oscillations
in the number of carriers and the density of states leads
to a strong disagreement with experiment in the case
of the Hall conductivity o.i2 and the Ettingshausen-
Nernst coefFicient ~.i", but leads to fairly good agree-
ment with the susceptibility and the conductivity term
o.». A mechanism is suggested which strongly enhances
the oscillations in the Hall conductivity and in the
Ettingshausen-Nernst effect without affecting appreci-
ably the susceptibility and the conductivity 0.».

The theoretical implications of the foregoing conclu-
sion are particularly interesting. It is expected that
these matters will be treated at a later date. The in-
teresting effects found in zinc are being sought in other
metals.

ACKNOWLEDGMENT

The authors wish to thank Dr. C. J. Bergeron for his
assistance in the early part of this work.


