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Cyclotron resonance of holes in unstressed or "cubic" silicon fails to specify uniquely the valence band

parameters because of the complex shape of the warped energy surfaces. The application of uniaxial stresses
to the crystal lifts the cubic symmetry and removes the degeneracy at h =0 of the valence band which is

responsible for the warping of the surfaces. The ellipsoidal energy surfaces of the decoupled bands give
cyclotron resonance masses amenable to simple interpretation. From the measured masses (at 1.26'K and

9000 Mc/sec) the following quantities have been determined: the inverse mass band parameters (in units
of fs'/2mslA = —428+002, (8 (

=O'6+004, and )
X

(
=936+0 10; the absolute value of the ratio of the

band splitting deforjnation potentials [D„/D„)=1.31&0.03; and the signs of the quantities BD„(0and

XD '&0. The interaction of the spin-orbit split-oG band with the valence band edge under strain allows

the signs and magnitudes of the deformation potentials to be obtained. They are D =+(2.04&0.20) eV
and D„'=+(2.68+0.25) eV. The results indicate that the N J =&1/2 band moves "up" and the 3fJ = &3/2
band "descends" under compressive stresses along the L001j and L111jcrystallographic axes. This fact in
conjunction with the ratio of deformation potentials shows that the quantization and band energy splitting
are approximately isotropic with respect to the direction of stress. Finally, the signs of 8 and X were deter-
mined to be negative, the negative sign of 8 being contrary to that predicted by band theory. An investigation
of the shape of the split-band hole resonance confirms the line-broadening mechanism proposed by Hasegawa.

I. INTRODUCTION

T low temperatures, free holes and electrons in a
semiconductor crystal in an external magnetic

6eld Hg can execute orbital or cyclotron motion' at an
angular frequency &o,=ebs/m*c, where me is the eGec-
tive mass of the charge carriers. Since the effective
mass is a measure of the curvature of the bands, the
cyclotron resonance determines the shape of the energy
surfaces near the band edges. This technique has been
used extensively in exploring the band structure of
silicon and germanium. ' Signi6cant features of the
valence bands have, however, remained obscure. The
present investigation was undertaken in an attempt to
shed further light on these matters by a study of the
cyclotron resonance of holes in silicon single crystals
elastically deformed by the application of large,
uniaxial stresses.

From the early cyclotron resonance experiments"
it was evident that the energy surfaces belonging to the
valence band edge for silicon are considerably more
complex than those for the conduction bands. The latter

*%'ork performed at Bell Telephone Laboratories, Murray Hill,
New Jersey.' J. Dorfmann, Doklady Akad. Nauk S.S.S.R. 81, 765 (1951);
R. B.Dingle, Ph.D. thesis, Cambridge University, 1951 (unpub-
lished}; Proceedings of the International Conference on Very Lom
Temperatures (Oxford University Press, New York, 1951},p. 165;
Proc. Roy. Soc. (London) A212, 38 (1952); W. Shockley, Phys.
Rev. 90, 491 (1953).

~ For a review on this subject see B.Lax and J. G. Mavroides, in
Solid State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1960), Vol. 11, p. 261..' G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955}.' R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 104, 637
(1956}.

have ellipsoidal energy surfaces for which a measure-
ment of the anisotropy of the efkctive mass m* is
sufhcient to define the mass tensor. The situation for the
degenerate valence band edge at k=0 is quite another
matter. Coupling between the degenerate bands
distorts the energy surfaces into quartic surfaces, often
called "warped" or "Outed. " These warped energy
surfaces, which cannot be represented by a mass tensor,
are usually described in terms of the so-called inverse
mass band parameters' .4, 8, and S. Cyclotron res-
onance on complex surfaces of this type su6ers from two
major drawbacks. First of all, the warping severely
broadens and shifts the resonance lines making it di6i-
cult to locate their true centers accurately. A second
and more fundamental limitation is the fact that the
measurements fail to specify the signs of two of the
band parameters B and X, since the shape of the
energy surfaces is independent of these signs.

This experimental ambiguity is indeed unfortunate
for silicon because a controversy has existed over the
sign of 8 which is especially important since it is
sensitive to the ordering of the conduction bands at
4= 0. (A negative sign implies a germanium-like band
structure. ) In their original paper, Dresselhaus, Kip,
and Kittel' proposed a positive sign for 8 which was
supported by more recent band calculations of Kleinman
and Phillips. ' Theoretical arguments by Kane, ' on the
other hand, favored the negative sign. In view of this
uncertainty, an experimental determination of th e
sign of 8 seemed highly desirable.

The shortcomings of "classical" microwave cyclotron
' L. Kleinman and J. C. Phillips„Phys. Rev. 118, 1153 (1960).' E. O. Kane, J. Phys. Chem. Solids 1, 83 (1956).
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resonance experiments in the valence bands can in
principle be circumvented by the detailed analysis of
the quantum cyclotron resonance spectrum~ ' seen at
mm wavelengths. This consists of numerous weak
lines that originate from transitions between the
anomalously spaced, low-lying Landau levels. Although
the interpretation of the quantum lines near 1'K, no
doubt, provides the most comprehensive picture of the
valence band structure, the analysis of the spectra is
suKciently complicated to require a fairly accurate set
of "trial values" for the band parameters. One of the
objectives of this work is to obtain them to a higher
degree of accuracy.

The present study constitutes an alternative approach
to the problem based on recent theoretical investiga-
tions' '" of the effects of uniaxial stress upon the
degenerate valence bands. Uniaxial stress on the
crystal lifts the cubic symmetry and removes the
degeneracy at k=o responsible for the warping of the
energy surfaces. In zero magnetic field the decoupled
states are degenerate Kramers' doublets identified by
the magnetic quantum number &Mg for stress along
the [001] and [111]directions. The decoupled bands
have ellipsoidal energy surfaces which —like the
conduction bands —give cyclotron resonance masses
amenable to straightforward interpretation. Preliminary
measurements" on germanium and silicon have indeed
confirmed the predicted effects upon the cyclotron
resonance spectrum.

As is shown in detail. in Sec. II, for uniaxial stresses
along each of the three principal crystallographic
directions [001], [111],and [110]the mass tensor of
the ellipsoids is related in an elementary way to the
original band parameters 3, 8, and S. Thus, from
measurements of cyclotron masses in Si the following
have been determined: the inverse mass band param-
eters A,

~

8 ~, and
~
iV ~; the absolute value of the ratio

of the band splitting deformation potentials" D„and
D ', and the signs of the quantities BD„and IVD„'.
The signs of 8 and X enter the analysis only through
the products BD„andED„'.Since little information is
available concerning D„andD„',one needs to ascertain
their signs from a different type of measurement.

Some evidence bearing on this point is available from

, ( E(k)
kz

HEAVY
HOLES

A = 0,044 eV LIGHT
HOLES

the spin-resonance experiments" of acceptor states in
silicon under compressive stress. It is preferable,
however, to have confirmation of the sign of D„and
D„'from direct measurements on the band edge itself.
Such information can be derived from the observation"
that the effective masses shift linearly with increasing
stress. Hasegawa" has recently shown that such shifts
arise from a strain-induced admixture of the spin-orbit
split-off valence band with one of the upper valence
bands. The presence or absence of the shift for the
observed cyclotron line determines the character assign-
ment of the topmost band fixing the sign of D„orD„'
and, in turn, the sign for 8 or X. The magnitude of
D„andD„'has also been obtained from measurements
of the mass shifts.

In connection with the deformation potentials, we
arrive at a rather surprising conclusion. The results
indicate that the MJ=&-,' band moves "up" and the
Mg =~ ~ band moves "down" under compressive
stresses along the [001] and [111] crystallographic
axes. This fact, in conjunction with the ratio of deforma-
tion potentials, shows that the band energy splitting is
nearly isotropic with respect to the direction of stress.
Furthermore, this is the condition for isotropic quantiza-
tion, i.e., that &M+ is nearly a good quantum number
for arbitrary stress direction.

The shape of the hole resonance line exhibits several
striking features. It is asymmetric with a tail on the
high mass side. Its linewidth is not simply determined
by the hole scattering relaxation time, but has been
shown by Hasegawa to arise from an uneven spacing
of the Landau levels. Hasegawa's theory for the line
broadening was experimentally checked and verified
in detail.

7 R. C. Fletcher, W. A. Yager, and F. R. Merritt, Phys. Rev.
100, 747 {1955);J. C. Hensel, Bull. Am. Phys. Soc. 6, 115 (1961);
J. J. Stickler, C. Rauch, H. J. Zeiger, and G. S. Heller, i'. 6,
215 (1961).

8 J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela, 1, 154, 1642

(1959); 3, 1002 (1961) Ltranslations: Soviet Phys. —Solid State
1, 136, 2502 (1959};3, 730 (1961)j; Phys. Rev. Letters 6, 103
(1961). We would like to express our regrets of having omitted
references to the work of G. E. Pikus and G. L. Bir in our earlier
communication {reference 11}."H. Hasegawa, preceding paper LPhys. Rev. 129, 1029 (1963)j."J.C. Hensel and G. Feher, Phys. Rev. Letters 5, 307 (1960)~"W. H. Kleiner and L. M. Roth, Phys. Rev. Letters 2, 334
{1959).

FIG. 1. The valence bands of "cubic" silicon near 4=0. The
warped energy surfaces of the light- and heavy-hole bands are
shown schematically. The spin-orbit split-ofF band labeled by its
spectroscopic character p~q2 has spherical energy surfaces which
are not shown.

"G. Feher, J. C. Hensel, and E. A. Gere, Phys. Rev. Letters
5, 309 (1960).' J. C. Hensel, Bull. Am. Phys. Soc. 6, 304 {1961).
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II. VALENCE BANDS OF SILICON NEAR A.'=0

A. In the Absence of Strain

Kithout strain or spin-orbit splitting the valence
band edge of silicon is a sixfold degenerate p multiplet
characterized by symmetry I"25 of the cubic group.

The sixfold multiplet is comprised of three bands each

twofold degenerate due to spin. In the vicinity of
k= 0, the shapes of the bands can be determined using

k p perturbation theory (p= momentum operator).
The perturbation matrix' in (m~m. ) representation is

Lk,'+M (k„'+k.2) A k,k, Xk,k,
K (m. = W-', ) = teak„k, Lk„'+M(k,'+k, ') Xk„k,

~Yk,k, iVk, k, Lkg+M(k '+k„')

where
L=F+2G,

M = II2+II2,
S= I' —6+H2 —H2.

The band parameters Ii, G, II2, and II2 correspond to
the individual contributions from each of the four
representations that can perturb the valence band edge
as classified in Table I."' '6

Actually for silicon the spin-orbit interaction partially
lifts the degeneracy at %=0. The sixfold degenerate

p state splits into a fourfold p~~2 multiplet and a twofold

P~~s multiplet with separation'r A= 0.044 eV (see Fig. 1).
The band edge, the upper J=3/2 state, consists now of
a pair or twofold degenerate bands usually designated
as the light" and "heavy" hole bands. 06 R=O, the
energy surfaces can be determined, as before, by the
k p perturbation technique. A generalization Pin (JMq)
representation) of (1) including the spin-orbit interac-
tion can be diagonalized to give the energy surfaces for
the J=3/2 band'

g(k) Ak2~LIl2k4+C2(k 2k 2+k 2k 2+k 2k 2))1/2 (3)

where the inverse mass band parameters A, 8, and C
are deIj.ned by

A = s' (L+2M)+A2/2ma,

8= ', (L M), -— (4)
C'= —',[N' —(L—M)'].

The upper and lower choices of signs in (3) refer,
respectively, to the heavy and light holes. The shapes
of the energy surfaces are pictured in Fig. 1. The
coupling between the light- and heavy-hole bands via
the degeneracy at %=0 is responsible for the warped or
fluted form of the energy surfaces.

The lower J= ~ band has spherical energy surfaces
given by

E(k) =Ak' A—
Cyclotron resonance absorption has not been observed
for this band.

'~ J. Tauc and A. Abraham, Proceedings of the International
Conference in Semiconductor Physics, Prague, JP60 (Czechoslo-
vakian Academy of Sciences, Prague, 1961), p. 375; J. Tauc and
A. Abraham, J. Phys. Chem. Solids 20, 190 (1961)."J.C. Phillips, Phys. Rev. 125, 1931 (1962).

'~ S. Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Phys.
Rev. Letters 4, 173 (1960).

The interpretation of cyclotron resonance measure-
ments in the J= ~ bands is difficult for the following
reasons:

TAaLE I. Tabulation of the irreducible representations which
perturb the valence band edge.

Irreducible
Band represen-

parameter tation
Atomic

character

Conduction band
energy (measured

fl"om F25 )

F
G

II2

F2

FIs
F2s

Antibonding s
Antibonding d
Antibonding p
Antibonding d

~3 eV&
~10 eVb

3.4 eV'
~30 eVb

Extrapolated from optical absorption measurements in Ge-Si alloys
See references 25 and 16.

b Estimated from band theory. See references 5 and 16.

(a) Since 8 and X enter (3) quadratically, it is
impossible to determine their signs from the shape of
the energy surfaces or, equivalently, from the cyclotron
resonance spectrum. The importance of the signs,
especially for 8, has been emphasized earlier.

(b) Quantum effects arise at low temperatures which,
even though unresolved at X- or K-band frequencies,
can shift the apparent line center.

(c) In the analysis leading to Eq. (3) the coupling
between the J= ~ and J=

~ bands was ignored. For
silicon with a small spin-orbit separation of A= 0.044 eV
this assumption may contribute errors in the application
of (3) to cyclotron resonance.

(d) From an experimental point of view the most
serious consequence of the warping is the k, broadening
which spreads and shifts the lines in a complicated way.
The mechanism for k, broadening is quite simple. On
a complex energy surface, orbits of different k, (a
constant of motion for s axis chosen along Hp) have
different periods. Kith carriers distributed thermally
over all allowed values of k„the resultant cyclotron
line is a composite of many such individual. lines.
Reasonably accurate calculations to correct for the
k, broadening and shifts are exceedingly hard to make.

In view of these drawbacks it is expedient to consider
new methods of tackling the valence band problem.
One approach involving uniaxial stresses is discussed
next.
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B. In the Presence of Strain

A uniaxial stress applied to a siLicon crystal removes
the cubic symmetry; and the J=-', valence band splits
further into a pair of degenerate Kramers' doublets.
Under special conditions these may be identified by
the magnetic quantum number ~MJ. Kleiner and
loth" have constructed a strain Hamiltonian in terms
of the angular momentum operator J(J=-,') to describe
the splitting of the pptp states at k=0,

H, =De'(e„+e„,+eg, ).+pD„[(J.' ',J')—e~,-
+(J ' 'J—')e-+(J'—-'J')e ]

+ 'D„'[-(JQ„}e„+{J,J,)e +(J„J,)e„,], (6)

where e, , e „,-, are the "conventional" strain
components (see Appendix A) and De', D„,and D„'
are the valence band deformation potentials. "D„'
gives the shift of the center of gravity of the entire
valence band. It does not, however, contribute to the
splitting and is henceforth ignored. D„and D ' define
the valence band splitting for uniaxial stress along the
[001] and [111]directions, respectively. The factors
(JQ„},etc. , represent the symmetrized products, i.e.,
(J&p}=

p (J&.+JpJ*).
To determine the shapes of the J=-,' bands ofI' k=O

there must be added to I1, in (6) the Hamiltonian for
the k y perturbation

A (k 2+k 2+k 2) B[k 2(J 2 1J2)
+k 2(J 2 tJ2)+k 2(J P XJ2)]
—(21V/3)[(k k„}{J,J„)+(k.k, ) (JQ,}

+(k„k.) (J„J.)] (7)

and the sum Hp ——H,+HI, must be diagonalized. Ke
consider the special cases for the stress T along the
principal crystallographic directions. A general solution
for any orientation of T in the (110) plane is given in
Appendix 3.

axis of quantization along the stress direction. The
eigenvalues of (9) are the band energies at k=0

where

E3/2 +60)

+1/2 &0)

pp
——-'pD+ and S= (ski —s») T.

(10)

60

p~(k)=(Aw-', p k.'+ Amp k(('a~ ~, (12)
60 60

where the upper and lower signs refer, respectively, t.o
the top + ( pp[ and bottom —

~
pp) bands. A measure-

ment of the effective masses for the top band + ~pp~

with T~~[001] determines, according to Eq. (12) the
values of A, I

B I, and the sign of ppB. The lower band
—

I pp~ is depopulated at liquid He temperatures and
is not observed by cyclotron resonance.

Under large strains the valence bands decouple so
that HI, can be considered a first-order perturbation.
Therefore, to lowest order in k the eigenvalues of the
total Hamiltonian Hp are the diagonal elements'

Eptp(k) = (A+g'B)ki'+(A —B)kiP+pp,

Eg/9(k) = (A ——,'B)kP+ (A+B)k, P pp, —
where

ki'= k*'+k ' and k«'= kz2.

Thus, the energy surfaces near k=O become ellipsoids
of revolution, one prolate and the other oblate, whose
axis of symmetry is along the stress direction as shown
in Fig. 2. Examination of (11) reveals that Ep~p(k)~ I:~~p(k) under the transformation B~ Band-
tp ~ —60

' so at best we can determine only the sign
of the product ppB. We can, however, re-express Eq. (11)
in the invariant form

e~~= esty =$12Tq

(2) Stress ParaLLeL to [111]:TrigonaL Distortions

For T~j[001] the strain components (see Appendix
For T~~[111] the analysis is nearly identical to

that for 001 case. The strain components are seeAj are
Appendix A)

8 =$11T,

~ y esz eyz O)

e„=e„„=e„=(s»+2s»)-'p T,
1ve „=e,=e„.=S44-, T

(13)

where s11 and s12 are cubic compliance constants. The
splitting Hamiltonian (6) thus becomes

H, =-PpD (spy —sgp)T(JP —-',J'),
which is diagonal with the Mg=+-, states split from
the MJ-= &~ states. The remaining twofold, Kramers'
degeneracy of each state can be lifted only by applica-
tion of a magnetic field. The fact that &MJ is a good
quantum number is a consequence of the choice of the

' See reference j.2. The Kleiner-Roth deinitions of the deforma-
tion potentials are related to Pikus and Sir's notation by Dz'
= —$a, D.= —$b, D„=—)vM.

where s44 is a cubic elastic compliance constant. The
splitting Hamiltonian (6) becomes

H, = apD„'sp4(T/3)[(J,J„)+cycl.perm. ). (14)

At this point the problem becomes straightforward if
we rotate J so that (J„J„,J.) ~ (J&,Jp,Jp) with Jp
diagonal along the [111]direction. (The choice of the
perpendicular axes J~ and Jp is immaterial. ) Making

"Strictly speaking, the error in such a procedure will be of
order k4/~0. The effects of these fourth-order terms have been
investigated in detail by H. Hasegawa (reference 10).
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Ja—12

(3) Stress Parallel to $110]:Ortkorhor12bio Distortiorss

In the previous two examples, TllL001] and TlIL111],
we discovered that a judicious choice of the quantization
axis along T led to simple and easily interpretable
results. Most significantly, the split states could be
identified by the magnetic quantum number ~M J and
the energy surfaces are elliposids of revolution with the
principal symmetry axis along the stress direction.
Both are consequences of the high order of rotational
symmetry about the L001] and [111] directions
(fourfold and threefold, respectively). However, when
T is along an axis of lower symmetry such as the twofold
[110],the situation is substantially more complicated.

The strain components for Tll L110]are (see Appendix
A)

STRESS
AXIS

Fr@. 2. The split valence bands of uniaxially stressed silicon.
The band splitting at k=O, denoted by 6, is shown for a compres-
sive stress TllL00tj. For anniaxial tension theorderingof thebands
would be reversed from that shown. The energy surfaces near
k=O are a prolate ellipsoid and an oblate ellipsoid both having
axial symmetry about T (k, axis).

such a transformation we obtain

T
8 8 2 ($11+$12)2'
e „=sl2T,

e „=S44—,2'

e„=e„z——0,

(19)

H, =2D„'(s44/2)T(J22 ',J']——(1&) for which the splitting Hamiltonian (6) becomes

similar to the previous result (9). H„now diagonal for H xD (T/2) (s„s„)(J2

the axis of quantization along the L111]direction, has +,D I(T/2)
the eigenvalues'0

+3/2 + ep

El/2 60 )

ep'=ssD 'S' and S'= (s44/2)T.

If we rotate J according to the transformation

J*= (1/~&) (Jr+Js),
J„=(1/V2) (—J1+Jp), (21)

Next, after transforming II~ so that k3 and J3 are
both along L111],we find the eigenvalues of Hp (trans-
formed) to lowest order in k,

J,= —J2,

with Js diagonal to quantize along the L110]direction
then

where

Es)2(k) = (A+ a)V)k12+ (A —s11V)k))2+ep',
(17)

Lr)2(k)= (A —pÃ)k1'+(2+12Ã)k))2 —ep',
H, = ,'D„(T/2)(—s11——s12) (J2'——,

'J-')

+sD-'(s44/2) (T/2) (Js'—J1') (22)

This can be again rewritten as

Xep ~&,())=(~~ I)'.'+ 1~ I)'„'~l., I («)
6I ep'I1 3I ep'I ~

for the upper + l
ep'l and lower —

l
ep'l bands. Thus, for

TllL111] we can determine A, l
1V l, and the sign of ep'1V.

As it stands this is not diagonal, so &Mg is not a good
quantum number and, in general, the strain split states
consist of mixtures of the basis functions for Ms ——&$,
~—,'. Under special conditions, however, II, becomes
diagonal and the system then regains the "uniaxial"
property for the L110] direction as well. We can see
this easily by going to a matrix representation" for
H, giving

(ep+3ep') 0
0 —(ep+3ep')

v3 (ep' —ep) 0
0 %3(ep' —ep)

%3(ep' —ep)

0
—(ep+3ep')

0

0
VS(ep' —ep)

0
(pp+3ep )

(23)

~ The splitting energy for Tj~t 1117quoted earlier (reference 11) is incorrect by a factor $. The origin of the discrepancy is fully
discussed in Appendix A. Ke are indebted to S.Koenig for bringing this error to our attention.

"See Eq. {39)of reference 8.
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in terms of the splitting energies ep and ~p' introduced
earlier. Clearly from (23) we see that P, becomes
diagonal when 6p=6p', the case of equal band splitting
under equal applied stresses along the L111]and L001]
directions. Indeed, when tp= 6p the band splitting
becomes isotropic, and H, is diagonal for any orientation
of T—the condition for "isotropic quantization. '" We
later see that such is approximately the situation for
silicon.

To calculate the efFective masses for Till 110] we

make use of the general solutions (setting 8=90') in
Appendix B. The k's have been transformed, so that
ki, ki, and kp are along the L110], L001], and

I 110]
directions, respectively. In this scheme the energy
surfaces are

O2 O2 A2

Li'~(k)= k i+ k i+ k i&i(e P+3ep'P)ale (24)
2m, 2m, 2m.

where the inverse effective masses are given by

=Am-,'S»~-,'~V
2m&

justified. Recently, Hasegawa" has shown that the
breakdown of each approximation leads to a character-
istic "mass shift" of the split-band cyclotron line with
stress. Here we outline his conclusions pertinent to the
interpretation of the experimental results to follow.

(1) Linear Mass Shift due to Valence Band Mixing

When the cubic crystal is stressed uniaxially, the
spherical isotropy imposed by the spin-orbit interaction
is lifted so that J is no longer a good quantum number,
a,nd the strain admixes the J= 2 and J= ~ eigenstates.
This admixture, ordinarily forbidden for cubic silicon
when T=O, gives rise to a Hnear effective mass shift
with stress. For the important case of "uniaxial"
distortions ~MJ is still a good quantum number, and
mixing, therefore, can take place only between states
having the same &MJ, i.e., only between E~~/2+ and
E&~2-. This important property permits identi6cation of
the character of the members of the J=-,'band —the
observation of a linear mass shift implies the "top"
member of the J=-,'multiplet is E~~/2+.

To 6rst order in ep/A Hasegawa finds the inverse
effective mass of the E~~/2+ band is shifted by an amount
o.T, where n is an anisotropic constant given as follows:

with

=A+8

2mp

E-p Ep

(2s) TIIL

Till 111]

6(1/m, )=niT= 2Bep/A,

h(1/m„)=aiiT= 4Bep/A, —

6(1/m, ') =n, 'T= pNep'/A, -
tt (1/m ), ') =

a &
)'T= ,'Ne p'/Jt, ——

(26)

(27)

2 $ 3 2

and P=ep'/ep is the splitting anisotropy parameter.
The energy surfaces are now ellipsoids of the most
general form with three unequal principal axies and
without a symmetry axis of revolution. One new feature
of the TIIL110] case is the appearance of the parameter
P in the effective masses. Measurements of m&, me, and
m~ determine, therefore, the ratio of the absolute values
of the deformation potentials D„andD„'in addition to
the band parameters. A stress in a direction other than
the three principal directions gives essentially no further
information. The determination of the signs of D„and
D ', as we see in the next section, must come from
considerations of the interaction of the J=—, multiplet
with other nearby bands.

C. Mass Shifts due to Higher Order Effects

So far we have ignored the inhuence of the nearby
J=-,' split-os band, labeled henceforth E~~/2-, upon the
top J= ~- multiplet. Furthermore, in our discussion it
has been assumed that the J= & state is completely
decoupled by strain into two doublets, E3;2 and E~~/2+

whose energy bands are pa, rabolic near k= 0. In
practice, however, neither assumption is strictly

where B and N are in units of h'/2mp. (Here and in
the rest of the paper unless otherwise stated the effective
masses are given in units of the free electron mass mp. )
For E3/2 all n's, of course, vanish. It is noticed that for
the above uniaxial cases the shifts for 1/m» is opposite
in sign to 1/m, and twice the latter, i.e.,

nir/ni=nii /nz. =

For TIIL110]both of the J=—', split-bands, in general,
contain more or less an admixture of M'~ ——&—,

' and,
consequently, both experience a mass shift. The three
constants o.~, o.2, and of3 for this case are given by
Hasegawa.

(2) k4 Mass Shift due to I-ncomplete Decoupling

If the applied stress is insufhcient to decouple the
Ej/2+ and Eaf2 states completely, then the nonparabolic
nature of the energy bands near 4=0 becomes signif-
icant. Although the energy surfaces are nearly ellips-
oidal, they exhibit some residual warping characteristic
of the original energy surfaces. This perturbation is of
second order in k2 giving a k4 mass shift. Under large
stresses when 6p or 6p'))AO, the bands are expected to

~ Reference 10, Eq. (3.25).
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be decoupled completely. However, even under these
apparently ideal conditions, a small mass shift persists
if extrinsic carrier heating mechanisms can upset the
thermal equilibrium distribution and significantly
populate the regions deep in the band (energies&eo
or eo') that are still warped. The correct interpretation
of experimental results, therefore, requires that the k'
perturbation be taken into account. Hasegawa' has
shown that the k' shift for the inverse effective mass can
be essentially lumped into a single term p/T where p
is an anisotropic constant (which is negative in the
present case for compressive stresses). The net effect of
the term y/T is always to increase the magnitude of
the effective mass m*. In addition, the line shift is
accompanied by asymmetric line broadening showing
a tail on the high-mass side. These asymmetries and the
general question of line shapes are discussed in Sec. IV K.

In summary, the experimentally observed inverse
effective mass is expected to vary as a function of
stress T according to

(28)

where mp* is the zeroth order or unperturbed effective
mass and n and y are the linear and k4-mass shift
parameters, respectively. Equation (28) is used in
Sec. IU C to fit empirically the stress dependence
measured for the effective mass in order to obtain
values for mp* and the correction terms involving n
aild p.

III. EXPERIMENTAL DETAILS

The cyclotron resonance experiments were done on
a balanced bridge cavity spectrometer operating at

8900 Mc/sec of the type" characteristic of spin
resonance experiments. (The microwave frequency was
monitored by a PRD 5598 precision wave meter which
was checked frequently with an HP 540A transfer
oscillator in combination with an HP 524 frequency
counter. ) The rectangular cavity resonated in the TE&0&
mode. Superheterodyne detection made it possible to
operate at the ultra-low power levels of 10 7 to 10
necessary to prevent microwave heating of the carriers.
Such heating is evidenced by broadening of all cyclotron
resonance lines as well as shifts of the split-band hole
lines This last point is discussed more fully later.
Since the cyclotron resonance lines were observed to
narrow significantly with decreasing temperature, all
measurements were made at 1.26'K, the lowest temper-
ature that could be conveniently reached. The dc
magnetic field Hp was measured by nuclear magnetic
resonance The samples used were cut from a single
crystal of Merck 5000 0 cm p-type silicon. These
crystals exhibited exceptionally long scattering relaxa-
tion times —at 1.26'K the electron lines had an cur 160.

~ G. Feher, Bell System Tech. J. 26, 449 (19$7).

After cutting, the samples were lightly etched for a few
minutes in a solution made of 8 parts of HNO3 and 1
part of HF. This reduces the surface recombination as
well as eliminates sharp discontinuities which might
lead to breakage under strain.

The samples were strained as follows: The rectangular
shaped silicon samples were mounted 1 mm above the
cavity Qoor opposite the coupling hole in a region well
out of the maximum E field. The compressive uniaxial
stresses were achieved by forces transmitted to the
sample by external loading on the halves of the split
cavity. A detailed description of the mechanical system
used here, the "parallel squeezor, " has been given
elsewhere. '4 It should be noted that the squeezor makes
possible exact control of the stresses by means of a
calibrated spring balance located outside of the cryostat.
In the geometry of the parallel squeezor the dc magnetic
field Hp could be rotated by angule y in the plane of
the stress T to measure the anisotropies of the effective
masses. The E field is perpendicular to T so the cyclo-
tron resonance absorption vanishes at q =90'. In some
instances the "perpendicular squeezor" was employed
to permit rotation of IIp azimuthally about the stress
axis. Although stresses in silicon as high as 5000 kg/cm'
have been reached by this method, it was done at the
expense of sample cross section. Usually it was more
desirable for the sake of strain uniformity and signal
intensity to use larger samples, typically of dimensions
7 mm&(3. 5 mm&0. 7 mm, and compromise with lower
stresses 2500 kg/cm'. Such samples, considerably
shorter than the inside of the cavity, were accom-
modated by the use of quartz spacers between the ends
of the sample and the cavity walls. Thin cardboard
pieces cemented to the faces of the quartz pieces allowed
the sample to "seat" itself and prevented localized
strain concentration points. A small Teflon jig, in
which the sample was free to move longitudinally,
prevented lateral play during mounting and assembly of
the apparatus.

The calibration of the squeezor was made, first, by
calculation of the mechanical advantage of the mecha-
nism and, second, by actual measurement of the compres-
sive force from the elastic distortion of steel proving
rings inserted between the squeezor jaws in place of the
cavity. The two results agreed within a few percent.
The stress, obtained from this calibration along with an
accurate measurement of the sample cross section, was
used to calculate the strains using the values for the
elastic stiffness constants for silicon taken from the
curves of McSkimin' extrapolated to 1.26'K: cij ——17.09
&& 105 kg/cm', cqq= 6.65)C 10' kg/cm, and c44= 8.17&(10
kg/cm'. 1t was estimated that the stress or strain could
be determined by this procedure to an over-all accuracy
of about 5%.

Some evidence was found to suggest the presence of

'4 D. K. Mlilson and 6. Feher, Phys. Rev. 124, 1068 (1961)."H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).
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slight stress gradients in the sample. Such nonuniform-
ities, if serious, could broaden the hole lines which are
known to be shifted by strain. While no line broadening
of this kind was noted, a ~s% shift expected from 5%
variation of stress throughout the sample would not be
observable because of the intrinsic linewidths of the
resonances. On the other hand, small differences in the
measured magnitude of the linear mass shifts were
observed from run to run. This probably was due to a
tendency of the sample to buckle slightly under load.
Since the main contribution to the cyclotron resonance
signal comes from the upper surface of the sample which
is illuminated and also is in the strongest E fieM, the
"observed" line shifts are most sensitive to the state of
the strain in this region. These eGects were minimized

by averaging over a sequence of runs with the sample
turned over between each.

Free carriers —both holes and electrons —were intro-
duced into the sample by white light. The light,
furnished by a 6-V microscope lamp (Spencer-type 353),
was transmitted via a quartz light pipe running inside
the waveguide down the Dewar and illuminated the
sample through the cavity coupling hole. The linewidths
of the cyclotron resonance signals, especially those for
the electrons, were found to be very sensitive to
excessive light intensity. The lines were narrowest
when the light intensity was cut by operating the
lamp "yellow" at 4 V and inserting into the beam a

neutral density optical filter having 5% transmission
Cyclotron resonance was also done with infrared
illumination at a wavelength near that corresponding
to the band gap of silicon. For these experiments a
Bausch R Lomb 500-mm grating monochromator with

the grating blazed for 1.0p, was used. In all cases
the cyclotron resonance absorption was modulated by
chopping the light at 100 cps. The resulting signal was
coherently detected.

Although the samples were oriented with an x-ray
goniometer to within 0.3' of the desired crystallo-
graphic axis before cutting, special precautions were
necessary to insure after mounting that the stress
direction coincided with the crystal axis. For this
purpose the electron lines in the cyclotron resonance
spectrum were used as guide posts since their positions
are essentially 6xed as the stress is applied. From the
positions of the electron lines the orientation of the
crystal axis could be accurately determined. Likewise,
the symmetry of the anisotropies of the masses of the
strain-split hole line about T, was used to determine the
direction of T. The two measurements located the
stress axis relative to the crystal axis at the beginning of
each run to within 0.2'. In all cases the maximum
misorientation was kept less than 1.0'. For measure-
ment with T~~[001] or T~~L110] where the effective
masses are extrema a misorientation of this magnitude
causes a negligible error of less than 1 part in 10'.

FIG. 3. The behavior of the cyclo-
tron resonance lines in silicon as a
uniaxial, compressive stress is applied
along the $002j axis. The recorder
traces were taken at 2.26'K and
v=8900 Mc/sec with H0 in the (210)
plane and inclined 25' from the $002j
axis. The broad, weak lines of the
unstrained "classical" hole resonances
in (a) point up the dif6culties men-
tioned in Sec. II in obtaining accurate
measurements of their effective
masses.
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For TiiL111],however, the formulas given in Appendix
C were used to correct for the Prsi or-der errors in mass
arising from small misalignments of T. In all cases the
corrections were less than x~%.

IV. EXPERIMENTAL RESULTS

A. General Features of the Spectrum

The application of a uniaxial stress to silicon causes
marked changes of the hole lines in the cyclotron
resonance spectrum as the initially degenerate valence
band is split. The effects observed are illustrated in
Fig. 3 showing typical recorder tracings of the cyclotron
resonance lines with BoiiL111] taken for unstressed
silicon as well as silicon subjected to a compressive,
uniaxial stress along the L111]axis. As increasing stress
is applied to the sample we find, first, for low stresses
T(100 kg/cm' that the intensity of the light-hole line
drops sharply as the descending band depopulates at
liquid He temperatures. No mass shift is apparent for
this line before it becomes too weak to be measured.
The heavy hole, however, shifts to lower mass at the
same time broadening to an extent such as to become
unresolvable when T reaches 100 kg/cm'. Next, when
the stress exceeds T 200 kg/cm' the split-band hole
line, very broad at irst, begins to form in the inter-
mediate mass region as shown in Fig. 3 (b). As the bands
decouple further, the hole line narrows rapidly and
shifts to lower mass )the y/T term in Eq. (28)]reaching
a minimum mass value at T 800—1000 kg/cm'.
Finally, at this point the linear mass shift becomes
evident Lsee Fig. 7(a)]. A small asymmetry in the line
shape is noticeable even at the highest stresses reached
(T 2500 kg/cm'), indicating residual eRects corrected
with the k4 mass shift.

A study of the line shape, k4 mass shift, and related
effects, which stem from a new line-broadening mecha-
nism for cyclotron resonance, is used to check the
theoretical basis for Eq. (28). These matters are taken
up in Sec. IV K. It is important to note, however, that
a detailed understanding of the line broadening is not
essential for the application of Eq. (28) to the deter-
mination of the efI'ective masses mo* in the discussions
to follow.

The effective masses measured in a plane perpendicular
to T have been found to be isotropic for large stresses
indicating essentially complete decoupling of the bands.

When TiiD10] the energy ellipsoids have, in general,
three unequal principal axes. This is illustrated by the
efl'ective mass anisotropies in Fig. 5 measured for Ho
in two, (001) and (110), of the three principal planes.

It is tempting to take values for the e6'ective masses
from Figs. 4(a) and 4(b). This procedure is incorrect,
however, since we must analyze the behavior of m* vs
stress according to Eq. (28) to determine the zero-order
mass mo*. This is done in the next section.
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C. Dependence of the EQ'ective
Masses on the Stress

1. Experimental Results

The effective masses of the split-band hole in Si being
functions of stress made it necessary to measure the
dependence of m* vs the stress T in order to determine
the unperturbed masses no* in addition to the param-
eter n. This procedure was facilitated by the external
loading feature of the "squeezor" (see Sec. III) which
allowed us to vary the stress on the sample form
0—2500 kg/cm' covering the range from the formation
of the split-band hole at T 400 kg/cm' well into the
linear region of the mass shift. Measurements were
usually made at two angles, sufhcient to define the
anisotropy, by rotating the Varian magnet from
q

0' for HoiiT to q 60'—70', the highest angles

BD„(0,
SD„'&0. (29)

B. Anisotropies of the Effective Masses

The anisotropies of the efI'ective masses with respect
to the angle cp between Ho and T are shown in Figs.
4(a) and 4(b) for compressive stresses along the t001]
and [111]directions, respectively. These anisotropies,
characteristic of oblate elliposidal energy surfaces,
indicate that m&&m[i for TiiL001] and m, '&mii for
T~iL111]. Since T&0, it follows according to Eq. (12)
and (18) that

0.32

0.2 8

0,24

0.2 0
0 10 20 30 40 50

i
50 70 60 QO

[111j too 11
ANGLE OF Hp IN DEGREES IN (1io) PLANE FROM t I I 1j AXIS

Fxo. 4. The anisotropy of the "cyclotron" eGective mass an*
for the hole resonance in uniaxially stressed silicon. For (a)
T=2130 kg/cm' and (b) T=1925 kg/cm~. The curves were
calculated for ellipsoidal energy surfaces with {a}v&i=0.2638 and
nil =0.1929 and (b) v&i=0.4197 and mlI 0.1255.
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that could be reached before the signal to noise for the
cyclotron absorption became prohibitively poor for
accurate measurements (see Sec. III).

The resulting measurements of m* (taken at the
maximum of the absorption line) were analyzed by
fitting the experimental points, as shown by typical
examples in Figs. 6—8, with curves calculated from
Eq. (28). The excellent fit in all cases attests to the
essential correctness of Eq. (28) in describing the stress
dependence of the effective masses over the stress
region 400—2500 kg/cm'. From the values of me*(tz)
for T~~[001] and T~~[111] thus obtained, the compo-
nents m& and mtt of the efI'ective mass tensor were
calculated according to Eq. (D4) in Appendix D.
Similarly the components o.& and att of the linear mass
shifts were derived from tr(tzt) by Eq. (D5) in Appendix
D. An analogous procedure was used. for T~~[110] to
get mr, ms, and ms [see Eq. (D7)]; and rrt, tr. , and ns

[see Eqs. (D8) and (D10)].
The components of the effective mass tensors and

the linear mass shift parameters n obtained in this way
are given in Table II for T along [001], [111],and
[110]. The results quoted represent averages from
four to six diferent runs taken at each of the directions
chosen for Bo. The uncertainties are based on the rms
deviations from the average. It is believed that these
represent the experinzezztal uncertainties. However, any

systematic error due to the lack of validity of Eq. (28)
is not included. In our preliminary report on these
measurements" no attempt was made to correct for
the stress dependence of the masses. Consequently, the
earlier values for mJ were higher and those for mit
lower than the corrected ones quoted in this work.

As a by-product of these measurements we obtained
(see captions of Figs. 6—8) representative values of y,
the k -shift contribution. The sign of this shift is always
negative as predicted; and the magnitude appears to be
highly anisotropic. Little quantiative signi6cance can
be attached to the magnitudes, however, because they
varied as much as 40% from run to run depending upon
conditions of illumination, changes in microwave power,
etc. Under the same circumstances, the values for m*

and tr were usually reproducible to better than 1 and 5%,
respectively. This suggests that extrinsic carrier heating
eGects as well as the intrinsic tlat.

" shift were for the
most part absorbed into the y/T term.

0.2bb
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2. Determizzatiozz of the Signs of D„andD„'
from the Linear Mass Shifts

From the existence of the linear shifts of the type
characteristic of mixing of the E~~/2+ and EIf2- states of
the valence bands, we conclude that the EIf2+ states lie
above the E3~/2 states for silicon under compressive
stress for both T(~[001] and T~~[111].Thus, the signs
of the deformation potentials are 6xed: D„&0and
D„)0.This assignment is consistent with additional
evidence available from the T~~[110] measurements.
Since the linear shift for T~~[001] is small, it is especially
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FIG. 5. The anisotropy of the effective mass m* for the hole
resonance in silicon with T~~L110$. For (a) T=2270 kg/ctn' and
(b) T=2350 kg/cm2. The curves were calculated for ellipsoidal
energy surfaces with (a) (m1m2)'"=0.4085 and (m1m3)'"=0.2880
and (b) (mIm2)'12=0. 4056 and (m2m3)'"=0. 1905.

FIG. 6. The dependence of the effective mass m* on stress for
holes in uniaxially stressed silicon with T~~L001j. The curves were
calculated for (a) m0*=0.2557, o.= —0.40X10 4 cm~/kg, and
y = —68 kg/cm' and for (b) m0*= 0.2294, n =+0.23 X10 4

cm~/kg, and y = —120 kg/cm'.
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TABLE II. The components of the effective mass tensors (in units of the free electron mass m0) and the linear mass shift parameters
for silicon subjected to uniaxial, compressive stresses along the principal crystallographic directions L001j, L111j, and L110j. The
experimental uncertainties indicated are based on the rms deviations from the averages of 4 to 6 runs.

Z [[)001)

mg =0.2561~0.0010
mI I

=0.1991~0.0015

ay= —{0.40+0.05)X10 4 cm'jkg
aII =+(1.31+0.15}X10 4 Cm'jkg

r~It111j
mg'= 0.3695+0.0010

mI I'= 0.1354~0.0010

aj.'= —(1.55&0.10)X 10 ' cm'/kg
ail'=+ (3.22+0.20}X 10 ' cm'/kg

T'llL110j

~,=0.4390+0.0015
m2 ——0.2596&0.0015
m3 =0.1486&0.0015
a1= —(3.08~0.30) X 10 ' crn'/kg
a2 = —(0.25+0.15)X 19 cm'/kg
a3=+ (3.05+0.30}X 10 ' cm'/kg

important to check the sign assignment for D„.Let us
admit now for the sake of discussion the possibility
that D„&0(and B)0). Using the values of the band
parameters and deformation potentials in Table IU
we can calculate" the values of n1, o.2, and o.3 for the
following two cases subject to the condition BD„&0:

Case (ii).
D„(0, B)0,

n& +(0.11~——0.01)X10 ' cm'/kg,

n2=+ (0.08&0.01)X 10—' cm'/kg,

n3 —(0——.19&0.02) X 10 cm /kg

Case (i).
D.&0, 8gp,

a&= —(2 31~0 25)X10 4 cm/kg,
~2= —(0.36&0.05) X 10—4 cm'/kg,

u3=+(2 67~0 25)X10 4 cm'/kg.
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FIG. 7. The dependence of the eA'ective mass m* on stress for
holes in uniaxially stressed silicon with T~tr 111j.The curves were
calculated for (a) (white light) m0*=0.3704, a = —1.60X10 4

cm'/kg, and y = —90 kg/cm~ and (1.02 ILL radiation) ~n0*=0.3693,a= —1.55X10 ' cm'jkg, and y= —60 kg/cm'; and for (b) m0*
=0.2335, a= —0.25X10 4 cm'/kg and y= —100 kg/cm'.

FIG. 8. The dependence of the effective mass m~ on stress for
holes in uniaxially stressed silicon with T~~L110j. The curves were
calculated for (a) rn0* =0.3350, a = —2.00X 10 crn /kg, and
y = —100 kg/cm'; (b) m0*=0.2655, a = —1.95X10 cm'/kg
and y = —45 kg/cm'; and (c) mII~ =0.225, a =+0.35X10
cm'/kg, and y= —90 kg/cm'.
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Comparison of these numbers with the experimental
results in Table II shows clearly that case (i) is the
only possible choice.

3. Other Possible Limear Mass Shifts

The possibility exists that under strain the 5=-,
valence band can interact with other nearby bands
(interband coupling), e.g. , the Ps, conduction band,
resulting in additional linear mass shifts besides that
arising from the intraband mixing of the El,t2 and Elf2-
states. To estimate the contribution from these sources,
we use a theorem given by Hasegawa, namely,

are sufFiciently close to the value —2 to allow us to
conclude that interband mixing is probably unimpor-
tant, particularly so far TI~[111].Thelargerdiscrepancy
for the TI~[001] case is not surprising in view of the
small value of the shifts allowing, consequently, a
greater relative contribution from other causes. For
T~~[110] we see that

i=1,2,3

n;=0.3&0.3 0, (33)

which is small in comparison to the intraband efI'ects
characterized by p; i,» ~IT;~ =6.4, further supporting
the contentions above.

1/m;*= 3A (30)
L=l, 2,3 D. The Determination of the Inverse Mass Band

Parameter and the Deformation Potentials[where A, given by Eq. (4), here is in units of h-'/2m0]
if the interband couplings can be neglected. Clearly,
if the condition

From the effective masses in Table II the inverse
mass band parameters are obtained at once by means
of Eqs. (12) and (18).Since we have already ascertained
that BD„(0,~VD„'&0and D„&0,D„'&0,it follows
that 8 and X are both negative. The results for A, 8,
and tI' (in units of h'/2m 0) are summarized in Table III.

(31)
L=1,2,3

TABLE III. The inverse mass band parameters A, B, and E (in
units of 5'/2m0); the deformation potentials D and D; and the
splitting anisotropy parameter P for the valence bands of silicon.
In calculating D„and D ~ the value of the spin-orbit splitting was
taken as A=0.0441 eV.~

is obeyed, then it follows that the sum of inverse masses
is invariant under stress as required in Eq. (30).
Equation (31) is satisfied automatically if the I2's arise
only from iritraband mixing since +II/oI, =BIII'/a&' —2——
as pointed out in Sec. II. The measured ratios

n„/IT,= —3.3W0.8,

n„'/0I,' = —2.01&0.10,
(32)

TIIL001j TII t 111j T IIL110)

0.344

0.338

0.352
EXPERIMENTAI BEST FIT
VALUES IIEI =0.84+0.02

Vrntrnp

A = —4.28 &0.02
B= —0.75 %0.04

D = +(2.04 &0.20) eV

a See reference 17.

A = —4.27 &0.02
X = —9.36&0.10

DM' = +(2.68 &0.25) ev p = +0.84&0.02
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FIG. 9. Determination of the splitting anisotropy parameter p,
I See Sec. II, Eq. (25).j The curves were calculated using the
values of A, J3, and N given in Table II.

These values differ considerably from those (A = —4.0
&0.2, )8[=1.1&0.5, )iV =I.7&5.0)5obtained from
the original cyclotron resonance experiments on the
valence band of unstrained silicon. In view of the
limitations, cited in Sec. II, that one faces in doing
conventional cyclotron resonance on energy surfaces
as badly warped as those in silicon, the poor agreement
of the old results is, perhaps, not unexpected. Pote added
irs proof Values of the inve. rse mass band parameters
for silicon recently obtained [J.J. Stickler, H. J.Zeiger,
2,nd C'. S. Heller, Phys. Rev. 127, 1077 (1962)]from the
quantum spectra disagree in some cases from those
quoted in Table III. The reasons for this discrepancy
are at present not clear. Experiments by one of us
(J. C. H.) are underway which, it is hoped, will shed
more light on this question.

The splitting anisotropy parameter P defined in
Sec. II, Eq. (25) wa. s determined from measurements
with T~~[110] as follows: Using the values of A, 8,
and Ã obtained for T~~[111] we can calculate the
effective masses mi, m~, and I& for T~~[110] as a
function of the parameter ~P~. The result is shown in
Fig. 9 where we have plotted the calculated "mean
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masses" (mtms)'", (mtms)'", and (msms)'" which are
the quantities directly measured. On the same hgure we

indicate the experimental points thereby fixing ~P~

=0.84&0.02. Since D„)0 and D„')0, the sign of P is

positive Th. e ratio of the deformation potentials, there-
fore, is D '/D = 1.31&0.03.

The over-all consistency of the results can be judged
by noting that we have essentially measured a total of
7 effective masses whereas only 4 quantities are being
determined. The three redundant masses, therefore,
serve as a check on the measurements. First, we see
that the two values of A obtained when T~~L001] and

T~~L111] are in excellent agreement. Second, Fig. 9
shows that all three measured masses for T~~$110] are
consistent with one value of

~
if ~. Such agreement would

be unlikely if the band parameters cited herein were

appreciably in error.
The deformation potential D„'is determined accord-

ing to Eq. (27) from 41,
' rather than n&~' the value of

the latter being somewhat less certain. Thus, we get

2E
D„'=ni' ——s44 ——+ 60.9+6.0 A,9x (34)

we get D„=+(2.04&0.20) eV. The value for D„
arrived at in this way is expected to be more reliable
than that which could be gotten directly from o«or
o. I ~ It is, nevertheless, interesting as a check to compare
these two results. To do this let us write the ratio P in
terms of n, and trx' using Eqs. (26) and (27) which give

P= =+0.90+0.10.
u, (4V/3)

(36)

This result is entirely consistent with the more ac-
curately known value ~P )

=0.84&0.02 obtained directly
from the measured e6ective masses. The values" for
D„,D„',and P are listed in Table III.

E. Cyclotron Resonance Line Shape

L'xPerime~tally Observed lineup dths, Asymmetries,
and Shifts as Fur4ctiorrs of Temperature,

Direction of Hp, ar4d Stress

There are considerable experimental checks of
Hasegawa's theory of line broadening. Foremost is the
excellent fj.t of the stress dependence of the efI'ective
mass for all cases shown in Figs. 6—8. This, in fact,

"Calculations of the deformation potentials for silicon have
recently been made by L. Kleinman (to be published). His results
are D„=+2.85 ev and D =+3.41 eV.

from which D„'=+(2. 68&0.25) eV using the value'r
41= (0.0441&0.0004) eV for the spin-orbit splitting.
Next, from

D„'(s44/2)
= +0.84+0.02,

D~($11 $42)

I
—833.5 $

EX PERIMENT

THEORY

l

MAGNETIC FIELD ~
FIG. 10. Comparison of experimental and calculated line shapes

of the hole resonance in silicon under uniaxial compressive stress.
The experimental line shape was measured for Hp and T~~L001$
(T—2550 kg/cm'), 1.35'K, and v =8816.4 Mc/sec. The
theoretical line shape was calculated by Hasegawa {reference 30)
for 1.3'I, r=9000 Mc/sec, and ~rup~r=0. 4 The wid. th of the
calculated line was matched to the measured resonance at the
half amplitude points. The minor discrepancy between the curves
is probably due partially to a small bridge unbalance in the
spectrometer resulting in a slight admixture of the dispersive
component into the absorption signal.

provides a veri&cation of the aspects of the theory
pertinent to the determination of the effective masses as
given in Eq. (28). More detailed checks can be made
using the following experimental results:

(a) For Hp and T~~L001] the k' contribution to the
mass shift is measured to be y= 50—70 kg/cm' at 1.3'K.
The spread in these values appears largely due to
carrier heating. It is expected, therefore, that the
lower value in the range which was measured using
infrared illumination of X=1.02 p is closest to the
"intrinsic" value.

(b) A striking feature of the hole line in a sample
subjected to a uniaxial stress is its asymmetry. This is
clearly discernible in all the traces and is illustrated in
detail in Fig. 10.

(c) The relative linewidth" ~aries inversely with
stress as shown in Fig. 11 for Hp, T~~L001] and 1.3'K.
For T= 2500 kg/cm' the relative linewidth was meas-
ured to be 26H/He=1. 5%.

(d) Under the conditions in (c) (T=2500 kg/cm')
the resonance line maximum exhibits a linear shift of
+1.1% in raising the temperature from 1.3 to 4.2 K.

(e) The relative linewidth of the hole resonance is
anisotropic with respect to the direction of Ho. This is
shown in Fig. 12 for T~~t 001] and T~~L111].

(f) The broadening of the lines with tempera, ture is
seen in Fig. 13. The exact dependence of the relative
linewidth on temperature is plotted in Fig. 14 from
which we see that 2AH/Hp is proportional to the first
power of the temperature O~.

Before discussing the above results, it is interesting
to note in passing that the electron lines (see Fig. 13)

2'The linewidth 2DIJ. is de6ned as the total width at the half-
amplitude absorption points.
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characteristic of acoustic phonon scattering.
The hole lines, on the other hand, exhibit an entirely

diferent behavior suggesting the presence of a new
line-broadening mechanism. First, the line shape is
distinctly asymmetric with a tail on the high-mass side;
second, the ratio of the linewidth changes only by a
factor 3 in going from 1.26 to 4.2'K. This is shown in
more detail in Fig. 14.

0
0 400

!

t

800 1200 1600 2000
STRESS IN XG/CM ~

2400 2800

Fro. & &. Dependence of relative linewidth on stress for ggp, p'~ Loot]
(at 1.26'K and 8880 Mc/sec).

r, (1.26'K)/r, (4.2'K) 6, (37)

are completely symmetric, their linewidths arising from
a relaxation time process. The ratio of scattering
relaxation times for the electrons as measured from the
linewidth (26P/Hp 2/rppr) is gi——ven by

2. Comparisort with Hasegawa's Lirte Broadenirtg Theory

These effects are explained by the line-broadening
process proposed by Hasegawa. ' Essentially each line
is a superposition of a large number of individual lines
corresponding to transitions between slightly unequally
spaced Landau levels —a consequence of the nonpara-
bolic nature of the split valence band (see Sec. II C)
due to incomplete decoupling by strain. This "inhomo-
geneous broadening" differs from k, broadening since
the individual component lines of the former could be
separated under suKciently high resolution. '~ The
frequency of the component line arising from a transi-
tion between the Landau levels n —& n+1 is given by

rpa, s= ro p+rpr+rpsB+ rosh (39)

0.05

0.04

(e) Tli[ooi]
e

Jlid ~o o

Here cop is the unperturbed (angular) frequency; car

represents a "quantum" shift (which is the same for

0.03

0.02
0 10 20 30 40 50 60 70 80 90bl I

[001j t »1J [I10]I
ANGLE OF H0 IN OEGREES IN (IIO) PLANE FROM STRESS AXIS

O 0.1 0
Lsj 0009

(b) Tll [»i]
0.06—
0.07 -t

K
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L1111 t 001]
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FIG. 12. Anisotropy of the relative linewidth of the hole res-
onance in uniaxially stressed silicon with respect to the direction
of Ho in the (110)plane. The measurements were made at 1.26'K,
v =8900 Mc/sec, and for compressive stresses (a) T=2130
kg/cm~ and (b) T=1925 kg/cm~. The curves were calculated
according to the theory of Hasegawa.

«gf~ 'l000
MAGNETiC FiELD iN OERSTEOS

FIG. 13. Comparison of cyclotron resonance lines in uniaxially
stresses silicon at 1.26 and 4.2'K. The traces were taken for Hp
and TIII001j (T=2550 kg/cm'-) and v=8800 Mc/sec.

"The 0 '" dependence of the scattering relaxation time is
confirmed in detail by measurements throughout the range
1.26 and 4.2'K, J. C. Hensel (unpublished). For measurements at
higher temperatures, see D. M. S. Bagguley, R. A. Stradling, and
J. S. S. Whiting, Proc. Roy. Soc. (London) A262, 365 (1961).

The inhomogeneous broadening enables one, in principle, to
saturate part of the hole resonance line and perform double
resonance experiments analogous to ENDOR.
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all component lines); oos gives the spacing between
component lines; and the cd3 term includes k, broadening
which for the present case is negligible. The perturbation
terms, co~, co2, and ~3, are all inversely proportional to
the stress T.

Raising the temperature increases the line broadening
by shifting the hole population to the upper Landau
levels. The lattice scattering dependence on temperature
contributes only in a secondary way by broadening
the component lines. For present conditions where the
values of copr appear to be large, the linewidth seems to
be more or less dominated by the inhomogeneous or
"k4 broadening. "

Hasegawa" has calculated representative line shapes
by taking weighted sums of Lorentzian lines up to
n=20, where e is the Landau quantum number, for
the case T and Ho along L001j, ooo= 2or X9000 inc/sec,
and 0=1.3'K consistent with the experimental condi-
tions for Figs. 10 and 11.These line shapes are charac-
terized by the parameter

~

oo.
~
r which gives the spacing,

~2, between the component lines of the resonance rela-
tive to their half-width, 1/r. From these calculated
lines plotted against x= (o&—

~o"o+oot ~ )r, the resonance
maximum, x (which gives the shift of the composite
line due to the ooo term) and the linewidth, 3x, have been
determined and are given in Table IV.

At this point we cannot directly compare the line-
width Ax given in Table IV with the experimental
linewidth 26II of the hole resonance because the former
depends upon the as yet undetermined parameter
~coo~ r (~ooo~ and r, in fact, are both unknown). Some
light can be shed on this problem by the following
approach.

Hasegawa" has determined an approximate expres-
sion for the linewidth from the second moment by
assuming the component lines to be narrow compared
to the resonance width but not narrow compared to the
spacing between the component lines, i.e., ~ods~ r 1 (it
will be seen presently that

~
~oros0.4 for the case at

hand). Approximating the composite line by a Gaussian

shape (thereby neglecting asymmetry), he has obtained
the second moment value of the linewidth as

Hp

co2 k0~

=2.35 —V2
l COp AGOg

(40)

0.05

0.04

Using Eq. (40) the measured relative linewidth 2/o H/Ho
=1.5% at 1.3'K gives [oos/coo[ 1.4X10 ' for Ho,
T~~L001] and T=2500 kg/cm'.

It is seen that Eq. (40) predicts a linear dependence
of the linewidth on temperature consistent with the
experimental results shown in Fig. 14. The observed
linear dependence with temperature is evidence that one
is not near the limiting case ~oos~ r(&1. If this were the
case here, the linewidth of the resonance would be
strongly influenced by the component linewidth and
would, therefore, be expected to vary with temperature
somewhat more like 0~'" as observed for the electron
linewidths. Inasmuch as ~res/ooo~ varies inversely with
stress, Eq. (40) also predicts the observed inverse
stress dependence of the relative linewidth as shown in
Fig. 11.

Next, from the result ods/odo
~

1.4X10 just obtained
we calculate ooor= ~oos r ~&co/res~, the values of which
are given in the fourth column of Table IV. These
determine the relative linewidth 2~/H p= /5x/ooor,

the values for which are listed in the last column of
Table IV. From the latter we 6nd that the observed
relative linewidth of 1.5% for 1.3'K and Ho, T ~$0011
coincides with the linewidth calculated for ~oos r=0.4
and copr 280. This result has been checked by fitting
the experimental line shape with the one calculated for
~oos~ r=0.4. In Fig. 10 one sees that the agreement is
quite satisfactory.

The hole resonance exhibits a relative line shift from
x= 0, i.e., ~=cop+~I, by an amount x copr. Thus, the

Line maximum Linewidth
Isir Xmttx Ax M0T 2aII//a0

TABLE IV. Position of resonance maximum and linewidth
for 0=1.3'K, ~0=221-)&9000 Mc/sec. The line is plotted against
x= ioo —looo+ooil )r The values for o.oor and the relative linewidths
2roH/Ho were calculated assuming looo/oool =1 4X10

X 0.03
O

LLI

z

/e o

0.1
0.2
0.3
0.4
0.6
0.8

+0.48
+0.86
+1.17
+1.46
+2.03
+2.51

2.33
2.92
3.54
4.18
5.54
6.79

71
143
214
286
430
570

2.0%
17%
1.5%
1 3'
1.2%

0.01

30 H. Hasegawa, reference 10 and (private communication). Vile
are indebted to Dr. Hasegawa for supplying us with his unpub-
lished calculations of line shapes."H. Hasegawa (private communication). See reference 10,
Eq. (4.21).

2 3
TEMPERATURE tN DEGREES KEI VIN

FIG. 14. Relative linewidth of the hole resonance in uniaxially
stressed silicon vs temperature. The measurements were made for
Efo and TllLOOlj {T=2550kg cm/)anod o —8800 Mc/sec.
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tote/ relative line shift from co=coQ is given by

(41)

(42)

From this it follows that the term y/T in Eq. (28) is

v
' —+

T m, * '~

T X~X 602 —50 kg/cm'
8$g GJ2 T Mp

(43)

for Ho, T~~ [001]and 1.3'K in good agreement with the
experimental vaues y —50 to —70 kg/cm'.

When the temperature is raised from 1.3 to 4.2'K,
the resonance maximum Ho, T~~[001] is observed to
shift linearly by +1.1%. It is dificult to see the
temperature dependence from Eq. (41) as it stands
although it is implicit in the coef5cient z /~co ~2r.

However, if it is assumed that ~cps~ r&&1 (which is not
strictly true here), Hasegawa~ 6nds that the relative
line shift is given by

AM Mg 2kO~ (M2— =—+
(go a0 Aa)0 k(ap

which explicitly contains the temperature O~. In compar-
ing the results at 1.3 and 4.2'K it is the last term that
interests us. Thus,

2k' ~2

5$ MP AMQ f MQ

(45)

giving a relative line shift of km*/m* +2% for
~~2/coo~ 14X10 . As pointed out by Hasegawa,
Eqs. (44) and (45) overestimate the shift when ~a&s~ r
is not «1 the correction (see Table III, reference 10)
being 2 for ~cos~r=0.4. The relative linewidth is,
accordingly,

(Am*/m*) (corrected) —,'X2% +1%,
in agreement with the measured value.

The relative linewidth of the hole resonance is
anisotropic with respect to the angle y between HQ
and T as illustrated in Fig. 12 for T(([001]and T(([111].

where y, it should be noted, is independent of the
applied stress T since both a»/coo and ru2/&oo are inversely
proportional to T. A value for &o~/sro has not been
ascertained experimentally. How'ever, theoretical es-
timates made by Hasegawa" indicate that ~i/~o and
a&2/coo are nearly of the same magnitude; the latter,
therefore, having a sizable coefficient of x~~/~urm~r

3.6 gives the major shift. Thus,

Hasegawa" has obtained expressions for the anisotropies
of (con/~0) for Ho in the (110) plane and for T)([001]
and for T~~[121]. Under conditions which Eq. (40)
holds, it follows that this also gives the anisotropy of
the relative linewidth. The calculated results are
shown in Fig. 12. There is a qualitative fit for both
cases T~~[001]and T~~[111].Finally, from themeasure-
ments shown in Fig. 12 it is possible to compare
2~/Ho for the two cases Ho, T~~ [001]and Ho, T~~ [111].
The calculated ration for HD~~ T is

(g,[111] eo 2 m, ' [8'+2(it,'/3)']
= 3.6, (46)

(F2[001],eo'i 3 m, [8'+ (X/3)']

which is very close to the measured ratio of 3.7.
As mentioned earlier the parameter ~corn/coo~ can be

estimated theoretically. Using the experimental values
of m, /mo, 8, 1V, and D given in Sec. IV D, it is found
for H0, T~~[001] and T=2500 kg/cm' that ~co2/~0)

2.8X19 which is twice the value determined
experimentally. This discrepancy is not understood.

We conclude that the generally good agreement in
the foregoing examples between the predicted and
observed behavior of the line shapes substantiates in
some detail. the Hasegawa line-broadening theory.

3. Line Shifts dge fo Carrier Heating

Thus far, we have assumed that the carriers are in
thermal equilibrium with the lattice, and the Landau
levels are populated according to an equilibrium
Boltzmann distribution. Actually it has been found
that a number of experimental factors can seriously
upset this idealization.

First, excessive microwave power, especially if
scattering relaxation times are long, can pump the
carriers into the higher Landau levels thereby broaden-
ing and shifting the line. These effects are illustrated in
Figs. 15 and 16 showing the line position for Hp and
T~~ [111]as a function of microwave power, Po, coupled
to the cavity. Under extreme conditions, PQ 10—' W,
the split-band hole resonance can be shifted nearly to
the position of the original heavy hole.

Second, "hot" carriers can be produced by the
illuminating radiation if hv)E„~as indicated in Fig.
7(a). The efFective mass for T~~ [111]is shown for white
light and monochromatic radiation of wavelength 1.02 p,

close to the band gap. A distinct line shift is evident
especially for low values of stress. Although less
pronounced than the microwave effects, this light shift,
nevertheless, can cause sizable errors in effective mass
measurements. Fortunately, its sects can for the most
part be extracted from the data using the mass shift
analysis given in Eq. (28). These heating efFects shift
the values for y but have little efkct on the values of
mo* and a. (See caption of Fig. 7.) It is, however,

I Reference 10, Eq. (4.19). 'I See Eq. (4.16) and (4.24) of reference 10.
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FrG. 15. The sects of microwave carrier heating upon the
cyclotron resonance lines in uniaxially stressed silicon. The traces
were taken for Hv and T~~L111j (T=1000 kg/era~1, 1.26'K, and
r =8900 Mc/sec. In (c) the high microwave electric Gelds (EI=10
V/cm) shift the split-band hole line nearly to the position indicated
for the unstressed "heavy" hole line. The electron lines are severely
broadened by the microwave carrier heating at the power levels
10 ' to 10 % in (b} and (c).

desirable to eliminate all heating mechanisms as much
as possible from the experiments.

V. DISCUSSION

A. Negative Sign of 8
Contrary to earlier theoretical predictions, ' the sign

of the band parameter 8 has turned out to be negative.
This has important implications for the ordering of the
conduction energy bands at the point I'(k=0) as seen
by the following argument: In essence, P, G, H&, and
H2 each have the form

where Eo and E; are, respectively, the energies of the
valence band 625 and the perturbing conduction band
F; according to the classification in Table I. Since the
perturbing bands lie above F25 we expect that F, G,
H~, and H2 are all negative. On the other hand, 8
can, in general, have either sign. From Eqs. (2) and (4),
we see that 8= a(1.—M) a(F—Ht) if we ignore for the
moment the contributions of G and H2 which are small.
Thus, the sign of 8 is, to a large extent, controlled by
the relative magnitudes of F and H~ which, in turn,
depend upon the relative locations of F2, and F~5,
respectively. Hence, the negative sign measured for 8
implies that F2 is lower and F~i; is higher than the
earlier estimated positions making the band ordering
in silicon more nearly like that in germanium.

0.52

E
~" 0.50

0'~ 0.48

5 o46

4J

u 044

X

0.42

1020~6/CM ~
ohio

0.38
10 10 10 6 10 5 10-4 10-3 10 ~ 10 '

Po iN WATTS

FIG. 16.The effective-mass shifts of the hole resonance produced
by microwave carrier heating. The data were taken for Ho and
T)($111j,1.26'K, and v=8900 Mc/sec. At ED=1M W the electric
Geld in the sample was EI=10 V/cm. For low power levels the
curves fail to comcide because of the shift of effective mass with
stress.

Taking the measured. values of A, 8, and X from
Table III we calculate F, G, and Br (in units of fr'/2rrr e):

F= ', ( 2+48+2%+1-)=——5.48+0.06,

G=xa(22+8 —X—2) = —0.64+0.03,

Hx ——~—8—1=—4.~1+0.05.

As usual, the assumption has been made that H2 0,
justi6ed since P» is remote ( 30 eV) from the valence
band and since the matrix element itself is very small.
Using the earlier values for the matrix elements (which
are substantially less sensitive to the values of F, G,
and H t than are the energies), Phillips" has recalculated
the band energies using the new values of the band
parameters in Eq. (47). He finds that P& and T» both
fall at approximately 2.8 eV thus forming the direct
energy gap at 4=0, and that F~2 will fall somewhat
higher at 10 eV, approximately at its previous
estimated position, Previously, F2 and F~~ were believed
to be at 8.8 and 2.1 eV, respectively. The revised
estimate for the position of F2 is corroborated by recent
evidence obtained by Tauc and Abraham" from the
optical absorption in Ge—Si alloys which upon extrapola-
tion to the limit of pure Si indicated that F2 is near
3.3 eV.

As mentioned earlier, the sign measured for 8 is in
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contradiction to that obtained from band calculations. '
The reason for the failure of the band calculations has
been examined by Phillips. ' He concludes that the

difhculty lies in estimating reliably the value for the
core levels relative to valence levels. Certain bands
(at 1', for instance, I'2 ) are very sensitive to core level
shifts as recently pointed out by Herman'4; and it seems

risky, therefore, to make detailed predictions without
calculating core levels as carefully as valence levels. For
silicon, the ordering of bands at F indicated by the
cyclotron resonance data requires a value of core shift
which is encouragingly close to that needed" to 6t
the peaks for optical absorption at L(k= (m.(a)[111])
measured by Tauc and Abraham.

B. Nearly Isotropic Band Splitting in Silicon

A further unexpected result of the present work has
been that the J= 2 band energy splitting is nearly equal
for TIIL001] and Till 111], and, furthermore, has the
same sign, i.e., the order of states at k=0 is the
same for TIIL001] and TIIL111] with ~&=+-', "up"
for compressive stress. As pointed out earlier, under
these conditions, the energy splitting is isotropic with
respect to the directions of T, and &MJ is always a
"good" quantum number along the direction of T.
A similar result has been found recently for the valence
band of CdTe by Thomas" from optical reflection
measurements of the direct exciton in uniaxially stressed
crystals. It is important to note that more nearly equal
splittings are obtained for equal applied stress rather
than strain. This implies a relationship between the
deformation potentials and the elastic constants,

D~($11 Si2)—D~ $44(2.

(Neither Si nor CdTe is elastically isotropic, i.e., for
both $ii —$i2&$44/2. ) At present, there is no theoretical
reason to expect such a property which may be purely
"accidental" for Si and CdTe. It would be of interest to
ascertain if a similar behavior exists in other cubic,
tetrahedrally coordinated semiconductors. "
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in 6-vector notation. In order to transform this tensor
from the primed system into the crystal coordinate
system (x,y, s) we need the coordinate transformation

x„=(o
—');,x,'. (A2)

A simple choice for the x' and y' directions gives the
transformation matrix

1 1 1—cos8 —sln8
V2 v2 v2

—cos8 —sln8
v2 v2 v2

(A3)

0 —sin8 cos8

where 8 equals the polar angle between s and s'. The
stress tensor rotates by the same transformation
according to

VIL APPENDIXES

A. Stra~a Components for a Cubic Lattice

Ke calculate the strain components in a cubic
crystal with an applied uniaxial stress along a direction
in the (110)plane. This covers the cases for stress along
each of the three principal crystallographic directions

(a generalization to include cases when T is out of a
(110) plane is easily made). The procedure is quite
straightforward; but due to considerable confusion over
a factor of 2 in some of the strain components it seems
worthwhile to write out the analysis in detail.

Consider a Cartesian coordinate system (x',y', s')
such that T' is along the s' axis. (The specific choice for
x' and y' is unimportant. ) In this system the stress
tensor has the simple form

It is a pleasure to thank J. J. Hopfield, E. O. Kane,
W. Kohn, J. C. Phillips, and Y. Yafet for numerous
discussions on subjects pertaining to these experiments.
%e are especially grateful to H. Hasegawa who
communicated his results to us before publication
and contributed many invaluable suggestions and
comments during the course of this work. %e mould
like to thank D. H. Sweet for his assistance in making
the measurements. Tg z

~
sin"-8

—,
' sin"-8

cos'8

2 sin'8

(1(v2) sing cose
(1/W2) sin8 cose

so that in the crystal system (x,y,s) it becomes

(A5)

'4 F. Herman and J. Skillman, Proceedings of the International
Conference on Semiconductor Physics, Pragge, I%60 (Czechoslo-
vakian Academy of Sciences, Prague, 1961),p. 20."D.G. Thomas, J. Appl. Phys. 32, 2298 (1961).

"For germanium P~0.9&0.2 according to the values of the
deformation potentials measured recently by J. J. Hall, Phys.
Rev. 128, 68 (1962).

Next, from the stress tensor (A5) we obtain the strain
tensor by the relation

~ij sijkl Tkl)

where the s;;~~ are components of the cubic elastic



CYCLOTRON RESONANCE EXPERIMENTS IN S i

compliance tensor"

Syl $j2 Sj2

$12 $11 $12

$12 Sy2 Sl g

g$44
1 0 0

4$44 0
0 4$44

(A7)

The strain tensor (written as a 6-vector) is, finally,

B. EBeetive Masses for a Uniaxtal Stress
in the (110) Plane

1. Calculation of the Masses

Ke consider now the general problem of calculating

the principal masses m~, m~, and m3 for the J=2
bands for an arbitrary orientation of T in the (110)
plane. %e start by writing the splitting part of the strain

Hamiltonian from Eq. (16) using the strain components

in (A9),

jfS[i = T

g $11

2$11
1

sin'8+ s» (~2 sin'8+ cos'8)

sin'8+s~2(x2 sin'8+cos'8)

spy cos 8+sym sin 8

~$44 sin 8

(1/2v2)s44 cos8 sin8

(1/2&2) s44 cos8 sin8

H = e(J '—-'J')+-3e'{JQ„)
+-', c"((J.J.)+(J,J.) ), (81)

where

e= eo(cos'8 —
x~ sin'8)

E =603 slI18

As usually defined, however, the "conventional" strain
components e,; differ from those of the tensor ~~S~~ by a
factor of 2 in the off-diagonal elements:

e"= eo'(3%2/2) sin8 cos8

e,=e»= TL2s~~ sin'8+s~~(2 sin'8+cos'8)]

e„=Tfs, ~ cos'8+s, ~ sin'8]

e,y
——(T/2) s44 sin'8

e„=e„,= (T/V2)s44 cos8 sing.

(A9)

Eo= 3D~($11 S12) T

go' ——-', D„'(s /442) T
(83)

Employing a matrix representation" for J„J„,and

J„weget

(1/V3) (1—i)c"
—(i/v3) e'

0

(1/v3) (1+i)c"

0
—(i/v3) e'

(i/V3) e'

0

—(1/V3) (1—i)e"

0

(i/v3) c'

—(1/v3') (1+i)c" (84 )

1 1 1
k, =—kl+—k cos8+—k3 sin8,

v2 V2 v2

1 1 1
k„=——k~+—k2 cos8+—k3 sin8,

V2 V2 V2
(83)

k, = —k sin8+k3 cos8,

3' See, for example, C. Kittel, Introduction to Solid-State I'hysics
(John Wiley 8t Sons, Inc. , New York, 1957), p. 91.The compliance

Since we are interested in the masses for an arbitrary
orientation of T in the (110) plane, we shall rotate the
coordinate axes so h3 is along T (it is not necessary
to rotate J to change the axis of quantization). Choosing
hg along the L110]direction as the axis of rotation, we

make the transformation Lsee (A3)] from the crystal
system to the stress coordinate system,

in which 8 is the polar angle between k, and k3. This

particular choice of 1, 2, 3 coordinates is advantageous

because they automatically coincide with the principal
axes of the mass tensor.

Direct substitution of (85) into (7) to obtain the
transformed k p Hamiltonian is extremely tedious and,
in fact, unnecessary. %e can, instead, determine the
masses m ~, m ~, and ns3 by diagonalizing the Hamiltonian
for specific directions in k space, i.e., k~, k2, and k3

successively.

If we set k2 ——k3 ——0, then the transformed Hamil-

tensor (A7) di6ers from Kittel's set of compliance constants by a
factor of —,

' before the s44. This occurs because the set derived by
Kittel is not a tensor since it was obtained using the conventional
strain components which are, by definition, not tensor components.
lt was the failure to recognize this fact which led to the incorrect
value of e0 given in reference ij..
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tonian is

(A+~B)kP+2
(1/~ (1—i)2"

'( ')= —(i/vS) (~Xk, —')
0

(1/W (1+ )
(A —2B)kp —e

0
—(i/VS) (-'it/kP+4')

(i/vS) (-', XkP+ 2')
0

(A —2B)kp —2

—(1/A) (1 i—)4"

0
(i/43) (2 ilI'kp+ 2')
—(1/V3') (1+i)2"

(A+ 'B)k-P+4 .

(B6)

E(ki) = A+-'2B ci(8)+-'2W c2(8) kp

where
~ (22+ 1EI2+ 2 El z2) I/2 (B9)

ci(8) = (1/D) (cos28—12sin28),

c2(8) = (1/2D) )P~ sin'8,
(B10)

in which

D(8)= [(2 sin'8 —cos'8)'+ —'P2 sin'8(1+3 cos'8)]'/' (B11)

0.45

This can be exactly diagonalized. The eigenvalues of
Hp(ki) are

E(k )=Ak '&—'[(B'+-'N)ki'+4(EB+-'22'iI/)ki'
+4(42+ 4 2+ 4 2)]1/2 (B7)

Since we are only concerned with the bands near k=O,
we can neglect the k~4 terms which are small compared
to the k~' terms if the bands are well decoupled, i.e.,
e, e'».Vkg', Bkg', then

E(k,) =Ah ~[($B+222'/y)k je'+124' +224"2]'/2 (Bg)

Expanding for small k~ we get

and /8=ep/22 is the splitting anisotropy parameter.
The upper and lower signs always refer, respectively,
to the "top" and "bottom" J=-', bands.

The same process can be repeated for the remaining
directions k2 and k3. Next, letting k&

——k3=0, we obtain
to lowest order in k2,

I
6p6p

E(k2) = A& 2B c2(8)-&'2/1t' c4(8) k2,
'

fp

where
~ (22+ 1 2&2+ 2 El&2) 1/2 (B12)

6p

E(k2)= A+-B2cs(8)%21K c2(8) kp
&p &p

where

[22+ 22&2+ 2 En2]1/2 (B14)

c2(8) = (1/D) (cos 8—12 sin'8) (sin 8—2 cos'8)
(B15)

c4(8) = (1/2D)
~ P ~

sin'8(3 cos'8+1).

c1(8)= (1/D) (cos'8——,'sin'8) (cos28—2 sin'8),
(B13)

c4(8) = (3/2D) ~/8~ cos28 sin'8.

Finally, if we set k&= k2=0, we get

0.35

2. Band Sptitting a
From the foregoing the anisotropic energy splitting

6 for the J=-,'valence bands is

Q= 2 (42+16~2+2 e~&2) /2 (B16)
E ~&0.30

Expressed explicitly in terms of the angle 8, this becomes

0425 a=2).,(D(8). (B17)

1- 0.20t
V

0.)5

0.$0

0.05

0
O e gO 30 40 SO ) SO Vo SO 9O

tooi] [fllj Italo]
ANELE OF T IN (It0) PLANE FROM f00/] AXIS

Fn. $7. The anisotropy of the effective masses for the "upper"
hole band EI/~+ for uniaxially compressed silicon with respect to
the direction of T in the {110)plane. The curves were calculated
using the values of A, B, N, and P given in Table III. The experi-
mental points are shown.

For P= 1 we find that D(8)=—1 and the splitting becomes
isotropic, ted=2)2//).

3. AnisotroPy of the Egectii/e Masses with resPect to T
At this point it is perhaps worthwhile to summarize

the behavior of the three hole eAective masses m~, m2,
and m3 in strained silicon by exhibiting their complete
anisotropies as T is rotated in the (110) plane. Using
the values of A, 8, X, and P in Table III we calculate
these anisotropies from Eqs. (B9)—(B15). In Fig. 17
are shown the curves thus obtained upon which are
superimposed the experimental points for the masses
at the three principal crystallographic directions. For
the high-symmetry directions [001] and [111] the
unique nature of the energy ellipsoids, i.e., axial
s~~etry, is clearly evident.
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The large anisotropies of the mass with respect to
T suggests that, in principal, greater over-all accuracy
could be achieved in determining the band parameters
by measuring the masses for additional stress directions
and then employing appropriate curve-6tting tech-
niques. In view of the complications brought about by
the mass dependence on strain, however, the extra effort
in pursuing this approach does not seem presently
justi6able.

C. Corrections for Small Misorientations
of T from [111]

It is often dificult to align the direction of the
applied stress precisely along the desired crystallo-
graphic direction. Since the eAective masses are extrema
for TII[001] and TII[110], a small misalignment of
T by lN from these directions is usually not serious,
introducing into the measurements an error of order
(h8)'. However, for T near [111)where the effective
masses are changing with direction of T a signi6cant
error of first order in lN is possible. Ke calculate here
these first-order changes in the cyclotron mass for the
[111]case to enable one to make corrections for the
inevitable small experimental misorientations,

In the present experimental setup using Bat samples
out in the (110) plane, the misorientations are confined
almost entirely to this same plane. Consequently, we
can utilize the results of Sec. 3 and calculate the changes
of mass with respect to the polar angle 8. Differentiating
the inverse effective masses with respect to 8 and
evaluating the derivatives for the [111] direction,
we get

It is worth noting that ms reaches an extremum for
TII[111],whereas tml and ttts cross the [111]direction
with equal but opposite slopes (see Fig. 17).

The anisotropy of the cyclotron effective mass in
the (110) plane is given by

(cos'e Ss'e) '&'

ttt*=
I +
EtSltwt tttltttt

(C4)

where y is the angle between Ho and the stress direction.
Using the masses ml, mr, and ms from (C2) we obtain

(C5)

For HOII T the correction is zero; however, for y=90'
the mass shift is nearly maximum

bm*/m *=W '8 &0-368

which represents ax2/o correction for a 1 misorientation.

D. Anisotroyy of the Linear Mass
Shift Parameters

Hasegawa" has pointed out that the measured
inverse eBective masses for the decoupled valence
bands of silicon have the following form for the axially
symmetric cases TII[001]and TII[111],

where mo* is the anisotropic cyclotron effective mass
for TII[111]

cos y sin y
0*= +

fS 2 S1 SZ

a —=wv2 — — — as, C1
I

&o'I IP I

s(—')=e,

where the upper and lower signs refer to the "top" and
"bottom" J=—', bands, respectively (8 and 1V are in
units of fl'/2ms). If we add the above deviations to the
zeroth order masses twl' and m&&' for TII[111),we can
write the three total eGective masses as

ttt l ——ttt, '(1%8),
ms ——ttll'(i ah),

+clT&
(tttl)mess tttl

1 1
+wiT

(tmtt)mess

(assuming the y/T component has been extracted).
Here e& and n«are the linear eGective-mass shift
parameters and m& and ns«are the "zero strain"
masses defined in Sec. II. As a rule (m,) „,and
(m&&), cannot be determined directly but must be
ascertained from the anisotropy of the cyclotron
effective mass,

where
ma=Sf«&

cos2y sin2y
ttt'(y) = + (»)

-(tml)mess (tmlttttt)mess-

(C3)

where y is the angle between Ho and the symmetry
axis of the ellipsoid. In addition, we should like as well
to determine e& and 0.« in a similar way from the
anisotropy of the linear eGective-mass shifts described
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by n(y) according to

+n(v )2'.
m'(s ) mo*(v )

(D3)

zeroth-order mass anisotropies in each of the principal
planes are

2
+& sjn2+& —1/2

m *(001)= +
m2m3 mim2

The requisite relation for a (y) in terms of ni and n„can
be obtained as follows: If we substitute Eq. (D1) into
Eq. (D2) and expand to first order in T, we obta, in,
after identifying the resulting terms with those in
Eq. (D3), the zeroth-order effective-mass anisotropy

(coo'e oio'o) '&'

ms*(ss) =
i +

m,m„

as expected and, in addition, the first-order term
containing the anisotropy for n(q),

2ng ng n& l

n(y) = ', ma*-(qr) cos'-q+ —+—sin'y . (D5)
m$ mJ

The same analysis obtains for the case T~~[110] for
which there are three different inverse eGective masses

cos p2 sin p2
ms*(110)= +

mim3 m2m3
(D7)

cos p3 sin p3
ms*(110)= +

mym2 mim3

Here we have defined

X=n, /m 2+ay/m 1 1

where yi, y2, and ys are the angles between Ho and the
1, 2, and 3 axes, respectively. The anisotropies for n in
these same planes are

n(001) = —',ms*(001) (X cos'pi+ F sin'yi)

n(110)= 2mo*(110) (V cos'y2+Z sin'y2), (DS)

n(110)= 2mo*(110) (Z cos'q 1+Xsin'q s).

1 1
+nI1 )

(ml)mess ml

Y=ns/ms+as/mg,

Z =ns/m 1+a,/m s.

(D9)

=—+n.T,
(mS)mess mi

1 1
=—+n:lT)

(ms)mess ms

ln order to obtain n~, n2 and ns from the measured
(D6) anisotropies it is useful to have the inverse relations

m2m3
nI ——— m2X+mgZ — V

2 m$

where 1, 2, and 3 are along the [110),[001j,and [110]
axes, respectively. The effective masses m&, m2, and
ms are those given by Eq. (25) in Sec. II; the eBective-
mass shift constants ai, n2, and ns for T~~[110j have
been determined by Hasegawa. " %e find that the

1 mmmm]

n2= — m3 V+mIX — Z,
2 m2

1 mym2
n3 ——— mIZ+m2I' — X

2 m3

(D10)










