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Energy of a Vortex Ring in a Tube and Critical Velocities in Liquid Helium II
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Various authors have suggested that critical velocities v, in liquid helium II may result from the forma-
tion of vortex rings according to Landau's criterion, o, = (E/p);, where E is the energy of the ring and p
its impulse. In considering the possible formation of rings inside the channel from this point of view, however,
the effect of the walls on E and p has been neglected. By solving Laplace's equation in series, we have evalu-
ated the energy of a circular classical vortex ring with an empty streamlined core confined coaxially in a
long circular tube of radius R; numerical results are presented for various core radii a and ring radii ro.
L~ has a maximum at r0=0.9R, and approaches zero as ro —+ R. Boundaries do not aAect the impulse, so
Landau's criterion applied to such a classical vortex ring gives v.=0, contradicting experiment. We may
conclude that for some reason vortex rings must not be formed inside the channel, unless some special
mechanism prevents their formation (or their causing friction if formed) too near the walls. Numerical
results are also presented for the exact solution in an unbounded fluid.

I. INTRODUCTION

HE superQuid component of liquid helium II Qows
without friction only at velocities smaller than a

certain critical velocity v, . This velocity has been ex-
tensively investigated in 6lms, ' slits, ' and capillaries'
it changes slowly with temperature, and is about in-
versely proportional to the channel width in channels
larger than 10 ' cm, but rises more slowly as the
channel is made very small. Some typical values are
plotted in Fig. 1.

Many attempts to account for superQuidity and its
breakdown at e, have followed the suggestion of
Landau' that the superQuid is the ground state of the
liquid and that m, is the velocity needed to make an
excitation. This velocity is found by a classical argu-
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K. R. Atkins, Lsguid Helium (Cambridge University Press,
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the Seventh International Conference on Low-Temperature Physics
(University of Toronto Press, Toronto, 1961), . 502.' L. Landau, J. Phys. (U.S.S.R.) S, 71 (1941 .

ment. If the excitation has momentum (or impulse' )
p and energy E in a Quid at rest, then its creation in a
Quid moving with a uniform velocity v would add to
the energy of that fluid an amount E+p. v. Since this
process cannot change the total energy of the Quid, it
can occur only if E= —p v. Thus, the only excitations
that can be formed are those for which E ~& Pv, so that v,
is the minimum value of E/p for all possible excitations.

If the excitations formed were phonons or rotons
(thermal excitations), then their energy would appear
directly as dissipation of the kinetic energy of Qow.
But Landau's argument applied to phonons and rotons
gave values of v, much higher than those actually ob-
served. An explanation of v, in these terms therefore
requires excitations of some other kind, with smaller
(E/P);„. Feynmans has suggested that for flow in
channels these take the form of quantized vortex rings

s Hereafter, we shall always refer to the impulse (the time
integral of the forces on the liquid required to set up the motion
from rest) rather than the momentum (the volume integral of
density times velocity). The two quantities are equal if the latter
is well defined, but often it is not, because the Quid is an infinite
sink for momentum. H the Quid is infinite and incompressible, so
that momentum is instantly transmitted to infinity, then the
integral for the momentum will not even be absolutely convergent.
(See reference 13).When, therefore, for mathematical convenience
we consider this limiting case, it is the impulse we must work with.

9 R. P. Feynman, in Progress in Low-Temperature Physics,
edited by C. J. Gorter (Interscience Publishers, Inc., New York,
1955), Vol. 1, p. 19; see especially pp. 45-51.
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From Eqs. (1) and (2) it is clear that Ep/p decreases
monotonically as ro increases. Both Geilikman and
Peshkov assume that the presence of the channel walls
does not greatly affect E and p, so that the minimum
value of E/p will be for rings that are as large as
possible —almost as large as the channel. Therefore,
according to Geilikman, v, should equal the value of
Ep/p for r p R, th—e—channel radius:
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FIG. 1. Critical velocity v, at 1.4 K in various channels plotted
against hydraulic radius RH—=2X(cross-sectional area)/(perime-
ter). This is the parameter that makes Geilikman's formula for
narrow slits (see reference 10) most like that for circular tubes
PEq. (3)j.—,unsaturated 61ms (reference 1); [, saturated 61ms
(reference 1);=, slits (reference 1); o, circular tubes —mass flow
(references 1, 4, and 5); o, circular tubes —heat flow (references 2
and 3); g, rectangular channels —heat fiow (references 1, 2, and
6). Solid lines are theoretical curves; see text.

P= prpKf p .
"B.T. Geilikman, J. Exptl. Theoret Phys. (V.S.S.R.) 37,

891 (1959) /translation: Soviet Phys. —JETP 10, 635 (1960)j."V. P. Peshkov, Proceedings of the Seventh International Con-
ference on Lour-Temperature Physics (University of Toronto Press,
Toronto, 1960), p. 555; J. Exptl. Theoret Phys. (U.S.S.R.) 40,
379 (1961) Ltranslation: Soviet Phys. —JETP 13, 259 (1961)j."H. Lamb, Hydrodynamics (Dover Publications, New York,
1945), 6th ed. , Chap. 7, p. 202 (see especially Secs. 161-163).

in the otherwise irrotational liquid, with strength equal
to Planck's constant divided by the mass of the helium
atom. The velocity fieM of one of these rings is supposed
to be like that of a classical vortex ring except within
and very near a core of about atomic radius. Energy
might be removed from the steady Qow of the liquid
by the formation of these rings and their grow thin
interaction with the walls, and then converted into heat
by the interaction of the rings with the normal Quid or
perhaps by their breakup into rotons.

Feynman originally devoted most of his attention to
the idea that the rings responsible for resistance to Qow
in a channel are formed at the orifice, and in view of the
complexity of the problem he undertook only qualita-
tive comparison with experiment. But Geilikman" and
Peshkov" have proposed more detailed explanations of
the experimental dependence of v, on channel size,
based on the assumption that the rings are formed inside
the channel. They used, as approximations, expressions
due to Lamb" for the energy Ep and impulse p of a
circular classical vortex ring of strength a in an un-
bounded perfect fluid with constant density p. In
Lamb's model the vorticity is distributed uniformly
through a core whose cross section is circular with
radius a much smaller than the mean radius ro of the
ring. The results are

Eo= spa'rot ln(&ro/u) —7/&j, (1)

This is very similar to Feynman's rough estimate for
a slit, based on the idea that the liquid has to have
enough kinetic energy to form vortex lines at the
orifice. Since what goes on near the core is not, in fact,
classically describable, a is rather an undetermined
parameter of the theory than a physically measurable
length; the result for e, is fairly insensitive to the choice
of a as long as a ((ro.

It will be seen in Fig. 1 that if a=10 cm then
Eq. (3) gives values that are in fair agreement with
experiment for E.~&10 ' cm, but rather high for the
smallest channels and for films. To remedy this,
Peshkov proposed a more elaborate model involving a
relaxation time r during which a fraction Q of the
kinetic energy in a stretch of liquid goes into making a
vortex ring. He got

p 'R(R+p, r) = (ss/s-rr) in(R/a),

in which a, v-, and Q can be adjusted in various ways to
give a good fit to the data. Peshkov's curve in Fig. 1
is the one he gave for a=10 cm, 7=4&(10 sec, and
Q =0.122.

The above arguments depend, however, on the as-
sumption that the energy and impulse of a vortex ring
of given strength, ring radius, and core radius are not
much affected by the presence of walls; otherwise,
Lamb's formulas may not apply, since they were de-
rived for an unbounded Quid. And indeed, there is
reason to suspect that they do not. Most of the kinetic
energy in the velocity field of a vortex ring is in the
Quid fairly close to the core, so we should expect that
the energy of a ring whose distance from the walls is
small compared to its radius will be asymptotically
equal to that of the same length of straight vortex line
at the same distance from a plane wall. The energy of
this configuration goes to zero as the core approaches
the wall. Therefore, the assumption that Lamb' s
formulas are applicable seems most unlikely for rings
near the wall, that is to say for just those rings that,
according to the above theories, are responsible for the
critical velocity. Hence, it is worthwhile to look more
carefully at the actual behavior of the energy and
impulse when the ring is in a channel.

Now, the impulse does not, in fact, depend on the size
or shape of the channel so long as it is simply connected.
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II. ENERGY COMPUTATION

A. Assumytions

For simplicity in computation, we shall consider a
circular vortex ring of strength ~ in an incompressible
inviscous Quid, confined coaxially in a very long tube of
radius R (Fig. 2). The velocity field outside the core
is assumed to be that of a classical ring with an in-
Gnitesimally thin core of radius ro, which we shall call
the solrce circle. The core of the actual ring is taken to
be empty, and to have a cross section bounded by a
streamline. The core radius a is then deGned as the
distance from the source circle to the streamline bound-
ing the core, measured radially toward the tube axis.
If, as will usually be true, the core is very small com-
pared to its distances from the walls and the axis of the
tube, then it will be very nearly circular with radius a
as in the case considered by Lamb.

It should be noted that the above model was chosen
for mathematical convenience only, and is not meant
as a physical proposal for the core of a real vortex ring
in liquid helium. Rather, one hopes that the detailed
assumptions about the core, which are physically
meaningless, will have little inQuence on the result of
the calculation. To see that this is so, and in order to
be able to check the results against those of Lamb and
of common sense, we shall consider brieQy some eGects
of these assumptions.

Making the core empty eliminates the kinetic energy
of the Quid inside it. If a«ro and the vorticity is uni-
formly distributed through the core, as Lamb supposes,
then the velocity Geld inside the core is like that inside
the core of a straight vortex line. This velocity Geld can
easily be shown to be ~x/2m. a' in magnitude, where x is
the distance from the axis of the core. Hence, the kinetic

K=)V ~

FrG. 2. Conlguration
considered.

SOURCE
ClRCLE

ro~

I.- 8- +4

R

"C. C. Lin, lecture notes, Enrico Fermi International School
of Physics, Varenna, Italy, 1961, (unpublished), Chap. 1 (see
especially pp. 10—17).

This is shown by Lin,"who notes that Lamb's deriva-
tion does not use the assumption that the Quid is un-
bounded. Only for the energy, therefore, is a special
computation needed. This will be carried out in the
following section.

Fxo. 3. Coordi-
nates and boundary
conditions for solu-
tion of Laplace's
equation.

saURCE.
clRGLK
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energy per unit length is

(&s'x'/8~'a4)2~xdx= pcs/16~

and the total kinetic energy in the core is Sp~'ro. This
is about 1.4'P~ of Eq. (1) if rs/a=10".

Suppose instead, following Feynman's' heuristic
argument, we include the surface energy of the empty
core, and assume that the core size is such as to mini-
mize the total of surface and kinetic energy. Then if 0.

is the surface tension, and a«ro as before, it turns out
that a=ps'/Sm'o and the surface energy is —,'ps, 'rs, or
four times the kinetic energy of a full core.

The eGect of allowing the core to depart from circu-
larity is small unless either ro or E—ro is of the order of
a, in which case a classical ring is no longer a good ap-
proximation anyway. This is discussed in the appendix.

B. Computation

For the numerical solution of the problem, we use
cylindrical coordinates r, 0, s, with the source circle in
the s= 0 plane (Fig. 3). Since the fluid is incompressible
(V' v=O) and the motion is curl free (V')&v=O) except
for the singularity at the source circle, the velocity Geld
v is the gradient of a potential p that is a solution of
Laplace's equation V'&=0 in any simply connected
region away from the source circle. We take for this
region the whole interior of the tube except for a barrier
consisting of the disk bounded by the source circle. On
crossing this barrier, p changes discontinuously by an
amount equal to the line integral of v along a path that
goes from just below the barrier to just above it without
crossing it; that is, by just the circulation ~ through the
ring. By symmetry, the Qow across the barrier is normal
to it, so that p is constant over the barrier. Therefore,
choosing the arbitrary constant in @ agreeably to the
symmetry of the problem, we must have for the
boundary condition at s=0:

0~&r&ro
s~ &0.

ro(r «& E.
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c7y/Br =0 (6)

The velocity at the wall must be tangential, so the
boundary condition at r=E is

TABLE I. Energy E, in units of p&0, of a circular vortex ring
of strength a with an empty streamlined core, confined coaxially
in a long tube full of an incompressible Quid of density p, for
various ratios of the ring radius r0 and the core radius u to the tube
radius R. This is Rjr0 times the quantity plotted in Fig. 4.

Since the problem has cylindrical symmetry, the
solution has the form ro/R

o/8=10-' 10 '
8/ps'ro

10 ' 10 ' 10 ' 10 '

qb= P Q„Jp(k„r)e
n~0

where the A„'s and k 's are constants. Equation (6)
then gives

k„=x,/R,

where x„is the rsth root of Ji(x) =0. Expanding Eq. (5)
in the orthogonal functions Jo(x„r/R) and equating
term by term to Eq. (7) with a= 0, we obtain

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.85
0.90
0.95
0.98
0.99
1.00

6.949 5.798
7.291 6.140
7.482 6.331
7.601 6.449
7.668 6.516
7.686 6.535
7.648 6.497
7.527 6.376
7.414 6.263
7.235 6,083
6.903 5.752
6.449 5.298
6.103 4.952
0 0

4.646 3.496
4.989 3.838
5.179 4.028
5.298 4.147
5.365 4.214
5.384 4.233
5.345 4.194
5.225 4.074
5.112 3.960
4.932 3.781
4.600 3.449
4.146 2.996
3.801 2.652
0 0

2.350 1.244
2.690 1.568
2.879 1.749
2.997 1.863
3.065 1.928
3.083 1.946
3.045 1.908
2.924 1.789
2.811 1.680
2.633 1.508
2.303 1.198
1.857 0.806
1.523 0,552
0 0

rroJi(x ro/R)

x„RPp(x„)js

The kinetic energy E equals the integral of —,'p(|7$)'
over the volume of the tube outside the core. To
evaluate it we integrate by parts, converting the
volume integral to a surface integral by applying the
divergence theorem to the vector Geld PUP. The result"
1s

&van ds, (10)

where the integral is over the boundaries of the simply
connested region in which P is defined and continuous.
Since the velocity is tangential at the walls and at the
boundaries of the core, the only contribution to Eq. (10)
is from the Aux through the barrier, and we have for
the energy

r0—a

(8@/cia), p2mrdr.

rp ~ Ji(x rp/R) Ji(x (rp a)/R]—= orpcs—p (11)
g n-0 x„LJ p(x„))'

(12)

' See, e.g. , J. Serrin, in EImdbuch der I'kysik, edited by
S. Flugge, (Springer-Verlag, Berlin 1959}, Vol. VIII, Part I,
p. 159. The procedure is perfectly analogous to finding the mag-
netic Qeld energy of a current loop by an inductance calculation.

The convergence of this series is extremely slow for
interesting values of the parameters, the number of
terms required being of order greater than R/u. There-
fore, we sum to a practical value of n, say E, and inte-
grate the summand as a continuous function of e from
E+s to oo, using trigonometric approximations for the
Bessel functions of large argument. This gives for the
summation in Eq. (11)

where Ci x—=—J;"t ' costdt is the cosine-integral
function, "and we have neglected two small oscillatory
terms. As .~V is increased, the right-hand side of Eq. (12)
eventually oscillates about the true value of the sum
with decreasing amplitude and with period R/rp (if
rp&~-', R) or R/(R —ro) (i«o&~-,'R). An IBM 7090 com-
puter was programmed to carry out the calculation for
each .V at least up to iV=50 (to insure the validity of
the approximations used) and as far beyond as necessary
to make the amplitude of the oscillations in the estimate
for E/ps'ro less than 0.05. The midpoint of the oscilla-
tions could of course be estimated to within a con-
siderably smaller range. The results, which are pre-
sented in Table I, are thus always good to at least two
decimal places, and the third decimal place is sig-
nificant or certain when a/R is very small and ro/R is
not too close to 1, so that the series converges rapidly.
It should be recognized, however, that this accuracy
obtains only for vortex rings whose core has the par-
ticular form assumed. As was shown in Sec. IIA, the
differences due to making other assumptions about the
core can be much greater than the estimated errors in
the calculation.

The results are also plotted in I'ig. 4, normalized
using R rather than r0 so that the dependence of E on
ring radius for a 6xed tube radius can be seen.

C. Limiting Cases

If rp/R is small enough, the walls will not affect the
energy much, and as long as rp/u remains very large,
the results should be given by Lamb's formula )Eq. (1)j
corrected for the difference in assumptions about the
core„ that is,

Zo.=- -', pK'roDn(sr o/a) —2g.

"E.Jahnke and I. Emde, Tables of FNnctions with Iionnllae
and Cnrves (Dover Publications, New York, 1945), 4th ed. ,
Chap. 1, p. &.
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In fact, e.g. , if a/R=10 r, then Eq. (11) differs from
Eq. (13) by less than 1%%uz for r p as large as O.SR. When
e/R is larger, E falls off from Ep more rapidly.

If the ring is almost as large as the tube, so that
E—ro(&ro, then the argument in Sec. I tells us that E
should be the energy of a straight vortex line of length
2mro at a distance s=E—ro from a plane wall. The
velocity Geld of this con6guration can be got from that
of a line in an unbounded Quid by superposing the
velocity field of an opposing image line at a distance s
behind the walls. (See Fig. 5.) The fluid velocity in the
plane of the source lines is (K/2s. )L(x—s) ' —(x+s) '],
where x is the distance from the wall. Therefore, using
the same method as for the ring in Sec. 8, we get for
the energy

SQURCE
LINE

Fn. 5. Straight vortex line and image line equivalent to a
vortex ring almost as large as the tube. Here s=R—ro.

px )Ei———
~

[(x—s) ' —(x+s) ']Ch 27rrp
4~i

pxfp f R fp

2 E a i

a/R*IO

cu 4

tie 3

within a few core radii of the wall, but before this
happens the energy is already considerably smaller
than that of the unenclosed ring. For example, if

(14) R—rp ——Su, then Ep/E is 6.75 for rp/a=10', and 3.87
for rp/a=10'. Therefore, critical velocities as large as
those actually observed cannot be accounted for on the
hypothesis that vortex rings are formed and cause
friction wherever s &~(E/p);„. Indeed, if this hy-
pothesis were true, and the classical formula were valid,
superAuidity would never be observed at all. Thus,
Landau's condition alone, applied to vortex rings,
cannot be taken as sufficient for the appearance of
friction, though it may still be necessary.

The smallest effective change one could make in the
model is to suppose that rings very near the walls do
not cause friction for some reason, even though they
may be formed at very low velocities. (More specifi-
cally, one could argue that rings larger than that of
maximum energy cannot get away from the walls,
since to do so they would have to become smaller and

0.2 0.4

r/R

0,6 o.a I,O
I,O I I I

Fro. 4. Energy, in units of pI(."R, of a circular vortex ring of
strength ~ con6ned coaxially in a long tube of radius R full of an
incompressible Quid of density p, as a function of the ring radius
r(j for various radii u of the empty streamlined core, each being
given in terms of E I Eq. (11)).

This is in excellent agreement with the result of Eq. (11)
for rp near R, differing from it, e.g. , by less than 1% if
u/R=10 r and rp&0.9R.

The way the actual value of E deviates from these
two limiting cases is shown in Fig. 6 for two values of
a/R.

III. DISCUSSION

It is clear from the foregoing Lsee Fig. 4 and Eq. (14)j
that 8—+0 as ro~R. Thus, the minimum value of
E/p for a classical ring confined in a tube does indeed
occur for the largest possible rings; but this value is
zero for all tube radii. The classical computation is pre-
sumably not a good approximation to the actual
quantum-mechanical problem when the core gets

0.8—

O
I- 0.6—
I:
C9I:
4J

0.4—

0.2—

I I

0.2
I I I I I

0.4 0.6
r /R

I

0.8 I.O

FIG. 6. Energy of a vortex ring in a tube in terms of the energies
of two limiting configurations: an unenclosed ring of the same
radius rp LEp, Eq. (13) or (18)j, and the same length of straight
vortex line at the same distance from a plane wall LE&, Eq. (14)g.

, a/R=10 r; ————, a/ff= 10 '; a=core radius; A=tube
radius.



their energy would have to increase. It seems im-
plausible, however, to imagine that such rings would
be stable against dimpling and. tangling. ) Alternatively,
it might be that rings that are too large cannot be
formed at all. In either of these cases, the critical
velocity will be the value of E/p at some value of ro
fairly near R, but not so near that the effect of the walls
on I'' is very large. This velocity will not be very dif-
ferent from the value for an unenclosed ring with
rp ——R as given in Eq. (3). Thus, such a model could be
made to fit the experimental results about as well as
Geilikman's. We have not, however, been able to make
a convincing argument along the above lines.

Another possibility is to go back to Feynman's
original picture in which the tube "blows smoke rings"
at the orifices. In this approach the production of vor-
ticity is not deduced from the Landau criterion, but is
regarded as a quasiclassical phenomenon due to the
abrupt acceleration required for irrotational Row around
the corner of the orifice. The quantum nature of the
process appears only in the relation it imposes between
energy and vorticity, and perhaps in the details of the
subsequent propagation of vorticity along the tube.

Finally, the breakdown of the superQuid regime may,
at least in some situations, have nothing to do with
quantized vorticity at all. This is suggested by the ob-
servations of Meservey, '6 Chase, ' and Staas et al.' that
~, can sometimes be described in terms of a Reynolds
number. Also, in an elegant recent experiment, Peshkov
and Tkachenko' have shown that turbulence in a long
tube may nucleate at either end and spread down the
tube toward the other, or (at somewhat higher ve-
locities) start within the tube and spread toward both
ends. Although they give a qualitative explanation in
terms of vortex rings, the reported behavior somewhat
resembles that of classical turbulence, which nucleates
on boundary irregularities at a Row velocity dependent
on their size.

It thus appears that there is no straightforward way
to account for v, in terms of the production of vortex
rings in the region of uniform Row according to Landau's
criterion. However, those who wish to consider new
versions of this notion may find the above numerical
results useful.
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27, 893 (1961).' V. P. Peshkov and V. K. Tkachenko, Zhur. Kksp. i Teoret.
Fix. 41, 1427 (1961}j translation: Soviet. Phys. —JETP 14, 1019
{1962)].

A (k)Jo(kr)e s~'~dk. (15)

Using the orthonormality of the Jo's over the interval
from zero to infinity" we express P, 0 as an integra, l

with kernel rJ0(kr). Comparison with Eq. (15) then
gives

A (k) =—',~roJr(krp). (16)

Therefore, using Eq. (10) we get

Ep=7rps'rp(rp a)-~1(kro)&iLk(rp —~i)jdk. (11)

The integral is of a kind treated by Watson"; the result
ls

~0 &7l pK rp'y2 Fl (0 0 2; y),

where y—= (1—a/rp)' and the hypergeometric function'"

If u((ro, then p = 1 and the series converges very slowly.
We may again, however, derive an approximate ex-
pression for the tail after the /th term by integrating
Eq. (19) as a continuous function of nfrom lV+ , rs to ~.
To facilitate the integration, we use Stirling s approxi-
mation for the gamma functions and simplify the re-
sulting expression by the additional approximation
(1 —1/rg)~=e '(1—1/2m), where ns=2ri —2. This gives
for the summation in Eq. (19):

E=—s EiL(&+0)»vj —7(s —s»v) EiLP' —s)»R
n-O

7N—-'

+ Z (2o)
4(%+2)

"See, e.g. , P. M. Morse and H. Peshbach, 3fethods of Theo-
retical Physics, (McGraw-Hill Book Company, Inc. , New York,
1953), Vol. 1, p. 766.

~ G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, New York, 1952), p. 401."Reference 20, p. 100.

APPENDIX. ENERGY OF A VORTEX RING
IN AN UNBOUNDED FLUID

The limit Ep of E in Eq. (11) as R —+ pe cannot be
obtained directly because the summation converges
more and more slowly as R increases. It can, however,
be got by an independent computation letting the sum

go over into an integral, and this is worth doing as a
check on Eq. (11) for small rp/R and to find the limits
of applicability of Lamb s approximation (Eq. (1)$.

We choose the configuration and define the parameters
just as in Sec. IIA, except that the walls are removed.
The solution of Laplace's equation then takes the form
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rp/a Eo/pK fo

10 1.109
20 1.487
30 1.703
40 1.855
50 1.971
60 2.066
70 2.145
80 2.214
90 2.274

re/a Ep/pesrp

100 2.328
200 2.681
300 2.887
400 3.032
500 3.144
600 3.236
700 3.313
800 3.381
900 3.440

rp/a

1 000
2 000
3 000
4 000
5 000
6 000
7 000
8 000
9 000

10 000
&10 000

Ep/pz'rp

3.492
3.840
4.043
4.187
4.298
4.389
4.466
4.533
4.592
4.645

—,
' ln(grp/a) —1

where the exponential integral Ei is a tabulated func-
tion's defined by —Ei(—x)—=J;"t 'e 'dt. Values of
Ep/prpxs, which are given in Table II, were computed

Taszm II. Energy, E&, in units of pa'rt), of a circular vortex ring
of strength sc with an empty streamlined core in an unbounded
Quid, for various ratios of the ring radius r0 to the core radius a.

on a desk calculator using Eq. (20) with N=20. They
are accurate to within 0.1%.

The difference between these values and those given

by Eq. (13) is indeed small for reasonable a, being less

than 1% if rp/a) 100, and less than 0.1% if rp/a) 500.
As is to be expected, the results are also very close to
those of Eq. (11) if a/rp and rp/R are both very small.

Hence, as is shown in Fig. 6, the ratio of the energy of
an enclosed ring to that of an unenclosed ring with the
same ro and u goes to unity as ro becomes small, as long
as ro does not become comparable with u. If this last
condition is not satished, the energy of the enclosed
ring actually becomes a little higher than that of the
unenclosed ring, owing to distortion of the core. The
effect is about 1~ for 10a= r0=0.1R. It is clearly irrele-

vant to the present application of this calculation.
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The results of a calculation of the energy distribution of electrons ejected from tungsten by low-energy
He+ are presented. The calculation is based on a mechanistic model of the process in which the ejected
electrons are divided into two groups: (1) the electrons excited in the primary process that can escape
directly; and (2) the electrons that escape because of interactions between the primary electrons and those
of the band structure of the solid. Secondary electron data are used to predict the portion due to this second
mechanism.

I. INTRODUCTION

HE potential ejection of electrons from solid sur-

faces by low-energy ions has been studied exten-

sively both experimentally and theoretically. ' ' Since
the phenomenon is sensitive to the surface structure,
both the experimental and theoretical treatments are

quite complicated. In this paper we give the preliminary
results of a calculation (based on a, mechanistic model

of the process) of the energy distribution of electrons

ejected from tungsten by He+. We attempt to take into
account the interactions of the electrons excited in the
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primary Auger process with those of the band structure
of the solid. In the case under discussion, these interac-
tions appear to give rise to about 50% of the total
measured yield.

In order to calculate the energy distribution of elec-
trons ejected by ions, we must know: (1) the distribu-
tion in energy and angle, X(E,Q), of the electrons excited
inside the metal in the primary process; (2) the escape
probability, F(E,Q), of the electrons; and (3) the effect
of interactions between the primary electrons and the
electrons of the solid. These items are treated in the
following sections.

II. ENERGY DISTRIBUTION OF
PRIMARY ELECTRONS

Figure 1 shows a sketch commonly used to describe
the situation that exists when an ion approaches a solid
surface. One electron falls into the vacant atomic level.
The energy released in the transition is then absorbed by
a second electron from the solid. We can look at the
process in two ways. First, we can assume that the
Coulomb interaction between the two participating


