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For small values of T,(kT,((&,), all collisions become
elastic and the term ttgdrtn/Csc approaches zero and can
be negIected.

For the ranges of T, discussed the energy equation
reduces to

(df~*)(~~v'+~~;v;+ .+s .~r.
+5%v,f r,+ sivvf r.)='zm. —(zs)

For the case of photoionization, the inelastic energy
loss will be smaller than in the electron impact case.
Since the inelastic energy loss was shown to be negli-
gible for the regions of interest for electron impact
ionization, it will also be negligible for photoionization.
Thus the erst-order energy equation will be given by
Kq. (25) when photoionization dominates as well as
when electron impact ionization dominates.

P HYSI CAL REVIEW VOLU ME 128, NUMBER 3 NOVEM HER 1, 1962

High-Density Corrections in Plasma Spectroscopy*

II~s R. GRrEM

University of Maryland, College Parh, Maryland, and U. S. Nasal Research Laboratory, Washington, D. C.

(Received May 25, 1962)

The various relationships between spectroscopically measured quantities and the temperature and density
of a collision-dominated plasma in local thermal equilibrium are discussed. An internally consistent system
of corrections is derived for Saha equations, partition functions, and equations of state on one hand, and line

intensities, line profiles, continuum intensities, and optical refractivities. The errors due to remaining uncer-

tainties in these corrections are shown to be usually below 1%.They are therefore negligible compared to
those stemming from uncertainties in atomic theory (except for hydrogen or hydrogenic ions) and an order

of magnitude smaller than was suggested by discrepancies between previously used corrections to ionization

energies of atoms or ions in dense plasmas.

INTRODUCTION

HE concept of local thermal (or thermodynamic)
equilibrium plays a vital role in plasma spec-

troscopy. If it is applicable, all particle distribution
functions can be calculated from total densities and
temperature, which may both be local functions of time.
In other words, the state of the plasma is then fully
described by mass density, chemical composition, and
temperature. This does not only make it relatively easy
to determine the state of the plasma by a few spectro-
scopic measurements, ' but also often facilitates the use
of such plasmas as spectroscopic light sources for the
measurement of atomic parameters' like oscillator
strengths and line pro6les or for the establishment of
absolute intensity standards. '

Local thermal equilibrium may be expected if collision
induced transitions are more frequent than radiative
ones, which will in laboratory plasmas usually not lead
to thermal equilibrium populations since there one
practically never deals with an equilibrium, i.e., black-
body, radiation field. However, often radiative transi-
tions will be negligible, and the level populations will be
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governed by collision induced processes. If the velocity
distribution of the most important reaction partners is
Maxwellian (in the nondegenerate case), the principle
of detailed balance applies, and the steady-state solution
of the rate equations yields the same populations that
pertain to a system in complete thermodynamic equili-
brium at a temperature equal to the kinetic temperature
of the reaction partners.

Since most of these processes are dominated by
collisions with electrons, it is their kinetic temperature
that is of primary interest. If the relevant velocity dis-

tributions at any point and instant are su%ciently close
to being Maxwellian and if spatial and time variations
are also suKciently weak as to enable instantaneous and
local steady-state populations to be reached, then the
assumption of local thermal equilibrium will always
be valid as long as radiative rate processes are not.

important.

THERMODYNAMIC POTENTIALS

Before the distributions over the various possible
states are computed for the equivalent thermodynamic
equilibrium system, it should be realized that the only
quantities which can, at least in principle, be stated
without any ambiguity are total number densities S;of
the various chemical species i (hydrogen, helium, etc.)
and the temperature. They should, therefore, be chosen
as independent variables. Already in the calculation of
pressure and internal energy some uncertainty has to be
expected, not to mention the distributions over bound
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with
v, = (se/r)exp( —r/p )2,2

kT//pr/2= 42re2(1V, +Ps'N *)

(2)

(3)

where s assumes the value 0 for neutrals, 1 for singly
ionized atoms, etc. , and where the E,' are the total
densities of the chemical species i in the various ioniza-
tion stages s.

The potential energy of the charge cloud surrounding
an ion of charge s becomes with Poisson's equation for
the charge density

r'V, d V,/dr'+(2/r)dU, /dr dr

= —sre2/2pD,

and the contribution of Coulomb interactions to
the internal energy (per unit volume) is in this approxi-
mation

t7,= —(e2/2pr)) (N,+gs2N ')
e8(~/PT)1/2(N +Qs2N, g)3/2 (5)

Using the equation for the free energy

F= U+ Tr)F/r)T,

one obtains 6nally

F=Fe—(e'/3pD) (N,+Ps'1V, *)
=Fo—(2e'/3) (2r/&T)'"(N, +Ps'N')2". (7)

Debye's approximation involves the assumption that
on the average electrostatic interactions are small com-
pared with thermal energies. Also, this formula can only
be expected to be valid if the Debye sphere contains a
large number of charged particles. But it has been
shown that this requirement is not too critical and that
the Debye theory may be used up to densities fulfilling

states or the various ionization equilibria. (It will be
assumed throughout that dissociation of molecules is
complete. )

Following the usual practice, as energy levels of the
system the unperturbed levels of the constituent atoms
or ions will be used with a suitable cuto8. Furthermore,
only Coulomb interactions will be considered. One now
writes for the free energy (per unit volume), which has
an extremum for a thermodynamic equilibrium system
of Axed volume and mass, i.e., fixed density or specific
volume,

F=—V TS=F-e+F..
Here Iio denotes the free energy of the unperturbed
system and F, accounts for the Coulomb interactions.

Usually the Debye theory can be used to calculate Ii,.
The principal result of this theory is that each electron
and ion in an electrolyte or plasma is electively sur-
rounded by a spherically symmetrical cloud of shielding
charges which modify the Coulomb potential to

a certain inequality' which for the present pu1'poses is

most conveniently written as'

N,+QN;*& (82rpD2) '. (g)

For laboratory plasmas this inequality is practically
always fulfilled, e.g, , even for a hydrogen plasma at
kT= 1 eV and X,= 10"cm—'. But in stellar interiors the

Debye theory must usually be replaced by more com-

plicated expressions" which can also be derived by
interpolation between the Debye theory result and that
of the so-called ion-sphere model. '

IONIZATION ENERGIES

The Saha equation is obtained by extremizing the
free energy with respect to an ionization process which

changes N.* 1V.'+' N, to N.'+W' N'+'+f/N'+'
N,+W, . Since KV +'= —8N,'=RV„ this extremum is

characterized by

r)F/r)N r)F/r)N '—+r)F/r)N ~'= 0

The corresponding expression for Iip contains a termI, the unperturbed ionization energy of the ith atom
or ion in charge state s. Therefore, to correct the Saha
equation I,' must be replaced by I —AI,', and one has

rg+r/Nrs (2Z z+ /Z z) (rr2kT/22rpp) /

XexpL —(I,'—»,')/»$. (1O)

Here Z;+', Z,' are the partition functions of the sub-

sequent ionization stages, and LU,' is given by

» *=—(r/F, /r/N. r/F /81V'+OF —/81K'+')
= (s+1)e2/pg) ——2 (s+1)e2(rr/AT)'"

X (N +Qs2N, ')'/2. (11)

For s=0, i.e., the ionization of neutral atoms, this
reduces to e'/pn, a result obtained before. ' For the
equilibrium between negative ions (s= —1) and atoms
and electrons the correction vanishes, as it should since,
e.g., in the reaction H=+H+e there is no change in the
number of free charges. If instead of the free energy the
free enthalpy is employed, ' »,' becomes 3e'/2pD. How-

ever, this corresponds to assuming an ionization equili-

brium under constant pressure, which is somewhat

unphysical since only total densities (specific volumes)
and temperatures can be stated independently of high-

density corrections, whereas the pressure is a derived

quantity. In other words, the appropriate independent
variables are temperature and specific volume, not
temperature and pressure.

In the validity regime of the Debye theory, Eq. (11)
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6 J. C. Stewart and K. D. Pyatt, Air Force Special Weapons

Center Technical Report No. -61-71, (unpublished), Vol. I. 1961
r O. Theirner, Z. Naturforsch. 12a, 518 (1957).
8 G. Traving, Uber die Theory e der Druckverbrei wrung son

Spektrullinien (G. Braun, Karlsruhe, 1960}.
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always results in smaller corrections of the ionization
energy than those obtained from a consideration of only
nearest-neighbor interactions. Clearly, this is even more
true with respect to previously proposed relations in
which a nearest-neighbor term is rather arbitrarily
added to the Debye or plasma polarization term. "The
diQ'erence of the numerical factor in this polarization
term and the present result is due to an inconsistent
application of the Debye theory" in reference 10. The
nearest-neighbor term only comes in at extremely high
densities' ' "violating the inequality (8), which hardly
ever occurs in laboratory plasmas.

The expression (11) for the lowering of the ionization
potential is therefore the general result for single or
multiple ionization in a Debye plasma. It is certainly
valid in the limit of small (AI /kT), i.e., small ratios of
electrostatic to thermal energies. Uncertainties in hI
should at most be of the order AI;*(AI;*/kT), unless at
high densities other corrections come into play, so that
the ions can no longer be treated as point charges. "
Other than that, the relative error of the factor
expL —(I,' dZ,')/kT—j in the Saha equation should
normally be estimated by (AI /kT)', which is a percent
or less in almost all cases.

tion, ""which are moreover less consistent with the
correction of the ionization energy in the Saha equation.

Another error in the partition function is introduced
by using the unperturbed energies in Eq. (12).Since the
linear Stark effect only spreads the levels without shift. -
ing their centers of gravity, the main effect will be due
to quadratic Stark eGect shifts or, in case of ion lines,
also due to shifts caused by plasma polarization. "For
levels below the reduced ionization limit, such shifts
will, at most, be of the order of the difference between
two levels whose principal quantum numbers dier by
one unit, i.e., AR'; '&E,„+r* E;„*=—2I;*/I'. The rela-
tive change in the partition function is accordingly with
exp(AE;„*/kT) =1+DE;„'//kT given by

~

m;*/Z, *~ = (I;*/kT)ln(I; /AI;*) exp( —I,'/kT),

using 2+1/n=lnn, „s with e, '=I /M and re-
placing exp( E,—„'/kT) by exp( —I /kT) before the
summation or integration. Also this uncertainty wiQ
almost always be well below one-tenth of a percent. In
general, the over-all theoretical uncertainty in the parti-
tion functions will therefore be solely determined by
uncertainties in AI, i.e., be of the same order as those
in the exponential of the Saha equation.

PARTITION FUNCTIONS

It is consistent with the model adopted in this paper
to use as partition functions simply

Z *=Pg; 'exp( —E;„'/kT) (12)

where g, * and E; * are statistical weights and (un-
perturbed) excitation energies of the levels m of species
i in ionization stage s. The sum should include all levels
which fulfill E '&I'—M'

The uncertainty inherent in the cutoff procedure
will be of the order of the last contributing term,
e.g., for hydrogen 2ns exp L

—I (1—1/e )/sk Tj=2e'
Xexp(—I s/kT), if I is the principal quantum number
of the last state below the reduced ionization limit.
Usually the excited states do not contribute much in
Eq. (12), so that the relative error in the partition
function (AZ;*/Z;*) is half as large as this last term. For
other neutral atoms or ions on estimates (I )s= (s+1)'
XI /(I * E*)=I;*/&I,* an—d accordingly

~

M */Z
~

= (I;*/AI;*)exp(—I /kT). In plasmas of suKciently
high electron densities for local thermal equilibrium to
exist, this uncertainty in the partition function will only
very rarely exceed one-tenth of a percent. It seems,
therefore, hardly justified to replace the straight-
forward cutoff by more involved methods of calcula-

' A. Unsoid, Z. Astrophysik 24, 355 (1948).
» G. Ecker and W. Weizel, Ann. Physik 17, 126 (19M).
» 0 Theimer, Z. Naturforsch. 13a, 368 (1938).
&s H. Rother, Ann. Physik 2, 326 (1938).
"D.P. Duclos, Arnold Engineering Development Center Report

AEDC-YN-60-192, 1960 (unpublished); S. G. Brush, J.Nuclear
Energy, Part C 4, 287 (1962).

PLASMA PRESSURE

While problems connected with ionization energies
and partition functions (which would even diverge
without the cutoff) have received wide attention, the
related corrections in the equation of state for a hjgh
density plasma are usually ignored. But in many
experiments the total plasma pressure is known rather
well and can therefore, in conjunction with the equation
of state, be used for the determination of plasma densi-
ties and temperatures in place of one spectroscopic
measurement.

Also the pressure follows from the free energy. It is
given by p= 8F /8V, whe—re V is the specinc volume
and Ii the free energy per unit mass. Kith Ii =FV,
one therefore obtains for the correction to the ideal gas
pressure, using Eq. (7),

AP = F. VBF,/BV =q—F, —
= —(s'/6pn) (&.+P~'K')

'ss(7r/kT)'~'(N yp-sr~. )sn

since Il, is proportional to V~~'.
This is just the generalization for multiple ionization

of the well-known result' of the Debye-Huckel theory
for @=1,which can be shown to be the first order cor-
rection in a more systematic perturbation theory. "
LHowever, the sign of the correction term in Eq. (76) in
reference 16 seems to be wrong. ] The decrease in the
plasma pressure will probably never be more than a few
"G. Elate and J. Jugaku, Astrophys. J. 125, 742 (1937).» H. F.Berg, A. W. Ali, R.Lincke, and H."R.Griem, Phys. Rev.

12S, 199 (1962).
's H. S. Green, Nuciear Fusion 1, 69 (1961).
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percent under laboratory conditions, and the errors due
to uncertainties in this correction should therefore again
be of no importance.

aE; *=—hex); (); ) '. (15)

The corresponding relative correction (= DE~m'/kT) of
the Boltzmann factor is of the order 1% or less for
typical conditions in dense plasmas. Often, it will also
su%ce to use calculated values" of 6); '.

Furthermore, line intensities are proportional to the
fourth power of the frequency and to the square of the
dipole matrix elements. The relative correction for the
wavelength shift is obviously —(4A); '/); *). It may
sometimes be as large as 1% and should then be in-

cluded in the analysis. For allowed transitions, the
relative reduction in the square of the dipole matrix
elements can be estimated from standard quantum
mechanical perturbation theoryas

~

&E;~'/(E, ~*—E;~')
~

where E;„'is the energy of that neighboring level which

gives the largest contribution to the quadratic Stark
effect of the upper level. For the stronger lines this
reduction will tend to be less than 1%, but in some
instances a larger correction may be required. Whenever
it becomes appreciable, forbidden lines will appear, and
the actual change in the total intensity, including these
forbidden components, would be overestimated by the
above formula. Therefore the uncertainty in the dipole
matrix elements will usually stay well within the error
brackets of measurements or calculations of the quanti-
ties related to them, namely oscillator strengths and
transition probabilities.

» H. R. Qriem, M. Baranger, A. C. Kolb, and G. Oertel, Phys.
Rev. 125, 177 (1962); see also H. R. Griem, Phys. Rev. 128, 515
(1962).

LINE INTENSITIES

In laboratory plasmas, self-absorption and induced
emission are usually negligible, except for resonance
lines, or can easily be corrected for. Densities E; 'in the
appropriate upper states E; ' follow from total densities
E,' of species i in ionization stage s in case of local
thermal equilibrium simply through

X; '= (g; */Z;*)iV exp( L~';,„'/—kT). (14)

The lV can, in turn, be computed from the chemical
composition using the appropriate Saha equations, if
either total pressure or total density (PE;*)are known.

For optically thin lines, the intensity is directly pro-
portional to E; ', i.e., all the theoretical uncertainties
entering in the calculation of 1V; ' (mainly the errors in
the reduction of the ionization energies) will be reflected
in the calculated intensity. Another source of error is the
use of the unperturbed energy E; ' in the Boltzmann
factor in Eq. (14).This can be rectified by taking energy
levels measured for emission from the plasma. Since
essentially only the upper levels are perturbed, the
correction DE; ' can be obtained from measured line
shifts lD; ' as

CONTINUUM INTENSITIES

The formulas for continuous emission from optically
thin plasmas in local thermal equilibrium are best
derived from the continuous absorption coefficients
which, in principle, can be calculated from quantum
mechanics, even though this has only been done for
one-electron (bound or free) systems. The emission is
then found by multiplication with the Kirchhoff-
Planck function, correcting for stimulated emission.
This expresses the emission in terms of the densities in
the appropriate lower states.

To obtain the formulas for continuous emission in
their usual form, one eliminates these densities through
Boltzmann factors and the Saha equation. This results,
e.g. , for hydrogen or hydrogenic ions in the well-known"
(except for the factor containing AI;*) formula

Se'h(s+1) I;~~ t~&

3(3m') Pm cs

gf exp

hv
X&P';*+'exp ~exp — . (16)

ur J uT

Here g~ and gg are free-free and free-bound Gaunt
factors, which are of order one and have been tabu-
lated. "The principal quantum number / of the lowest
contributing state is determined by the requirement
hv&I;*(1/P 1/m'), wh—ere the value of m=m+1 is
usually not at all critical. A logical choice is the principal
quantum number of that state for which the Stark
broadening becomes of the order of the difference be-
tween neighboring levels (Inglis-Teller limit' ). There
is little ambiguity in this method because, e.g. , a change
of m by one unit only means calling a certain feature
near the series limit a line or a piece of the continuum,
without any change of the total intensity in the cor-
responding frequency band. This follows (if also line
intensities are expressed in terms of electron and ion
densities) from the asymptotic behavior of line oscil-
lator strengths.

For intermediate frequencies, which are only some-
what larger than I $1/( m1)'—1/m'j/h, absorption
edges will tend to be quite close to each other. Then
the average intensity can be calculated by replac-
ing the sum over e by an integral. This leads with

's H. Maecker and T. Peters, Z. Physik 139,448 (1954);see also
W. Finckelnburg and H. Maecker, in Handbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 22; and W.
Finckelnburg and T. Peters, in IJuedbuch der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 38.' W. C. Karzas and R. Latter, Astrophys. 'J. Suppl. No. '55, 167
(1961).

s D. R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).
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1/P= kv-/I;*+1/m' to

Se'h(s+1) I,')"'
3(3e)'"m,sc' AT)

f I,' ) /' AI—,* l
&(gfexp( ~1V,N;*+'exp~

~, (17)
m'kT] kT j

i.e.„ the factor exp( hv/—kT) cancels out. Inpractice, Eq.
(17) can also be applied for kv&I,'L1/(m —1)'—1/m'],
because the sum in Eq. (16)disappears and exp( hv/k T—)
is then usually near unity.

The continuous spectrum of hydrogen or hydro-
genic ions due to bremsstrahlung and recombination
radiation is therefore essentially Qat for frequencies
that are smaller or at least not much larger than
I,*L1/(m —1)'—1/msj/h. For this reason, theoretical
uncertainties analogous to those encountered in case of
line radiation will mostly cancel here. The same should
be true for the case of large frequencies, where Eq. (16)
must be used. The lower bound-state wave functions
enter here, but as for the lines, errors due to perturba-
tions of these states tend to be negligible.

To crudely evaluate the remaining uncertainities, one
may consider the eGects of Debye shielding. Semiclass-
ical arguments indicate that the relevant distances from
the nuclei are of the order r, '= 4'"(s+1) '(I */kv)'"ao,
where as is the Bohr radius of the hydrogen atom. LOne
simply equates m,e'/r with (s+1)e'/r' and assumes that
the emitted frequencies co= 2xv are of the order of thz
angular velocity n/r of the radiating electron at the near
point. ) Whenever r;„*is smaller than the Debye radius

pD by some factor, the relative reduction in the free-free
radiation is thus estimated by 2r,„'/pn, because this
radiation is proportional to the square of the eRective
charge at the distance r;„' from the nucleus. (Only the
free-free radiation is important at low frequencies, i.e.,
large r,,'.) Frequencies of interest in plasma spectro-
scopy are generally larger than I,'/10k, an.d r, ,* will
therefore usually be smaller than 4'~'(s+1) '10'~'u&

which is less than 4(s+1) 'X10 ' cm or two or more
orders of magnitude smaller than typical Debye radii in
dense laboratory plasmas. Only in extreme cases, this or
an equivalent correction will be necessary. Then classical
theory is usually applicable, and the eRects due to
electron-electron correlations can be calculated in a
consistent manner. "

Normally the formulas described in this section will

properly predict the continua from one-electron sys-
tems, except for the details in the neighborhood of
absorption edges. The choice of the reduction in the
series limit I /m' is not critical and the formulas will
often also be applicable to more-electron systems if the
contributing levels are nearly hydrogenic. Finally, it
should. be emphasized that the apparent reduction in

"J.Dawson and C. Oberman, Phys. Fluids 5, 517 (1962).

the series limit due to the merging of lines has no logical
connection with the reduction in the ionization energy
from the Coulomb interaction term in the thermo-
dynamic potential. The latter is generally the most
important high-density correction in Eqs. (16) and
(17), even though it is usually smaller and never larger
than the reduction of the series limit. "

The appearance of the factor exp( —dZ /kT) in the
continuum formulas can only be avoided by an ad hoc
assumption. "That it must be included, can also be seen
from the fact that the emission at frequency v is propor-
tional to the density of electrons in a velocity interval
centered around v which is determined by the photo-
electric equation ram, v„'+E„'=kv. Here Z„', the binding
energy of the electron in the lower state, is given by
I'/I' —LU,' and therefore rsm. e ' by kv I'/N—s+lU *

Since the number of electrons in the proper velocity
range is proportional to exp( —smv„'/kT), one immedi-
ately obtains the exponential factors in the continuum
formula, including the factor exp( —AI,*/kT). If this
correction factor is inserted, and if Eq. (11) is used for
AI;, the precision in calculated continuum intensities
will be comparable to that obtainable for total line
intensities, again apart from errors stemming from un-
certainties in atomic or ionic wave functions in case of
systems other than hydrogen, ionized helium, etc.

STARK PROFILES

The profiles of spectral lines emitted by dense plasmas
in local thermal equilibrium are strongly inQuenced by
the electric 6elds produced. by electrons and ions sur-
rounding the emitting atoms or ions. The theory of this
Stark broadening has recently been developed to a
stage"" where linewidths and line shifts can be calcu-
lated to a precision of 10 to 20% (in terms of the widths),
assuming that one knows the electron density and that
no multiple ionization exists. The extension to multiple
ionization is trivial, ' but some discussion of the meaning
of the term "electron density" is indicated.

If the Vnsold correction, i.e., the nearest-neighbor
approximation, or still larger reductions of the ionization
potential" were used to calculate electron densities,
e.g., from known total pressures and temperatures, one
would clearly overestimate the Stark broadening. This
follows because no independent perturbing charge is
generated. in the plasma if an electron just passes from
one atom to the nearest ion. This only happens when the
electron has enough energy to escape the potential well

"N. H. Olsen, Phys. Rev. 124, 1703 (1961).
23 J. Pomerantz, U. S. Naval Ordnance Laboratory Report No.

6136, 1958 (unpublished).
~ H. R. Griem, A. C. Kolb, and K. V. Shen, Phys. Rev. 116, 4

(1959);H. R. Griem, Astrophys. J. 132, 883 (1960);H. R. Griem
and K. Y. Shen, Phys. Rev. 122, 1490 (1961);H. R. Griem and
C. S. Shen, ibid. 128, 196 (1962); H. R. Griem, A. C. Kalb and
K. Y. Shen, Astrophys. J. 135, 272 (1962);H. R. Griem, ibid. 136,
442 (1962);H. R. Griem, A. C. Kolb, and K. Y. Shen, U. S. Naval
Laboratory Report NRL-5805, 1962.
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of any individual ion, which occurs at the reduced
ionization energy obtained from the Debye theory.

Also for Stark-broadening calculations Eq. (11)
should therefore be used to correct the Saba equation.
However, some uncertainties will be introduced by the
contribution of highly excited atoms or ions, which will

roughly increase the number of broadening electronic
charges by one unit for each excited state with a Bohr-
radius larger than the mean distance E.—'" between
electrons. The eGective electron density is thereby in-
creasedbyafactor 1+gN;„'/N, = 1++2n'(iU /Z, *N,)
Xexp( —E,„*/kT). The sum should be extended from
n; =P;*/(z+1)e'N, '"5'" to n, =PI,'/AI 5 This
correction is usually only a few percent or less and
therefore barely signi6. cant in view of the other errors in
line broadening calculations.

Most high-density corrections are already included in
the Stark broadening theory. "In the treatment of the
quasi-static broadening by slowly moving ions, 6eld-
strength distribution functions"" are employed that
have been corrected for ion-ion correlations and Debye
shielding by electrons. And for the electron impact
broadening of overlapping lines a logarithmic cutoG is
introduced at or near the Debye radius which, as in the
case of ion broadening, only accounts for shielding by
electrons, i.e., the term gz'N in Eq. (3) is dropped.
Only in case of the impact broadening of isolated lines
will high-density corrections usually be negligible, since
here distant collisions do not contribute anyway.

OPTICAL REFRACTIVITY

Besides from absolute line and continuum intensities
or from the profiles of Stark broadened lines, electron
densities can be determined from measurements of the
refractive index of a plasma. "" At small fractional
ionization the contribution from ground-state atoms or
ions must be subtracted, which can be done empirically
since the wavelength dependence of this contribution is

quite diferent from that of the electrons. But already
at a degree of ionization of 10% electrons begin to
dominate.

In the frequency range of interest for plasma spec-
troscopy and for the electron densities occurring in
laboratory experiments, the refractive index e deviates
only very slightly from unity, and one can simply use

n —1=—N, 's'/2m'. v'

for the electron contribution. Also here it should be
investigated whether one is consistent in identifying the
value of N, ' in Eq. (18) with that occurring in the cor-
rected Saba equation. Obviously, some of the bound

"M. Barauger aud B.Mozer, Phys. Rev. 118, '21 (19'9)."B.Mozer aud M. Barauger, Phys. Rev. 118, 626 (196O).
» R. Aipher aud D. R, ~hite, Phys. Fluids 2, 162 (1969).' U. Ascoli-Bartoli, A. DeAngelis, and S. Martellucci, Nuovo

cimento 18, 1116 {1960).
~ S. A. Ramsden and E. A. McLean, Hull. Am. Phys. Soc. 7,

157 (1962); Nature 194, 761 (1962).

electrons in high-lying excited states will be practically
indistinguishable from the free electrons. Qne should
therefore set

iU, '=N, ++1V,„*, (19)

exp — —, 20

where the sum is now only over the various chemical
species and ionization stages whose total densities are
l7 . Normally, the correction in the electron density
will be in or below the percent range, and uncertainties
due to errors in this correction should therefore be
negligible even compared to the high inherent precision
of this method.

Another correction stems from the remaining inter-
actions between the electrons. In the classical theory for
bound electrons the term v' in Eq. (18) is just replaced
by v' —vo', where vo is the resonance frequency of the
system. Similarly, these interactions can easily be
accounted for by subtracting the square of the Lang-
muir plasma frequency. However, this correction is just
compensated by the Lorentz polarization correction, "
and the deviation of the refractive index from unity
becomes simply

S,e'

27['RSVP

X —exp

The correction tcrQl is a1most. always only a few pereen
or less. Then the accuracy of this formula wiH be better
than a tenth of a percent as long as ~n 1~ itself is—below
1O

—', which is generally the case at optical frequencies.
Even though Eq. (20) was only derived for hydrogen

V. L. Ginzburg, Prapugetion of Elecgromegeegzc g gvgg j~ g
Plasma {Gordon and Breach, New Yorg, '$96$)

extending the sum over all levels fulhlling I,'—Al,'—E;„'&hv. For hydrogenic systems, this correction wi11

be of the order

giU; *=(N /Z, ')+2n'exp( —E, '/kT) = (N'/Z ')
Xexpg —(I'—LU *)/kT5+2n'=-', (N'/Z')

Xexpg —(I,'—~I,')/kT5(n-, s—n,„'),

neglecting the splitting between the relevant levels. The
principal quantum number of the lowest contributing
term is n-;„=PI,'/(hv+DI )5''2, and n, „must be
chosen as n, ,„=PI;*/DI J"to avoid counting the same
electron twice. One therefore has finally
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and other one-electron systems, it may also be used for
other species as long as only states with large principal

quantum numbers contribute signihcantly to the cor-
rection term in Eq. (21), which is the normal situation.
The dependence of n —1 on the applied frequency is in
dense plasmas usually not significantly changed by the
inhuence of magnetic fields. Their various eBects have
been subject of intense studies in connection with the

propag ation of electromagnetic waves in plasmas. "
SUMMARY

It is observed that temperature, mass density, and
chemical composition are the appropriate independent
variables for the thermodynamic description of a
collision-dominated plasma in local thermal equilibrium,
and that the Debye approximation can be used at
plasma densities occurring in laboratory experiments.
The reduction in the ionization potential AI;" of neutral
atoms is therefore AIo=e'/po and that of s-times

ionized systems AI,*= (s+1)e'/p& with the Debye
radius pD ——LkT/4n. (E,+Ps'1V,')$'". H a simple cutoff
consistent with this value of AI is employed in the
partition functions and if a pressure correction

is introduced into the ideal gas law, then the remaining
uncertainties in calculated densities X, and Ã; due to
errors in these high-density corrections are estimated to
be of the order of (AI /kT)', which is typically below

1%%uo.

On the other hand, if calculated line intensities
are corrected empirically for the dependence on the
fourth power of the frequency and on the Boltz-
mann factor, they will only be uncertain by about

~

AE, */(E;„'—E, ') ~. Here ~, is the average Stark
shift of the upper level and E;„'the energy of that level

which contributes most to the shift. For the stronger
lines also this uncertainty is usually below 1%, to
which one has to add the error in the transition proba-
bility for the unperturbed line.

The situation for continuum intensities is similar,

provided one multiplies the usual expression by a factor

exp( —DI,'/kT) and uses in addition the Inglis —Teller
relation for the depression of the series limits. Then,
again apart from uncertainties in the atomic theory for
other than one-electron systems, the remaining errors

due to high-density corrections should be of the order
4'~'(z+ 1) '(I */kv)2 "ao/po, which is once more only 1%
or less for frequencies of interest in plasma spectroscopy.

Somewhat larger uncertainties must be expected in the
neighborhood of absorption edges or in situations vrhere
negative-ion or even molecular continua are important.

Stark-broadening calculations have theoretical errors
of the order of 10% for hydrogen and. hydrogenic-ion
lines as well as for many other lines, and contain most of
the high-density corrections. Occasionally, another cor-
rection shouM be made to account for the additional
broadening by highly excited atoms or ions. Then un-
certainties caused by the difficulty to clearly distinguish
between free and bound electrons are negligible, pro-
vided the reduction M in the ionization energies is
used consistently.

The interferometric measurement of the optical
refractivity is capable of much higher precision for the
determination of electron densities. Here errors in the
theory stay well below 1% if corrections for the con-
tribution of highly excited atoms or ions are applied. .

In conclusion, theoretical errors entering quantitative
relationships in plasma spectroscopy can be kept below
a percent, as far as they stem from uncertainties in the
various high-density corrections. Since errors in atomic
theory tend to be considerably larger, local thermal
equilibrium plasmas are therefore very useful for pre-
cision measurements of atomic parameters, mainly
oscillator strengths and damping constants, and also as
absolute intensity standards if gases with known atomic
properties are employed.

To estimate the errors introduced by the only ap-
proximate validity of the assumption of local thermal
equilibrium, one can use as a guide the results of a recent
calculation for hydrogen. " Here densities in excited
states were calculated relative to an assumed Maxwell-
Boltzmann distribution of free electrons, considering
all collisional processes involving electrons and also
radiative recombination and decay. But radiative
excitation and ionization were left out, as is appropriate
for an optically thin plasma. The principal conclusion is
that at least partial thermal equilibrium (for the higher
lying excited states) can still be expected at surprisingly
low electron densities. Moreover, deviations of the
populations of lower lying states from thermal equili-
brium values will often be considerably smaller than
indicated by such calculations for optically thin plas-
mas, since radiation from these levels may actually be
trapped. Then the radiation field approaches that of a
blackbody in the relevant frequency bands, and one may
well have local thermal equilibrium throughout.

» R. W. P. Mcglhirter, Nature 190, 902 (1961).


