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The propagation of electrical breakdown waves in a gas is analyzed by assuming that the wave front of
the breakdown wave is an electron shock wave. A simple three-fluid hydrodynamical model is used in which
the partial pressure of the electron gas behind the shock zone is the primary source of the motion. A theo-
retical wave velocity of 2X107 m/sec is predicted for an applied field of 10* V/m in Hj at a pressure of 0.2
mm Hg. Since the propagation mechanism of the breakdown wave is mechanical, the model explains propa-
gation equally well into either a positive or negative electric field. Qualitative agreement between theoretical
and experimental breakdown wave velocities is obtained.

INTRODUCTION

OR the past century, researchers have observed the

propagation of luminosity fronts associated with
the electrical breakdown of a gas. Thompson! observed
that the luminosity front may travel at a speed as
high as one half the speed of light. Beams? studied
luminosity fronts in air and hydrogen and reported
that the breakdown wave always moves from the elec-
trode to which the potential is applied toward the
electrode at ground potential, regardless of the polarity
of the applied voltage. Von Zahn? showed that there is
no Doppler shift in the spectrum lines which implies
that the luminosity front does not result from motion
of the particles emitting the observed radiation.
Schonland* has made extensive studies of the lightning
discharge, measuring the velocity of propagation of the
luminosity front, sometimes called a pilot streamer
(a pilot streamer is a front traveling into undisturbed
gas) and the propagation velocity of the secondary
front which travels down the partially ionized channel
left by an earlier pilot streamer. Schonland* has made
some predictions of the minimum propagation ve-
locity which he obtains from qualitative energy con-
siderations, but he has not given a theory for the
propagation of these waves.

Luminosity studies of spark breakdown by Loeb?
have indicated that potential waves are present during
this phenomenon. The pertinent articles published by
Loeb’s group are too numerous to list separately;
hence, only a few specific references are given. Loeb®
terms the dendritic luminosity fronts observed in spark
breakdown ‘“‘streamers.” Loeb and Meek,® and inde-
pendently Raether,’ first proposed a qualitative model
for streamer propagation as a mechanism for electrical
breakdown in a gas. The mechanism of the streamer
process proposed by Loeb for a point-anode plane-
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cathode geometry is as follows: Photons emitted by
the excited gas molecules diffuse outward from the
anode, ionizing and exciting new molecules. The pho-
tons emitted by the newly excited molecules diffuse
further into the gas, and the cycle of diffusion, excita-
tion, and ionization is repeated. The net result of this
process is the propagation of a photoionization wave
from the anode to the cathode.

Westberg® recently published a rather complete
study of potential waves present in the transition of
a glow discharge to an arc. Fowler and Hood’ have
observed luminosity fronts propagating into a field
free region.

This note introduces a new quantitative theory for
potential wave propagation with particular emphasis
on waves propagating into unionized regions. The
ideas presented here are outgrowths of earlier work
by Fowler, Paxton, and Hughes® and Fowler and
Fried.? The model presented treats the potential wave
front as an electron shock wave. The essence of this
theory is the application of hydrodynamics to the
analysis of breakdown waves. The two important ioni-
zation processes active in this model are photoioniza-
tion and electron impact ionization. In the case of
molecular gases, both ionization processes are active to
various degrees depending on the gas and ambient
conditions. In the case of atomic gases where photo-
ionization of the gas by its own photons is not possible,
either electron impact ionization or a combination of
electron impact and photoionization is the active proc-
ess. The potential waves predicted by this model will
be compared with the experimental luminosity fronts,
potential waves, and streamers observed by Thompson,!
Beams,? White,? and Loeb.! This theory is a first-order
approximation to an electron shock wave applicable to
very restrictive conditions given below. However, this
first-order approximation should certainly apply to the
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low-pressure breakdowns between widely spaced elec-
trodes observed by Thompson! and Beams.? This
mechanism is also expected to be present in Loeb’s®
streamer propagation, to some extent. The theory of
breakdown waves given here may furnish one new
element, but is certainly not the whole explanation of
the phenomena of streamer production.

MODEL

The breakdown wave front will be treated as an
electron shock wave regardless of the nature of the
ionization process. The case of electron impact ioniza-
tion in an electric field will be treated here with ap-
parent differences for the photoionization case noted.

We presume that near the electrode where the po-
tential gradient in the gas is greatest ionization of a
small quantity of gas occurs and the electrons pro-
duced are given kinetic energy by the electric field.
This localized high-temperature electron gas expands
producing an electron shock wave which propagates
into the undisturbed gas, partially ionizing the overrun
neutral gas molecules. The energy necessary for driving
the shock wave is given directly to the electrons in the
shock zone by the external electric field. The electron
shock is followed by a rarefaction wave, but the analy-
sis of the rarefaction wave will not be included here.

We have used a three-fluid, hydrodynamical model
which is applied to a quasi-steady state three-compo-
nent system. The state of the system is designated
quasi-steady because, even though the electron gas has
achieved a steady state, the heavy particles, due to
their large inertia, are in a transient state. The time
constants associated with the motion of the heavy
particles are so large, however, that there is only a
slight change in the kinetic energy of these particles
during their brief interaction with the electron shock
wave.

EQUATIONS

The steady-state equations of mass, momentum, and
energy transfer for continuous media are easily de-
rived.? For the case where the electron pressure is
much greater than the partial pressures of the other
species, where there is no electrical current, where there
is negligible heat flow, and where inelastic energy losses
can be neglected, the transfer equations are given by

(d/dx)(MNVA+MN;V~+mnv)=0, (1)
(@/dx)(MNV*+M N,V 2+mnr*+nkT,—3eE2)=0, (2)
(d/dx) MNV3+M NV 34+mnvd+5n0kT,)=0, (3)
where M is the mass of a neutral atom, M; is the mass
of a positive ion, m is the mass of an electron, N is the
neutral atom density, N; is the positive ion density,

» is the electron density, V is the flow velocity of the
neutral atoms, V; is the flow velocity of the ions, v is

12 See Appendix.
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the flow velocity of the electrons, 7', is the electron
temperature, and E is the electric field strength.

In the rest frame of the shock wave, cold neutral
atoms enter the shock zone from the front side and a
partially ionized gas leaves the rear side of the shock
zone. If we integrate the above steady-state transfer
equations across the shock zone, the following equa-
tions of mass, momentum, and energy balance are
obtained:

MNVe=MNV+MN,V+mno, 4)

MNV@E=MNV*H+MN;VE+-mn*+nkT,
+ia(Ed—E), (3)

MNV@=MNV3+M NV 3+mnv’+5nokT,, (6)

where T, is the electron temperature in the plasma
behind the electron shock wave. Quantities in front of
the shock zone are designated with a zero subscript,
while quantities behind the shock zone have no sub-
script. All of the flow velocities are given relative to
the shock front.

Under the quasi-steady-state conditions described
above, the flow velocity of the massive particles is not
altered by the passing of the shock wave, and to a very
good approximation, the following assumption is valid:

Vo=V=V.. (7)
The condition of zero electrical current implies

Substituting Egs. (7) and (8) into Eq. (4), the mass
transfer equation, gives

N;=N¢y—N= fNo, (9)
where f is the degree of ionization in the gas.

Substituting Egs. (7), (8), and (9) into the momen-
tum transfer equation (5) gives

mfNoV=mn*+nkT A+ 3eo(Efs—E?),  (10)

and substituting these same restrictions into Eq. (6),
the energy transfer equation, gives

mfNoV ¢ =mnv*+SnvkT,. (11)

Solving Egs. (10) and (11) for the velocity of the
electron shock wave as a function of the remaining
variables yields

Vo= [2m(3kT,—2W){ B+[B?
+4AW (1SR T 2— 10T W) 112},  (12)
where
B=16kT 2—10kT W —W?2,
and
W= € (EQZ—EZ)/QfNo

The quantity W in Eq. (12) is unknown because the
electric field behind the shock zone and the degree of
ionization of the gas behind the shock wave have not
been determined. To include the explicit determination
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of these quantities would require additional equations
related to the collision processes and the rarefaction
wave as well as an integration of Poisson’s equation.
However, experimental evidence!® has shown that the
potential-wave propagation is of the same general
character regardless of the polarity of the applied
potential which indicates a secondary dependence of
the propagation velocity on the direct effect of the elec-
tric field. The cited experiments give a slightly greater
velocity for a negative applied voltage than for a
positive voltage. Considering these experimental re-
sults, Eq. (12) is here tentatively simplified by assum-
ing W negligible; however, in the next section qualita-
tive dependence of propagation velocity on W is noted.

With the discussed approximations, Eq. (12) reduces

to
VE=16kT./3m. (13)

With Eq. (13) and the modified transfer equations,
the electron density in the region behind the shock
wave can be determined to be

n=4N,=4fN,. (14)

The electrons in the shock zone are given kinetic
energy by the action of the electric field. The electron
temperature for electrons on which a strong electric
field acts briefly has been derived by Fowler, Paxton,
and Hughes,® and is given by an expression essentially
the same as that of Compton**:

kT =% /3m) ®\etseE. (15)

Here Aot is the effective electron mean free path and is
given approximately by

1/>\eff=0'N+1/a, (16)

where ¢ is the total electron collision cross section and
a is the tube diameter.

COMPARISON WITH EXPERIMENT

There is very little available data giving both the
propagation velocity and the applied field for break-

TaBLE 1. Propagation velocity of breakdown waves in H, and Ar
gases with different pressures and field strengths.

Experi- Theo-

Applied mental retical

field Pressure  velocity velocity

(V/m) Gas (mm Hg) (m/sec) (m/sec) Source
1X10¢ H, 0.2 4.9X107 2 X107 Beams?
110t H, 0.5  4.5X107 1.7X107  Beams*
1X10* H, 1.5  4.0x107 1.4X107  Beams®*
1X10¢  H, 760 3.5X105 1.5X105  Whiteb
2X105  Ar 300 1.0X108  2.7X10%  Loeb et al.

& See reference 2.
b See reference 10.
¢ See reference 11.

13 L. B. Snoddy, J. R. Dietrich, and J. W. Beams, Phys. Rev.
52, 739 (1937).
14 K. T. Compton, Phys. Rev. 22, 333, 432 (1923).
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Fic. 1. Spatial distribution of electric field in the region in front
of the breakdown wave and in the transition zone of the wave
front for a point-plane geometry: (a) Point-anode, plane-cathode;
(b) point-cathode, plane-anode.

down waves moving into an unionized gas. Some low-
pressure data are given by Beams? and are listed in the
first three lines of Table I. The atmospheric pressure
data in Table I have been taken from White.” The
streamer velocity of 3.5)X10° m/sec listed in the table
for atmospheric hydrogen is the velocity of a secondary
streamer which was propagating down the partially
ionized channel left by an earlier, faster pilot streamer.
The data for streamers in argon were taken from Loeb,
Westberg, and Huang.!* There have been considerable
experimental data taken on lightning discharges, but
the electric fields are unknown in these cases.

Considering present uncertainties in regard to the
electron temperatures and fields, only rough qualitative
agreement between the theory and experimental re-
sults can be expected. From Table I we see that such
agreement exists for the available data.

As mentioned above, experimental evidence'® indi-
cates that potential wave velocities are slightly greater
for negative impulses than for positive ones. Equation
(14) along with Poisson’s equation predicts a depend-
ence of the electric field shown pictorially in Fig. 1. In
the case of a negative impulse, |E| is less than |Eo|
which makes W positive. If a positive pulse is applied,
| E| is greater than | Eo| and W becomes negative.

Taking |W|=~kT, gives, for positive W,

VE=5.8kT./m,
and for negative W,
V() = 5.2kTe/m.

Therefore, theory confirms that the breakdown waves
propagating from the negative electrode should, in fact,
be the faster.

CONCLUSIONS

Treating the potential wave which precedes elec-
trical breakdown in a gas as an electron shock wave
and using a hydrodynamical model for analysis seems
extremely promising in that it is possible to predict
the propagation velocities at extreme ends of a vast
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range of pressures-and electric field strengths, within
the large experimental error. The theory elucidates the
near light-speed propagation velocities reported first
by Thompson® and later by Beams? which were at one
time supposed to imply electromagnetic waves of some
unknown kind. It is also in harmony with the findings
of Von Zahn® that the radiating particles are not in
motion. It adequately explains the propagation of
luminosity fronts from both positive and negative
electrodes which were observed by Beams? and which
have been a major obstacle for people attempting to
explain this phenomenon.

Since inelastic energy losses are negligible to the
first order, the propagation velocity of the breakdown
wave exhibits no dependence on the ionization process
in this order and is independent of the degree of ioniza-
tion. Both photoionization and electron impact ioniza-
tion are compatible with the first order model.

The assumption of zero total current restricts the
validity of the theory to cases where the electric field
in the region in front of the breakdown wave is not
changing in time. This condition is achieved in a tube
with widely separated electrodes if the velocity is
measured midway between the electrodes.

In the case of potential waves propagating into
field-free regions, the theory given is applicable, but
the electron temperature is determined by energy
balance of the inelastic collisions instead of by the
electric field. In applied electric fields the field energy
is swept up by the moving wave, whereas in the field-
free case photons enter the wave zone from the back
side. In both cases the energy entering the wave zone
is utilized in the ionization and heating of the electrons.

The theory can be extended to cover potential waves
propagating into a partially ionized gas by including
the terms involving electrical current and magnetic
fields in the momentum and energy transfer equations.
In the case of the secondary streamer, the wave is
propagating into a region which is partially ionized
and there is electrical current flowing through the wave
front.

APPENDIX

The steady-state equations for mass, momentum,
and energy transfer in one dimensional flow of a con-
tinuous media are derived by requiring conservation
of mass and balancing the change of momentum and
energy carried by the fluid with the local sources of
these quantities.

For the steady state, conservation of mass is given by

(@/dx) MNV+M NV i+mnv)=0. 17
The momentum equation is given by
(@/dx) (MNV2+M N,V 2-+mn?)dyds

dp dp; dp,
(———g——g——-?——-neE-FNéeE)dydz, (18)
dx dx dx

AND R. G.
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where p; is the ion partial pressure and p, is the neutral
atom partial pressure.

In the one-dimensional geometry, Poisson’s equation
is given by

dE/dx= (e/e0) (Ni—mn). (19)

With Poisson’s equation the last two terms in Eq. (18)
reduce to

dE 4 eF?
(N;—n)eE= egfF—=— . (20)
dx dx 2
With Eq. (20), Eq. (18) reduces to
(d/dx) (MNV?*+M NV 24mnv*+p
+pet et =0. (21)

For the case of electron impact ionization, the energy
balance equation is given by

(d/dx) GMNV3+3M NV 3+smnv*+3nvkT,
dpv dpV

ANV AT AN VAT, )dyds— <_____
dx  dx

dpaV

dnv
—nveE+NVeE— Kg———)dydz, (22)

dx dx

where T; is the temperature of the ion gas, T, is the
temperature of the neutral gas, « is the net energy loss
from the fluid per collision for electron neutral colli-
sions, and g is the ratio of total collisions to ionizing
collisions. The function dnv/dx is the number of ioniz-
ing collisions per unit time per unit volume of fluid.

Noting that the electrical current density is given by

J=e(nv—N,V,), (23)
Eq. (22) simplifies to
(d/dx) (MNV3M N,V 3+mnv*+SnvkT .
+5N.VkT;+5SNVET,)=—2EJ— 2kgdnv/dx. (24)

For large values of T.(kT>e¢:, where ¢; is the
ionization potential of the neutral atoms), all collisions
become ionizing collisions with g approaching unity
and « approaching eg;. In this case the last term on the
right in Eq. (24) reduces to

— 2xgdny/dx=~ — 2dedpmv/dx,

which when combined on the left side of the equation
appears in a term given by

(d/dx)[no(SET A+ 2e:) ],
but the assumption leading to this result was
kTu>>e¢«i,

so that the last term on the right of Eq. (24) can be
neglected for the case of high electron temperatures.
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For small values of T (kT «<Leg;), all collisions become
elastic and the term kgdnv/dx approaches zero and can
be neglected.

For the ranges of T', discussed the energy equation
reduces to

(d/dx) (M NV3+N M,V 3+nmv*+SnvkT,

45NV ATi+5SNVET)=—2EJ. (25)
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For the case of photoionization, the inelastic energy
loss will be smaller than in the electron impact case.
Since the inelastic energy loss was shown to be negli-
gible for the regions of interest for electron impact
ionization, it will also be negligible for photoionization.
Thus the first-order energy equation will be given by
Eq. (25) when photoionization dominates as well as
when electron impact ionization dominates.
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High-Density Corrections in Plasma Spectroscopy™
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The various relationships between spectroscopically measured quantities and the temperature and density
of a collision-dominated plasma in local thermal equilibrium are discussed. An internally consistent system
of corrections is derived for Saha equations, partition functions, and equations of state on one hand, and line
intensities, line profiles, continuum intensities, and optical refractivities. The errors due to remaining uncer-
tainties in these corrections are shown to be usually below 1%. They are therefore negligible compared to
those stemming from uncertainties in atomic theory (except for hydrogen or hydrogenic ions) and an order
of magnitude smaller than was suggested by discrepancies between previously used corrections to ionization

energies of atoms or ions in dense plasmas.

INTRODUCTION

HE concept of local thermal (or thermodynamic)
equilibrium plays a vital role in plasma spec-
troscopy. If it is applicable, all particle distribution
functions can be calculated from total densities and
temperature, which may both be local functions of time.
In other words, the state of the plasma is then fully
described by mass density, chemical composition, and
temperature. This does not only make it relatively easy
to determine the state of the plasma by a few spectro-
scopic measurements,! but also often facilitates the use
of such plasmas as spectroscopic light sources for the
measurement of atomic parameters? like oscillator
strengths and line profiles or for the establishment of
absolute intensity standards.?

Local thermal equilibrium may be expected if collision
induced transitions are more frequent than radiative
ones, which will in laboratory plasmas usually not lead
to thermal equilibrium populations since there one
practically never deals with an equilibrium, i.e., black-
body, radiation field. However, often radiative transi-
tions will be negligible, and the level populations will be

* Jointly sponsored by the Office of Naval Research and the
National Science Foundation.

LH. R. Griem, in Proceedings of the Fijth International Conference
on Tonization Phenomena in Gases, 1961 (North~Holland Publish-
ing Company, Amsterdam, 1962), Vol. II, p. 1857.
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3R. C. Elton, A. C. Kolb, and H. R. Griem, paper presented at
the Optical Society Meeting, Washington, D. C., March, 1962.

governed by collision induced processes. If the velocity
distribution of the most important reaction partners is
Maxwellian (in the nondegenerate case), the principle
of detailed balance applies, and the steady-state solution
of the rate equations yields the same populations that
pertain to a system in complete thermodynamic equili-
brium at a temperature equal to the kinetic temperature
of the reaction partners.

Since most of these processes are dominated by
collisions with electrons, it is their kinetic temperature
that is of primary interest. If the relevant velocity dis-
tributions at any point and instant are sufficiently close
to being Maxwellian and if spatial and time variations
are also sufficiently weak as to enable instantaneous and
local steady-state populations to be reached, then the
assumption of local thermal equilibrium will always
be valid as long as radiative rate processes are not
important.

THERMODYNAMIC POTENTIALS

Before the distributions over the various possible
states are computed for the equivalent thermodynamic
equilibrium system, it should be realized that the only
quantities which can, at least in principle, be stated
without any ambiguity are total number densities V; of
the various chemical species ¢ (hydrogen, helium, etc.)
and the temperature. They should, therefore, be chosen
as independent variables. Already in the calculation of
pressure and internal energy some uncertainty has to be
expected, not to mention the distributions over bound



