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Effect of Energetic Secondary Electrons on the Scintillation Process
in Alkali Halide Crystals

AxEL MEYER AND R. B. MURRAY
Solid-State Division, Oak Ridge Eational Laboratory, Oak Ridge, Tennessee

(Received May 28, 1962)

Experimental results have previously shown that the scintillation efficiency of alkali halide crystals to
heavy particles is not a function of dE/dx alone but is instead composed of a series of discrete functions,
one for each incident particle. This paper presents an analysis of these experimental results with attention
to the effect of energetic secondary electrons (delta rays) produced by the primary particle. In this treatment
the total light emitted per unit path length of the incident particle is the sum of two contributions: one
from the highly ionized primary column, and one from those delta rays which escape the primary column
and produce light with a high ef6ciency.
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FIG. t. Experimental scintillation efficiency vs dE/dx for heavy
iona H' through Nese in NaI(Tl), taken from Newman and
Steigert, reference 2. The ordinate is normalized such that the
scintillation e%ciency to protons in the 10-MeV region is 1.0. In
the terminology of the present paper the ordinate is (dL/dE)I
and the abscissa is (dE/Ch) &
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INTRODUCTION

HE response of activated alkali iodide scintillators
to heavy charged particles exhibits a decreasing

scintillation eS.ciency with increasing specific energy
loss of the primary particle. This behavior has been
frequently ascribed to "saturation of luminescence
centers" in the wake of a highly ionizing particle. This
saturation mechanism has been examined theoretically
in a proposed model of the scintillation process. ' In this
model scintillation efficiency is defined as dL/dE,
differential light output per unit energy loss, and is
taken to be a single-valued function of specific energy
loss, dE/dx, of the incident particle.

Experiments with the heavy ion accelerator at Yale"
indicate, however, that the scintillation efficiency of
NaI(T1) and CsI(T1) to heavy particles is not a function
of dE/dx alone but is instead composed of a series of
discrete functions, one for each incident particle. These
results are illustrated in Fig. 1 for the case of NaI(T1).
The ordinate of Fig. 1 has been normalized to unity for

protons of 8 to 10 MeV. It is clear that these curves
cannot be represented by a single function of dE/dx.
The experimental results in Fig. 1 in fact indicate that,
for a given dE/dx, the scintilla, tion efficiency depends
sensitively on the identity of the incident particle. For
example, at. a stopping power of 2000 keV-cm'/mg the
scintillation eNciency of 0" is about twice that of C".
This behavior is, at first sight, quite surprising as it
indicates that the scintillation mechanism distinguishes
between two particles of nearly the same mass which
have exactly the same dE/dx.

This paper presents an interpretation of the experi-
mental results of Fig. 1, with particular attention to
the role of energetic secondary electrons (delta rays)
created by the heavy primary particle.

ANALYSIS OF EXPERIMENTAL RESULTS

The over-all behavior of the scintillation efficiency
decreases with increasing dL~'/dx for all particles from
protons to fission fragments, as indicated in the previ-
ous review. ' This general trend is apparent in the data
of Fig. 1, where it is seen that the maximum scintil-
lation efficiency of each particle (corresponding to the
horizontal portion of each curve) declines with in-

creasing atomic number or increasing dE/dx. This
over-all behavior points to a basic light-producing
mechanism which is associated with the ionization
density in the wake of the primary particle. (This will

be referred to later as the primary light source. ) The
discrete nature of the curves in going from one particle
to another represents a kind of "fine structure" on the
gross behavior, and indicates that the basic light-
producing mechanism is in some way modified by the
identity of the primary particle. Ke are thus led to
seek some property of the energy loss process which

differs for two particles of exactly the same dE/dx but
difI'erent atomic number. The most obvious property
is the energy distribution of secondary electrons re-

sulting from ionizing collisions of the primary with

electrons of the stopping medium. If the delta rays are
sufficiently energetic to escape from the immediate
wake of the primary particle, they can then enter a
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virgin region of the crystal and produce light with their
characteristic high efFiciency.

The maximum energy of a delta ray resulting from
a primary particle of energy E is given by the Ruther-
ford scattering formula as eo '"=4nt(E/M), neglecting
the electron mass m in comparison to the mass M of
the primary. (This assumes that the struck electron is
initially at rest; this approximation will be made
throughout. ) Thus, the maximum energy of the delta
ray spectrum is proportional to the energy per nucleon
E/A of the primary. At the same time, consideration
of dE/dx as a function of energy for heavy particles
reveals that, for two different particles of the same
dE/dx, the particle of greater nuclear charge has a
greater value of E/A. (This may be readily seen in
Fig. 3 of reference 2 after multiplying the ordinate by
A to obtain dE/dx (MeV-cm'/mg) as a function of
F:/A. Note that the labels B"and B"are interchanged,
and that for these two particles (of the same s) dE/dx
is the same function of E/A. ) Thus, for two different
primary particles having the same dE/dx, the higher-s
particle produces a more energetic spectrum of delta
rays and is therefore expected to yield a higher scintil-
lation efFiciency. This is seen to be the general case in
Fig. 1. The foregoing statements may be illustrated
qualitatively with the Bethe stopping-power expression,
from which dE/dx is found to be proportional to
Ls'/(E/A)j in(EE/A), where E is a property of the
stopping medium. In the energy region of interest here
(E/A)1 MeV per nucleon) dE/dx is a decreasing
function of E/A and the dependence on the logarithmic
term is weak compared to the E/A denominator. Thus,
for two incident pa. rticles of the same dE/dx but having
different charge, su) si, it follows that (E/A) g) (E/A) i.
It may also be noted that for two particles of the same
s but different mass (e.g. , B" and B") at the same
dE/dx, then (E/A)2 (E/A)i. The delt——a-ray spectra
will be the same, and the scintillation e%ciencies should
be the same. This is, in fact, found to be the case (see
Fig. 1). It should be understood that differences in the
delta-ray spectra for two different particles of the same
dE/dx arise because of the difference in s, so that the
effect discussed in this paper is basically a charge-
dependent effect. It is easy to lose sight of this fact
since the key parameter is E/A which is associated with
the mass of the primary particle.

The analysis to be given below is based on the fore-
going concept of a primary light source originating
from a "primary column" about the path of the incident
particle, plus a contribution from those energetic
secondary electrons which escape the primary column.
This is demonstrated schematically in Fig. 2. The
scintillation efFiciency in the primary column is taken
to be a function of only dE/dx of the incident particle.
It is assumed for present purposes that the primary
column has a sharply defined radius; this radius is
expected to be a function of dE/dx, though the de-

pendence may be weak. The analysis can be given
without any further consideration of the nature of the
primary column or the physical mechanism responsible
for its existence.

tA'e turn now to the mechanics of analyzing the
experimental data of Fig. 1 according to the preceding
discussion. The differential light output per unit path
length of the primary is given by

Dividing by

(dZ/dx), = (dE/dx) + (dE/dx), ,

we obtain
(2)

and represents the fractional energy loss of the primary
which is deposited outside the primary column. In the
above equations the subscripts t, p, and 5 refer to total,
primary, and delta ray. The scintillation efficiency
(dL/dE)„refers to the efficiency in the primary column
and is a function only of (dE/dx) „.It is in fact (dL/dE) „
which is the subject of the previous treatment of the
saturation process. ' The scintillation efficiency (dI/dE) &

applies to electrons in the region below 22 keV, as 22
keV is the maximum delta-ray energy encountered in
the experiments of Fig. 1. The minimum energy delta
ray of interest is about 1 keV, determined by the radius
of the primary column. In the range 1—22 keV, (dL/dE) i
is very nearly constant'' equal to unity with the
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FzG. 2. Schematic diagram showing primary column
and escaping delta rays.

4 C. D. Zerby, A. Meyer, and R. B.Murray, Nuclear Instr. and
Methods 12, 115 (1961).

(dL/dE), = (1 F) (dL/dE—)„+F(dL/dE) i, (3)

where F is defined as
(dE/dx) ip=
(dE/dx),
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normalization adopted in Fig. 1. %e therefore take
(dL/dE)s=1. 0, and Eq. (3) becomes

(dL/dE) ( (1—F) (dL/dE), —+—F. (4)

Consideration of the expressions for (dE/dh) s and
(dE/dh)i (see next section and reference 5) indicates
that the ratio F should be a function only of the
primary column radius and the energy per nucleon
E/A of the incident particle. If the primary column
radius is only weakly dependent on (dL~/dh)„ then F is
determined principally by E/A. Thus, it should be
possible to find a single curve for (dL/dE) „vs (dE/dh) ~
and a (nearly) universal curve for F as a function of
I'/A, starting from the experimental values of (dL/dE) &

vs (dE/dh)i in Fig. 1. The procedure required to find
such functions is an iterative one based on Eq. (4) plus
the relation

(
dE) (dE/dh) „
Ch ), (1—F)

(5)

' H. A. Bethe and J. Ashkin, I'xperimentaI ENclear Physics,
edited by E. Segre (John Wiley 8r Sons, Inc. , New York, 19S3),
Vol. I, Part II.
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Fro. 3. Top: Curve (a) is the derived (dL/dE)„resulting from
analysis of experimental data of Fig. 1 by a three-step iteration.
For comparison, curve (b) was previously calculated on the basis
of the saturation mechanism and is reproduced from reference 1.
Bottom: Derived curve of F as a function of E/A (MeV per
nucleon) from a three-step iteration. F is the fractional energy
deposited outside of the primary column. The curve shown is a
numerical average of the curves for the six particles B",C", N'4,
0",F", Ne' . Individual curves for all six particles fall within the
shaded area.

which follows directly from Eq. (2) and the definition
of Ii. It is also necessary to know the relation between
(dE/dh), and E/A for each particle. This is taken from
the curves of Newman and Steigert, ' their Fig. 3. The
end point of the iterative process is achieved if it is
possible to find functions from Eqs. (4) and (5) meeting
the above requirements. In practice, it is found that
the iterations converge rather rapidly, and the result
of a three-step iteration is given in Fig. 3. Curve (a)
in the upper part of Fig. 3 is the final estimate of
(dL/dE)„vs (dE/dh)„. The lower half of Fig. 3 illus-
trates the derived results of F as a function of E/A.
The shaded area contains six different curves for the
six particles 3" through Ne". (No distinction is made
between 8" and 8".) The individual curves are not
shown, in order to avoid confusion in the figure. It is
noted that no systematic trend is observed in the dis-
placement of the individual curves; the curves cross
one another in a random fashion. This random crossing
is attributed simply to the fact that the data of Fig. 1
are taken from experiment and are subject to a finite
uncertainty. The curves of Fig. 1 are, in fact, the
derivatives of measured pulse height versus energy
relations, and are thus subject to the errors of estab-
lishing the slope of a curve. The smooth curve in the
lower half of Fig. 3 is a numerical average of the
individual curves for the six particles. It may be noted
from Fig. 3 and Eq. (4) that the delta ray contribution
to (dL/dE)& is a large effect. At large E/A, delta rays
account for about half of the total emitted light.

Finally, curve (a) of Fig. 3 may be compared with
the calculated dI./dE curve based on the previous
saturation mechanism, see Fig. 6 of reference 1. This
previously calculated curve is reproduced as curve (b)
in the upper part of Fig. 3. It is seen that these curves
are very similar in shape and differ only in their posi-
tions on the abscissa. The only meaningful comparison
which can be made between these two curves is a com-
parison of their shapes, as the position of curve (b)
with respect to dE/dh was not directly determinable
from calculations, but was established by comparison
with the general trend of experimental data.

ESTIMATED VALUES OF E

Having obtained Ii, the fractional energy deposited
outside the primary column, as a function of E/A from
the foregoing interpretation of experimental results,
it, is now appropriate to ask whether one can estimate
I" by other means which are independent of the above
experiments. An accurate calculation of F from 6rst
principles is an exceedingly dificult, if not impossible,
task. We have, however, undertaken several rJpprohi

ma/e calculations which should provide information on

upper and lower bounds for Ii. The starting point in

any calculation of F is a knowledge of the radius of
the primary column, This radius is not known o priori
and must be considered as a parameter to be determined
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on the basis of 6tting calculated values of F to the
curves in Fig. 3 determined from experiment. If the
saturation mechanism is responsible for the primary
column, then the column radius for heavy ions is
expected to be of order hundreds of Angstroms and a
slowly varying function of dE/dx. We will 6nd, in fact,
that the experimentally derived curves are bracketed
by calculated upper and lower bounds for F if the
column radius is taken to be about 400 A.

We turn now to the details of estimating Ii. The total
stopping power (dE/dx), which enters into the de-
nominator of Ii is taken directly from the curves of
Newman and Steigert' as indicated in the preceding
section. The burden of estimating Ii thus lies with the
numerator (dE/dx)s. In attempting to estimate the
numerator, the fIrst consideration must be the question
of the number and energy distribution of secondary
electrons in the 1—22 keV region. For electrons which
are loosely bound to ions of the stopping medium, the
secondary electron spectrum is given by the Rutherford
distribution. On this basis the number of delta rays
emitted in the energy interval ep to sp+dep per cm path
length of the primary particle, is given by

QS 2+8 8 puff dip

dS
)

mV'
(6)

where s* and V are the effective charge and velocity
of the incident particle, e and m are the electronic
charge and mass, and p,« is the density of loosely bound
electrons in the stopping medium such that the Ruther-
ford distribution is applicable. In considering the
binding energies of various electrons in NaI, it is clear
that Eq. (6) cannot be applied to the X- and I.-shell
electrons of iodine, for which the binding energies are
33 keV and about 5 keV. The contribution of these
electrons to the delta-ray spectrum can be estimated, '
however, and it is found for the projectiles of interest
here that the total cross section for ionizing the iodine
E or I.shell is completely negligible in comparison with
the Rutherford cross section. The binding energies of
E- and 0-shell electrons in iodine, and I.-shell electrons
in sodium, are all much smaller than the delta ray
energies of present interest, so that these electrons
should be well described by Eq. (6). The M-shell
electrons of iodine and E-shell electrons of sodium
represent intermediate cases, in which the binding
energies are about 1 keV or less. In the present calcu-
lation the lowest energy delta ray which contributes to
(dE/Cx) s is about 1 keV for all E/A while the principal
contribution arises from delta rays of considerably
higher energy for E/2 of 2 or 3 MeV/nucleon and
greater. We have accordingly included the iodine
M-shell electrons and sodium IC-shell electrons in Eq.

(6). In so doing, dt's/dx is subject to the greatest un-

certainty at low values of E/A and should be best at
large E/A. The fmal result of these considerations is
that p ff includes 54 of the possible 64 electrons in NaI,
neglecting the E- and I.-shell electrons of iodine.

The eGective charge s* of the primary particle is a
function of its velocity, and is taken from Roll and
Steigert, ' their Fig. 10. The charge s~ differs signifL-

cantly from the full nuclear charge s only at low E/A.
If we express distance in mg/cm' and energy in keV,

then (6) becomes

de 2.57)& 104 dip
sofc2

dS ~p(E/A)
(7)

The problem is now to compute the energy deposited
outside the primary column starting from a source
described by Eq. (7). This calculation is approached
in three different approximations described below.

A. Isotxoyic Emission

In this.-approximation, it is assumed that a delta ray
is isotropically scattered in the crystal reference frame
immediately after creation. The delta ray then suffers
multiple scattering until it Anally comes to rest at
distance r from its origin. All delta rays of energy ep

will be contained within a sphere whose radius corre-
sponds to their range. The concept of electron range
may have several meanings; in particular it is possible
to distinguish experimentally between the maximum
range and the practica/ range. In the present section
the practical range is more appropriate as we wish to
describe the distribution of the majority of the electrons.
The small fraction of the distribution whose range
exceeds the practical and extends to the maximum is
of little consequence. In the energy interval of interest
here it is found experimentally that the practical range-
energy relation can be reasonably well described in
various stopping media by a function of the form
E~= ctp where both a and e are constants. ' ' With
R~ in mg/cm' and es in keV, and considering NaI as
intermediate between aluminum and gold, we hnd
a= 0.012 and e= 1.35. By virtue of multiple scattering,
only a very small fraction of electrons penetrate a
distance comparable with the range E„. There will
thus be a distribution of stopped electrons over the
entire sphere from the origin to R„,and this distribution
can be represented by a density function D(r,R~)
This density function is, of course, not known, and in
fact may even have a different shape for diferent
energy electrons. For very low energy electrons where
a diffusion treatment is valid, the density function is
of the form e "'. The approach taken in the present
work is to adopt the simplest possible form for the

6 E. Merzbacher and H. W. Lewis, Encyclopedia of Physics,
edited by S. Flugge (Springer-Verlag, Berlin, 4958), Vol. 34, p.
166.

7 P. G. Roll and I'". E. Steigert, Nuclear Phys. 17, 54 (1960).' H. Kanter, Phys. Rev. 121, 461 (1961).' H. Kanter and E.J. Sternglass, Phys. Rev. 126, 620 (1962).
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density function, consistent with the requirement that
it be zero at the range R„and reach a maximum at
some smaller value of r. Thus, for unit source strength
under isotropic emission we take

D (r,R~) = (3/~R„') (1—r/R„), (8)

12ep
1——~rsdr

R,' R)
&/~

singing

resin (ro/r) t' Sing

where g is the polar angle of radius vector r measured
from the column axis. The total energy deposited outside
the column by one electron of initial energy ep is
obtained by integrating the above expression over all
possible values of r, viz. , from r, to E„. The final
expression now requires only the source term, Eq. (7),
and a 6nal integration over all appropriate values of ep.

(dE) keV —cm' 3.08&(10s

~ dx/s mg (F/2)

epmax
Ep

cpm'n Ey 6p
13 3

rc Ry

7rl2 &In

1—
arcsin(r /r) t' Sing

Qsingdg (10)

where es t~= (r,/a)'I" and es 'x ——(4/1822)(E/g). This
expression for (dE/dx)s is based on the assumption of

where the factor 3/m. R„' is required for normalization.
Fortunately, the results to be derived from the present
analysis are rather insensitive to the shape of the density
function, as will be indicated later. The assumption
of Eq. (8), therefore, does not seriously limit the
conclusions to be drawn. From (8), it follows that the
probability that an electron whose initial energy is in
the interval es to so+des will stop at a radial distance
between r and r+dr is simply

(12/R~') (1—r/R )r'dr.

We must now trace an electron of initial energy ep

from its point of origin, along a winding path, to its
point of capture a distance r from the source, and ask
for the energy of the electron at the radial distance p.
This is treated by considering that the actual, winding
path is stretched out to the range R„, and we now ask
for the electron's energy at a radial distance (R„/r)p
Application of the foregoing range-energy relation
yields the result

e(p) = (1—p/r)""es. (9)

The Anal task is to combine the above prescriptions
with the appropriate geometry. Consider an electron
of initial energy fp which is born along the axis of the
primary column, whose radius is r„and which travels
a radial distance between r and r+dr. The energy
deposited outside the primary column by such an
electron is

Ch N
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Pro. 4. Curve (a): calculated "point isotropic" source. Curve
(b): calculated "point anisotropic" source. Curve (c):calculated
on basis of Spencer's energy deposition function. Curve (d):
derived from experiment on basis of Eq. (4) and iterative pro-
cedure. All curves apply to 0"in NaI(T1). Dotted curves indicate
regions of greatest uncertainty.

B. Extreme Anisotropic Emission

In this approximation it is assumed that the dis-
placement vector from point of origin of the delta ray
to its stopping point has the same direction as the
original direction of motion when the delta ray is
created. The delta ray is, of course, subject to multiple
scattering, and the actual path is a winding one. The
present approximation is equivalent to assuming that
the electron's path is curled about the displacement
vector. The purpose of this approximation is to treat
the geometry in the opposite extreme to Sec. A above.
Under the present assumption a high-energy delta ray,
which is necessarily emitted at a small angle with the
cylinder axis, will lose much or all of its energy in the
primary column. The calculated (dE/dx)& under this
circumstance shouM represent a lower limit.

The calculation is similar to that of Sec. A above,
but with a slightly more complicated geometry. The

isotropic emission; it completely neglects the initial
forward motion of delta rays which has the effect of
containing the delta-ray track (especially one of high
energy) within the primary column. This assumption
is therefore an unrealistic limiting case, and Eq. (10)
should give an overestimate.

The integrals of Eq. (10) have been evaluated
numerically with a digital computer for the various
charged particles and for several values of r,. The
result for 0" with r, =400 A (independent of dE/dx)
is shown as curve (a) of Fig. 4. It is seen to lie above
the experimentally derived curve for 0", shown as
curve (d). At this point it should be re-emphasized that
the choice of r, =400 A is made o posteriori in such a
way that the above overestimate and the underestimate
described in (8) below bracket the experimental result.

The calculated curve for only one projectile, 0", is
shown in Fig. 4 in order to avoid confusion. Calculated
curves for the other particles are very closely super-
posed on the 0" curve, and are in fact almost indis-
tinguishable on the scale of this figure.
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126p s' r ) i/n

1—— 1—
~

r'dr.
R„' .ts p R„rsing)

From Eq. (11), sin8= (1—wep):, where

w= [(4/1822) (E/A) j '.

(12)

The 6nal expression now requires the source term and
an integration over all contributing ~p'.

(dE (keV —cm' 3.08X10'
s~2

kdx ek mg (E/A)

'o

E~ 6p

Rp )i/a
1—— 1—

~

r'dr (13).
(t -~,,)- i R„r(1—wep)'*/'

In (13), ep~ and e,U are the lower and upper values of
the energy for which it is energetically possible for an
electron to escape the cylinder. These limits are found
as the lower and upper roots to the equation

itse 2~(1—wep) —r 2 0

The integrals of Eq. (13) have been evaluated
numerically with a digital computer for the various
charged particles and for several values of r, . The
result for 0" with r, =400 A (independent of dE/dx)
is shown as curve (b) of Fig. (4). This approximation
is expected to be a lower limit, and it is seen to lie below
the experimentally derived curve for 0", shown as
curve (d).

C. Energy Dissipation Function

This calculation departs from the approach used in
Secs. A and 3 above, and attempts to calculate (dE/dx) 2

from a substantially diferent point of view. In this
section, we carry over only the source function, Kq.
(7). The present calculation employs the electron

source function is, of course, the same as given by Eq.
(7). For comparison with the isotropic case we must
take the density distribution function to be of the same
form, viz. (1—r/R~). It must be carefully noted,
however, that electrons in the energy interval ep to
ep+dep are all emitted into a conical shell defined by
8 to 8+d8, since the initial energy ep is directly related
to 8 by

e,= 22/t V2 cos'8= (4/1822) (E/A) cos'8 (11)

A brief consideration of the geometry reveals that for
an electron whose initial energy is in the interval Ep

to ep+dep, the probability of stopping at a distance r
from the origin is (12/R„') (1 r/R„)r'd—r. This is identi-
cally the same as the probability in the isotropic case,
as it must be.

We now consider an electron whose initial energy is
in the interval ep to ep+dep. The energy which it deposits
outside the cylinder is

energy dissipation functions of Spencer, " in particular
Spencer's function for a point isotropic source of 25-keV
electrons in copper. Spencer's fun. ction J(x) is given
as a function of the reduced coordinate x=r/R, and
J(x) is defined as

where I(r)dr is the (average) energy per electron
dissipated in the spherical shell between. r and r+dr.
In the Spencer formulation the range E corresponds
to the maximum electron range, i.e., the total distance
traveled along the winding path. It is this range which
is given by the stopping-power theory of Bethe' and
which has been calculated by Nelms. "This theoretical
range should also correspond to the experimental
maximum range. In the present case, E is needed as
a function of ep down to about 1 keV. This was calcu-
lated according to the Bethe stopping-power theory,
although such a calculation is subject to question at
such low energies. It is noted, however, that the
calculated values agree reasonably well with the
experimental maximum range, ' considering NaI as
intermediate between aluminum and gold.

The use of the energy dissipation function in the
present problem involves several approximations, the
erst being the extrapolation of this function for 25-keV
electrons (the lowest energy considered by Spencer)
into the energy region of interest here which extends
from 22 keV down. The rationale is that the shape of
J(x) is not particularly sensitive to energy from 100
to 25 keV, and it is assumed that this shape is reasonably
the same at least for the high-energy delta rays en-
countered here. This treatment is, therefore, best at
large E/A, and is most uncertain at low E/A. Again,
the detailed shape of this curve need not be well known
as the calculation proves to be quite insensitive to the
details of the distribution function. The second assump-
tion involves the extrapolation from calculated curves
in copper to the present medium, NaI. Copper was
chosen as its Z which is intermediate between Z of Na
and I. A further approximation is the assumption of iso-
tropic emission of delta rays. This approximation, as in
Sec. A, should lead to an overestimate of (dE/dx)t.

The use of the energy dissipation function proceeds
as follows. For an electron of energy ep, the energy
deposited in a spherical shell of radius r is I(r)dr. The
fraction of this spherical shell which lies outside a
cylinder of radius r, is [1—(r,/r)2]'*, so that the energy
deposited outside the cylinder is I(r)dr[1 (r,/r)2]&. —
The total energy deposited outside the cylinder by

'0 L. V. Spencer, National Bureau of StarIdards Morrograph I,
September, Z959 (Superintendent of Documents, U. S. Government
Printing Once, Washington 25, D. C.}.

I' Ann T. %elms, Xakomal Bureau of StarIdards Circular Ão. 577
Supplement, 195$ (Superintendent of Documents, U. S. Govern-
ment Printing Ofhce, Washington 25, D. C.}.



104 A. MF YER AND R. B. MURRAY

one electron is therefore

r. 2'
I(r) 1—— dr

r

(de=R,./—
» . r, /R»

Introducing the source function (7) and integrating
over all contributing energies, we obtain

2.57X~0

(E/A) msu

In connection with Eq. (16) it should be kept in mind
that J(x) is taken from 25-keV electrons and is applied
to the entire spectrum of delta rays. We note from (14)
and the definitions that

and this quantity is a constant whose numerical value
is 1.70. It must therefore remain a constant over the
entire delta-ray spectrum and may be taken out of
the energy integral of (16). Consideration of the
calculated (and experimental) values for R, and

(de/dr)„ indicates that this requirement leads to an
overestimate of (dE/dx)q. Thus Eq. (16) is expected,
for two reasons, to give an upper limit to F.

The integrals of Eq. (16) were numerically evaluated
on a computer and the result for 0" with r, =400 A

(independent of dE/dx) is shown as curve (c) of Fig.
(4). This curve is seen to lie above the experimentally
derived curve (d). Curve (c) is considered to be in
question at small E/2 by virtue of the approximations
discussed above, and is shown dashed in this region.

DISCUSSION

The three calculations presented above are based on
various assumptions which surely cannot be justified
rigorously. It is therefore important to examine the
sensitivity of the result to changes in the a,ssumptions.
Perhaps the weakest point of Secs. A and 8 is the
assumption of a density distribution function of the
form (1—r/R~). As a check on the influence of this
distribution function, a second function was chosen of
the form (r/R~(1 —r/R„) $'. This function is bell-shaped
reaching a maximum 'at R~/2, and has the effect of
pushing the e1ectron distribution out to larger r. The

calculations of Secs. A and 8 were repeated with this
function, and were found to be very nearly the same
as with the original distribution. For example, with the
new distribution function, the value of F at E/d =10
was increased by about 0.007 for both the isotropic
and anisotropic cases. At E/2 =3, F was increased by
about 0.01.

The e6ect of a different range-energy relation was
examined by changing the exponent e from 1.35 to
1.65, which is artificially large. In the point isotropic
case the e6ect of a greater exponent is to increase F by
a roughly constant amount of 0.02. Thus, an unreal-
istically large range does not significantly alter the
conclusions.

The calculations presented here are therefore rela-
tively insensitive to the details of how the electron
energy deposition is treated. This redeeming feature
arises from the fact that we are dealing primarily with
electrons whose range is many times greater than the
column radius. The range of a 4-keV electron is five
times the column radius and the range of a 20-keV
electron is 45 times the column radius, assuming a
radius of 400 A. Clearly, the present calculational
methods are most in question at low E/A, where the
delta-ray range becomes comparable with the column
radius.

Changes in the column radius, of course, shift the
calculated curves and alter the shape somewhat at low
E/A. The assumption of a column radius of 500 A
lowers the point isotropic curve (a) of Fig. 4 at
E/A= 10, from 0.28 to 0.26.

It is concluded that the calculated upper and lower
bounds bracket the experimentally derived F curve
for a column radius of 400 A, with an uncertainty of
order 100 A or greater.

Finally, it may be noted that changing the distri-
bution function, changing the exponent in the range-
energy relation, and changing the primary column
radius affects the fractional energy deposited outside
the column by a practically constant shift for all values
of E/A. Thus, the shapes of the calculated curves are
practically unchanged by all these operations. A
detailed comparison with the shape of the experimental
F curve is clearly hazardous, especially in view of the
uncertainties inherent in this curve. (Uncertainties in
the pulse height vs energy measurement' amount to
about 1% at high E/2 and 2% at low E/A; uncer-
tainties in the slope of this curve, dL/dE, are of course
greater. ) In spite of these uncertainties, several com-
ments may be made regarding the experimental F
curve. First, the fall-off above an E/A of about 7
occurs because the experimental dL/dE is apparently
constant in this region. If dL/dE were not strictly
constant, but slowly increased with energy, the effect
would be to raise the experimental F curve at the
highest E/cf. In this regard it should be noted that a
technical effect exists which tends to reduce the me ~s-
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ured pulse height at high energy (relative to that at
low energy) and hence render the observed dl/dE too
small at high energies. This effect is associated with
the pulse decay time; the eGective decay time becomes
slower with decreasing dE/dx (increasing energy)" so
that, with a 6xed clipping time, one measures a smaller
fraction of the total light at higher energies. Correction
for this effect would raise the experimental Ii curve at
the high energy end.

Second, it may be noted that the experimental Ii

curve below an E/A of about 5 is steeper than any
calculated curve. Several effects may enter into the
shapes of the calculated curves: (1) At high values of
E/A, the iodine I.-shell electrons may begin to con-
tribute to the delta-ray effect; (2) at low values of
E/A, the contribution from iodine M-shell electrons
may be reduced below the Rutherford cross section;
and (3) if the primary column radius becomes greater
with increasing dE/dx, then Ii will be reduced in the
low energy region. Each of these three effects acts to
steepen the calculated curves, and is therefore in a
direction to improve agreement with the experimental
curve at low E/A.

It is concluded that the interpretation of heavy ion
data presented here is internally consistent since it is
possible to hand, from experimental data, functions for
(dL/dE)„and Ii which satisfy the required equations
for the entire set of incident heavy ions. The experi-
mentally derived curve of F is supported, as to its
general shape and magnitude, by approximate calcu-
lations based on a column radius of about 400k,
independent of dE/dx. The present analysis and the
available experimental data are not suKciently precise
to determine whether the column radius is a function
of dE/dx.

The analysis given here has been based entirely on
data obtained with NaI(Tl), as these are apparently

"M. Bormann, G. Anderson-Lindstrom, H. Neuert, and H.
Pollehn, Z. Naturforsch. 14a, 681 (1959).

the most complete set of data available. The in. ter-
pretation, however, is not restricted to NaI(T1) but
should be equally applicable to other inorganic
scintillators.

The interpretation presented in this paper should be
amenable to a direct experimental check. For a particle
at low E/A all the emitted light is expected to be from
the primary column and the pulse decay time should
be characteristic of a high-dE/dx particle (fast decay
time). At large values of E/A, about half the emitted
light is attributed to delta rays, and the decay time
from this contribution should be characteristic of
electrons (slow decay time). Therefore, if one compares
the pulse shapes from two diferent primary particles
at the same dE/dx such that one particle is at low E/A
and the other at high E/A, a distinct difference in
effective decay time should be observed. As an example,
C" and 0" at 2000 keV-cm'/mg fit this condition. The
effect would probably be most pronounced in CsI(Tl)
as this crystal shows the greatest dependence of pulse
shape on stopping power. This experiment would be
best performed with a thin crystal, such that the
high-E/A particle would lose only a fraction of its
energy and the pulse shape would be characteristic of
a reasonably well-defined dE/dx. A crystal thickness of
order 0.001 in. should be appropriate. The low-E/A
particle can be completely stopped in the crystal as its
pulse shape should be characteristic of the primary
column over its entire path.
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