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This work is concerned with a microscopic model of a nonideal
boson gas. The Hamiltonian is treated in a rigorous manner free
of all approximations and, in particular, the Bogoliubov approxi-
mation of replacing the zero-momentum single-particle creation
and destruction operators by a c number is entirely avoided.
Utilizing a method due to Wentzel, the Hamiltonian is replaced
by one involving products of two second quantized operators
which, in general, can be diagonalized. This replacement is shown
to be rigorously valid in the infinite volume limit for all tempera-
tures despite the avoidance of the Bogoliubov approximation.
It is found that the assumption of a positive-definite quasi-
particle excitation spectrum e(k) becomes untenable for tempera-
tures T less than a critical value T„if the interparticle potential is
described by a certain kernel which possesses positive eigen-
values only, corresponding to a sufficiently repulsive interparticle
force. Assuming that e(k) =0 only for k=0, it is found that for
T&T. the system undergoes an Einstein condensation into the
k=O single-particle state, and the integral equations character-
izing the system are precisely the same as would be obtained if
the Bogoliubov approximation were made, proving within the
framework of this model the strict validity of this approximation
procedure. The well-known criterion for an Einstein condensation

v(0) )0, where v(k) is the Fourier transform of the interparticle
potential, is shown to be a weaker statement of our eigenvalue
criterion. Further, in agreement with Girardeau and Arnowitt,
it is found that an energy gap separates e(0) and e(k) for
k&0. An approximation method is developed for solving the
integral equations which describe those systems which undergo
an Einstein condensation, and it is shown that this method can be
justified if ( T T, (

& T,—/10, and in cases of short-range repulsive
interparticle forces and systems for which pv(0) possesses a cer-
tain prescribed upper bound, p being the number of particles per
unit volume. The transition temperature is found to be lower than
the corresponding quantity for the ideal boson gas of the same
density. A detailed discussion of the thermal properties of the
system in the vicinity of T, is also given. In an Appendix a general

type of smeared Einstein condensation is assumed, and it is found
that for systems in which this property occurs e(k) is linear for
small h. This ansatz is shown to be tenable only if v(0)&0.
Finally, by assuming an appropriate pseudopotential repre-
sentation of a hard repulsive core and by including a weak, long-

ranged attractive force between particles, e(k) shows a non-

monotonic behavior of the same qualitative type as observed in

liquid He4.

I. INTRODUCTION

~ 'HIS work concerns itself with a microscopic model
of a nonideal boson gas. One is motivated to make

such a study for several reasons. Of the numerous
phenomenological theories that have been developed in
an attempt to explain the peculiar properties of liquid
He', that of Landau' has met with the greatest success.
The main feature of Landau's work is a description of
the energy-momentum spectrum of the elementary
excitations in the liquid. Although the existence of such
an excitation spectrum has been demonstrated experi-
mentally, ' one has at present only qualitative arguments
and some semiquantitative calculations to support such
a scheme theoretically. ' Furthermore, above approxi-
mately 1.6'K conclusions of the Landau theory fail to
agree with experiment. In particular, the mechanism
responsible for the lambda transition remains a complete
mystery to it as well as to all other existing theories.
A successful microscopic theory of liquid helium is
therefore very much in dema, nd.
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One possible procedure for developing a first-

principles theory for a system of E)2 interacting parti-
cles is to replace the actual Hamiltonian by one which

is readily diagonalized. Of course, for this procedure to
be meaningful, one must provide convincing proof that
the model system gives an accurate description of the
actual system.

Representative of attempts along this line is the work
of Bogoliubov. 4 In this work Bogoliubov anticipates
that at T=O'K a system of bosons which interact
through a two-body potential that is predominantly
positive possesses the property that the single-particle
state of zero momentum is occupied by a finite fraction
of the system (Einstein condensation). With this idea
in mind he develops the following scheme for truncating
the actual second-quantized Hamiltonian II: Ignore all

terms of H but those involving two or more zero mo-

mentum creation and destruction operators co~, uo. This
yields a Hamiltonian which we shall call B&. Now re-

place ao&t~ by Xo'", where Xo is a c number of the same
order of magnitude as E, the total number of particles.
The resulting Hamiltonian, which we shall refer to as
IIg, is easily diagonalized, and it describes a gas of non-

interacting excitations or so called quasi-particles. In
agreement with Landau's work the energy-momentum
spectrum of these excitations is linear for small

momenta.
Existing arguments for the relevance of H~ serving

as a replacement for H run as follows': If one attempts
z N. N. Bogoliubov, J. Phys. (U.S.S.R.) ll, 23 (1947).' See, for example, K. A. Brueckner and K. Sawada, Phys. Rev.

106, 1117 (1957).
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to use perturbation theory to calculate the ground-state
energy of H, with a gas of noninteracting particles
serving as the unperturbed system, in the third and
higher approximations one encounters integrals which
diverge at low momenta. Furthermore, the severest
divergence in each approximation order can be gener-
ated by H& alone. Taking the severity of a divergence
as a measure of the disparity between the chosen un-
perturbed system and the actual system, we can antici-
pate that H~ is a good replacement for H. Moreover, if
P is the ground-state eigenfunction of H, the occupation
of. the k=0 single-particle state by SO=X particles
implies that Q ~Lao, ao j~lt)(|P~ao ao)|P) '=1/X. It is,
therefore, plausible to regard uo, aot as identical operators
to be replaced by Eo't'. The Hamiltonians Hj and H&
are then anticipated to give similar, j.f not identical,
results.

The present work deals with a model system described
by a Hamiltonian BCI which is essentially a somewhat
generalized version of H~. One might, therefore, antici-
pate that X~ will serve as a better replacement for H
than does H~. In addition, the model possesses the highly
attractive feature that it can be diagonalized as it
stands. In particular, one can entirely avoid replacing
ao'~' by a c number. Because this is a soluble model the
following matters are open to study:

1. Eirlsteie comderIsutiol. To our knowledge there
exists no treatment which obtains as a derived result
(in contrast to an assumption made at the outset) the
exist. ence of an Einstein condensation in a nonideal
boson gas. Instead, one obtains an a posteriori inference
that such is fact. Such a procedure is unsatisfactory in
that it becomes difficult to obtain a quantitative cri-
terion for the existence of the condensation. In particu-
lar, little is known of the effect upon the condensation
of including a weakly attractive portion to the inter-
particle potential.

2. Excitatiou spectrum. Of further interest is the
nature of the excitation spectrum in this model. Is the
linear form at '.ow momenta of the excitation spectrum
derived by Bogoliubov a fortuitous result, or does one
obtain this result even if further interactions are in-
cluded? More generally, what are the effects of trun-
cating a Hamiltonian?

3. Phase trarIsitioe. Systems in which an Einstein
condensation occurs are expected to undergo a phase
transition at a finite temperature T,. Consequently, the
effect of the interparticle interactions on T, and the
thermodynamic properties of the system can serve
within the context of this model as a test of I,ondon's
hypothesis' that the lambda transition in liquid He' is
to be interpreted as an Einstein condensation in a boson
Auld.

4. Validity of approximatioN procedures. An outstand-
ing feature of a soluble model is that it can serve as a

F. London, SNPerglids (John Wiley R Sons, Inc. , New York,
1954), Vol. II.

testing ground for various approximation procedures,
In the present work one can test the validity of the
Bogoliubov approximation' not only for T=O'K but
also for T= T,.—where it is most suspect. The following
remarks show the importance of such a test: (a) An
immediate consequence of the Bogoliubov approxima-
tion is the decoupling of the k=0 state from all other
single-particle momentum states. But such a decoupling,
in turn, implies a two-Quid description of the nonidea. l

boson system. (b) Hugenholtz and Pines' have stated
the theorem that at T=O'K phonon modes will exist in
any boson gas in which repulsive forces predominate.
Their proof is contingent upon the validity for boson
systems of the ground state linked cluster expansion, '
which in turn requires the validity of the Bogoliubov
approximation.

In this work, we utilize a procedure developed by
Wentzel' to construct from K~ a Hamiltonian K' in
which boson creation and destruction operators only
appear quadratically. Employing statistical perturba-
tion theory, one can prove fairly convincingly that for
very large systems the volume-proportional part of the
thermodynamic potential (Helmholtz free energy in the
grand ensemble) determined by using BC' is the same as
the corresponding quantity determined by using X&.
For systems in which an Einstein condensation occurs,
the proof of this result is closely related to the proof
that the Bogoliubov approximation is strictly valid. The
"thermodynamically equivalent" Hamiltonian 3C' in-
volves two functions to be found by solving a pair of
coupled, nonlinear integral equations. The diagonaliza-
tion of R' can be affected but this requires great care.
In fact, one finds an intimate connection between the
properties of the interparticle potential, the presence of
a zero in the excitation spectrum, and the existence of an
Einstein condensation. These matters are discussed in
Sec. II.

The discussion in Appendix E is closely related to that
of Sec. II. In that Appendix we allow for a "smearing"
of the Einstein condensation in momentum space, and
we establish the relationship of such a smearing to the
properties of the excitation spectrum as well as to the
inclusion of a long-ranged, weakly attractive force
between particles.

In Secs. III and IV, we display an approximation
method for solving the integral equations which de-
scribe systems in which an Einstein condensation occurs.
It is shown that this method can be justified if T=7„
and if we restrict our attention to either weak, short-
range repulsive interparticle forces, or to short-range
repulsive forces and systems of low density. Section V is
devoted to the evaluation of the thermodynamic po-

7 Henceforth, we shall call the approximation of replacing ao(t)
by a c number, irrespective of its value, the Bogoliubov approxi-
mation.

N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).' J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957)."G. Wentzel, Phys. Rev. 120, 1572 (1960).
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tential and to the study of the phase transition. Finally,
in Sec. VI we summarize the conclusions of our work.

In concluding this section we must mention that
other studies of the present model have been made, " "
but these use the Bogoliubov approximation and/or a
variational theorem technique, and, in addition, do not
attempt a complete analysis. Furthermore, there is a
lack of unanimity in the conclusions of these authors.

II. DIAGONALIZATION

I. Thermodynamically Eqmivalent Hamiltonian

Imagine a large but finite cubic box of volume V
containing N identical bosons each of mass m. We shall
eventually allow X and t/" to approach infinity in such
a way that the density p=E/V is held constant. 'o This
will be achieved by constructing an infinite set of such
systems, each with the same density p, with successive
members of the set being characterized by increasingly
larger values of t/'. The force between two particles will

be assumed dependent only upon the distance separating
them. The Hamiltonian of such a system expressed in
the formalism of second quantization is"

H =g (h'/2m) ak'ak

+(2V) ' 2 s(k)~s+"~.-kt~&~. , (~)
k, p, q

where ak and akt are the usual boson destruction and
creation operators, respectively, for single-particle plane
wave states satisfying periodic boundary conditions
with respect to V. The quantity n(k) is the Fourier
transform of the interparticle potential, and it is
spherically symmetric: s(k)=s(k). It should be re-
marked that the existence of tt(h) forbids the use of
potentials which for small distances r behave asr" e&3

The Hamiltonian K~, called the "pair Hamiltonian, "
is obtained by ignoring all interaction terms of (1) with
the exception of the following three types: (a) k=0;
(b) k= tl —p, (pW&tl); (c) q= —p, (k=0), That is,"

+(2V) ' g e(p —k)BkrtBst
k, p&+k

+ (2V)
—' g v(p —k)BkstBs„(S)

k, p&k

sc'= x~—x'= w

+Q [fk+k +k+ shk(+k +—k +o—krak) j (6)

In (6), the c-number quantities 'lt, fk, and hk are ex-
pressed in terms of the trial functions as

&= —(2U) "(o)E &k&s
—(2V) ' & s(p —k)&k&1

k, p k, pg+k

—(2V)-' 2 ~(p k)uk~, . (—7)
k, p&k

f =k(&'/ 2) —~+V ' (0)((2 k.)—lj

+v-' 2 (p —k)~„(8)

We mav refer to the last three terms of 3C~ as repre-
senting forward, exchange, and pair scattering, respec-
tively. In (2), the single-particle kinetic energy has been
replaced by (h'/2m) —p, where y is a Lagrangian multi-
plier, the chemical potential, which will allow us to use
the grand ensemble. '~ Despite the presence of terms
involving products of four operators, the thermal prop-
erties of BC~ in the volume limit can be determined in
a rigorous manner utilizing Wentzel's "method of
thermodynamically equivalent Hamiltonian. "'

Following Wentzel, we define operators 8», 8k.. by

Bkl ok teak $k)

~k2 ~—k~k Qks

where the quantities gk and o7k are real functions, of the
nature of trial functions. In terms of these operators,
we express BC~ as

3('.~=Re+K',
where

R'=(2V) 'tt(0)Q BkrtBor

X~——P [(h'/2m) li jaktak—
I&„=v P.(p —1)q, .-

pg+k

+(2V)-"(0)(Z ~"")k(Z "".) —lj
k k

+(2V)-' p S(p —k)~k'~kOs'~,
k, pg+k

+(2U)—' P t (p —k)akta k'a, ao. (2)
k, peak

"D. N. Zubarev and Iu. A. Tserkovnikov, Doklady Akad.
Nauk (S.S.S.R.) 120 991 (1958) )translation: Soviet Phys. —
Doklady 3, 603 (1958)j."J.G. Valatin and D. Butler, Nuovo cimento 10, 37 (1958).

'o M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959);
M. Girardeau, J. Math. Phys. 3, 131 (1962).' For brevity, we shall refer to this limit as the "volume limit. "

'~ We choose units so that k= j..
'6 In Sec. I, we have made mention of the Hamiltonian H& which

generates the severest divergence in each approximation order

It is important to note that all of the above sums

when one attempts to calculate the ground state energy of (1)
using perturbation theory. This Hamiltonian is given by the fol-
lowing truncated portion of K~.
H, = Z k(ko/2m)aktak+pA'(X —1)V 'o(0)

+V +k s(k)Laktakao ao+o(ak a kaoao+ao a-o a-kak) j
(see reference 5). Further, EI~ is given by
HB= Zk (P(ko/2m)+(No/V)s(k)gaktuk

+P'0/2 V) s(k) (ak a-k +a-kak) }+&(&—1)s(0)/2 V.

(A prime on a summation sign means that the %=0 term is to
be omitted. )' We choose a script letter to denote the pair Hamiltonian so as
to indicate explicitly that we are using the grand ensemble.
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include k and/or p=0. The thermodynamic potentials
associated with 3'. and 3C~ are

The simultaneous Eqs. (17) and (18) possess a solution
if fkW&hk..

O'= —P ' ln Tr[exp( —PK')]

Qi ———P ' ln Tr[exp( —PK~)J.

(10a)

(10b) where

uk'=-', [(fk/ok)+1), r k'=-',-[(fk/ok) —1J, (19)

3C' fails to contribute to the volume-proportional part
of Q&. That is to say, if K' is constructed from (k and
rtk which satisfy (11), ~n the iiotume limit the thermo

dynamic properties of the system given by the pair Hamil
tonian (Z) are determined by K' alone. The proof of this
statement in the present work where we do not replace
ao't& by a c number is based on the fact that the Auctua-
tions of uo ao and aoao can be shown to be small. This
question is discussed in Appendix A.

In the following, we shaH employ the notation (A) for
the ensemble average of a quantity A taken with
respect to Xo:

(A) =Tr([expP(Q' —K')$A). (12)

Using (6), (10a), and (12) one can show" that (11) is
satisfied if

kk (ak ak)i

uk=(a kak)=(ak'a k').
(13)

The ensemble average in (12) can be performed once
X, is diagonalized, For this purpose it is convenient
to write 3C' as

Ko= 'lt+Koo+2 Qk' Kko, (14)
where

Ko = foao ao+oho(aoao+ao ao ),

Kk fk(ak ak+a —k a—k)+bk(a —kak+ak a—k ) (15b)

Here and in the following, a prime on a summation sign
means that the term with zero subscript is to be omitted.
Following Bogoliubov, ' we introduce new destruction
and creation operators O.I, and 0.&~ defined by the linear
transformation

ak=uk~k+ok~-k' (aH k), (16)

where u i, =uk=uk*, v k=vk=v~*. To insure that these
operators satisfy the Bose-Einstein commutation rules,
one must impose the restriction

(17)

Substitution of (16) into (15) yields an expression which
is diagonal in the new representation if

fkuk&k+ gttk(uk +&k ) (18)

The quantity p ' is the product of Boltzmann's constant
~ and the absolute temperature T.

Thus far, the separation (4)—(6) has been purely
formal. The point of Wentzel's method, however, is
that for trial functions $k and nk which minimize Q, i.e.,

BQo/8pk 0,——BQo/Brtk 0

Ok= (fkO —hk&) &&& (20)

2. Positive-De6nite Excitation Syectrum

In this case X' and 0' are given by

where

K %, ++k ekAk CKk)

Qo=qlo+P ' Pk in[1 —exp( —Pok)$,

wo='tt+o Zk(ek —fk).

(21)

(22)

(23)

We may interpret (21) as foHows: The Hamiltonian K'
describes an in6nite set of independent harmonic oscil-
lators whose excited states can be described in terms
of noninteracting excitations or quasi-particles of mo-
mentum k and energy ok. We rephrase an earlier
statement: The entire thermodynamics of the pair
Hamiltonian system is described by an ideal gas of
quasi-particles. "The remaining problem is to obtain
fk, bk, and thus ok in terms of the given quantities m,
p=lV/V, 1 (k), and T.

We begin by noting that the number of quasi-particles
populating the state k at the temperature T is

(~"~k)= [exl (pok) —13 '. (24)

Further, using (12), (16), and (19) the following rela-
tions are easily proved

(ak'ak)= —,'[(fk/ok) coth(-,'pok) —1)=(k,

(a-kak) o(kk/ok) cothopok 7)k

(25)

(26)

In the following we may imagine V to be so large that

' We wish to stress that the thermodynamic equivalence of SCAN

and X is not at all a trivial result. This remark is prompted by
the fact that 3C~ consists of products of four cg t operators in
contrast to R which is composed of products of two operators.
Although it is quite popular in current many-body studies to
linearize all equations of motion (random phase approximation),
that is to say, to replace Eq. (1) by an alternate Hamiltonian
composed of products of two rather than four operators, it is
generally quite difficult to justify such a procedure. Such lineariza-
tion schemes generally imply that the actual many-body system
is equivalent to an infinite set of independent harmonic oscillators,
whose excited states, therefore, are variously described in terms
of noninteracting excitations or quasi-particles such as phonons,
plasmons, etc. For the present model this description is valid
because of the equivalence of Rp and Ko.

For this transformation to be physically meaningful it
is necessary that ek be real; i.e., lhkl cannot exceed
Ifkl Further, if Ifkl = I&kl 1 e 'k=0 Eq (18) 'mphes
uk ——+ok which is incompatible with (17). That is to
say, only for those values of k for which the real func-
tions fk and hk satisfy

I
kk

I
(

I fkl is (15) diagonalized
by (16). We shall first restrict our discussion to the
case for which ok&0 for all k.
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V ' Pk . can be replaced by (2v) 'jdk
Furthermore, we shall assume that fk and hk are
spherically symmetric, i.e., fk J——k, kk ——kk. Using (8),
(9), (25), and (26), one finds the following coupled,
nonlinear integral equations for f(k) and h(k):

k(P)
k(k) = — dp P'J(k, p) coth-', pe(P).

e()
The quantity J(k,p) is defined by

(28)

J(k,p)=(8m') ' dp v((k'+P' 2kpp)'"—] (29)

it is the angular average of v(k —p) for fixed magnitudes
k and P. We remark that J(k,p) is a real, symmetric
kernel.

The chemical potential p, appearing in (27) is deter-
mined from the auxiliary condition

P U Q(QkGk)

—f(k)
dk k' —coth(-,'Pe) —1

e(k)

(30)

Equa, tions (20), (27), (28), and (30) are the basic equa-
tions for the model when e(k) is positive-definite.

We note that (28) possesses the trivial solution

h(k) =0 for all k. For this solution it follows from (20)
that e(k)= f(k), ' which in turn means that the aux-
iliary condition (30) cannot be satisfied for temperatures
below a critical value T, )it obviously cannot be satis-
fied for T=O K, since it is presupposed in this section
that e(k))0 for all kj. Expressed precisely, T, is the
smallest value of T for which the equations

e(k) = —p+ pv(0)+2 dp P'J(k,p), (31)
e~' —1

p=
27r2

dk k'
et' —1

(32)

are simultaneously satisfied. Continuing this argument,
a positive-definite excitation spectrum for T&T, re-

"Since 6p&0 it is clear from (25) that (uptap) is a well behaved
volume-independent quantity; i.e., there is no Einstein condensa-
tion in the system. The replacement of the sum by an integral is
therefore valid. This matter is discussed in detail later in this
section.

ss Since (aktakl cannot be negative it follows from l25) that
f(k)&0 for all k.

k' 00

t'(k) =——~+pv(0)+ dP P'J(»P)
2m 0

f(P)
&& coth(-', Pe) —1, (27)

-e( )
dp dk 8(k)J(k,P)8(P)=—(8,J8). (33)

The left side of (33) is negative-semidefinite. If J(k,p)
is a kernel such that (8,J8)&0 for all 8, it follows from
(33) that for a/I temperatures the only solution to (28)
is k(k) —=0. Such a condition for real, symmetric kernels
is well known in the theory of integral equations: All
the eigenvalues of J(k,p) are positive. "For kernels of
this type, if T&T, our ansatz of a positive-definite
excitation spectrum becomes untenable; that is to say,
for T(T, a zero must occur in the excitation spectrum.

It is a difFicult task to phrase in a precise way this
condition upon the eigenvalues of J(k,p) in terms of the
interparticle potential. "Instead, we shall make several
semiquantitative remarks.

It is easily shown" that a necessary (but not suK-
cient) condition for J(k,p) to be a J~ kernel is that its
diagonal elements be non-negative, i.e., J(k,k)&0. By
suitable change of variable, one can write this con-
dition as

21c

J(k,k) =-
Sr'k'

ds sv(s) &0. (34)

For small k, Eq. (34) becomes

J(k,k) = (4v-') 'v(0) &0.

That is to say, that the space average of the inter-
particle potential be positive is a necessary condition
for the presence of a zero in the excitation spectrum.
This, of course, is the well-known criterion for phonon
excitations. ' The following statements, which are proved
in Appendix B, unfortunately show that (35) is a very
ineffective expression of the necessary condition (34).
(a) Equation (34) rules out the possibility of two-
body bound states; (35) does not. (b) Even if v(0)) 0
and the interparticle potential does not allow for two-
body bound states it is possible for (34) to be violated.

An interesting example where one can prove that a
zero occurs in the excitati. on spectrum is provided by
v(k) =4v.a/res, the hard sphere pseudopotential used by
Lee, Huang, and Yang in their studies of the boson hard
sphere gas." In this case (8,J8), proportional to (8,8),
"See F. G. Tricomi, Integral Equations (Interscience Publishers,

Inc. , ¹wYork, 1957},Chap. 3.
"For brevity, we shall call J(k,p) a J+ kernel if all its eigen-

values are positive.
'3 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

(1957).

quires the existence of a nontrivial solution to (28). The
obvious question is: Under what conditions does (28)
possess a nontrivial solution?

Multiply both sides of (28) by 8(k) =k'(k/e) cothsPe
and integrate from k=0 to k= ~:

k'(k)
dk k' coth-,'Pe(k)

e(k)
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is positive-semidefinite. As a further example, if
Z(k p) = L4m'v(0)] 'e(k)v(p) then (O,J8)&0 as long
as m(0))0 "'

Thus far, we have exhibited an intimate connection
between the properties of the eigenvalue spectrum of
J(k,p) and the existence of a zero in the quasi-particle
excitation spectrum. This connection can be further
extended to the question of the existence of an Einstein
condensation in this model.

According to (25), the number of particles occupying
the single-particle state k is

(a~~a~) =-', L(f,/Eg) coth(2Ptk) —1].
For all temperatures and alt values of k the right side
of this equation is 6nite and volume-independent.
Crucial to obtaining this result was the assumption that
R' is diagonalized by (16)—(20), which in turn means
that ei, /0. We, therefore, conclude that if e~ is positive-
definite the system fails to undergo an Einstein
condensation. "

On the basis of these remarks, we can expect novel
results if we study systems whose interparticle inter-
actions are described by J+ kernels. The remainder of
this work concerns itself with such systems.

3. Zero in the Excitation Spectrum

In the previous discussion we have seen that if the
eigenvalues of the kernel J(k,p) defined by (29) are all

positive, it foHows that for temperatures less than T,
there exists at least one momentum value k for which
k~= +f~, i.e., e~ ——0. We have also seen that in such an
instance the transformation (16)—(20) fails to diago-
nalize Xk' given by Eq. (15). Consequently, the first
equalities of (25) and (26) fail to hold for the momentum
k, thus making inapplicable all subsequent equations.
We now modify our equations to allow for this possi-
bility. It is essential to note that (13) continues to hold
since the diagonalization of 3C was of no relevance to
its derivation.

On the basis of the following remarks we shall assume
throughout the rest of this work that e~WO for k which
do not vanish in the volume limit. If, on the contrary,
&k=0 for k=ko&0, and if eq is a continuous function
of k it follows that it is possible to impart a net mo-
mentum ko/0 to the system by expending a vanishingly
small amount of energy, namely, by exciting a quasi-
particle of momentum k=ko. Such a situation, however,
must be regarded as highly unphysical as long as kp does
not vanish in the volume limit. Since the continuity of
el, is merelv a conjecture one should accept these re-

"One cannot speak of an Einstein condensation unless some
momentum state(s) is(are) populated by a number of particles
proportional to a positive power of the volume. From the point
of view of the infinite set of systems which gives meaning to the
operation lim , there is no essential difference be-

V~~, p=N/V' constant

tween two volume-independent functions, which is not the case
for two functions one of which is volume-independent, the other
proportional to V~, x&0.

p=(jo/V)+(2V) ' 2 I (f&/~~) coth(-', Pe~) —1]. (38)

The two seemingly independent quantities $0 and go
will now be related.

Two choices are open for insuring that eo
——0. For

argument's sake we take the factor fo+ho to be zero:

fp+hp O,t T& T,. ——

Hy forming the following commutator

[aoao,&']= 2fo(aoao aotao 1/2), — —
one finds

Tr{[expP(00 Ko)]Laoan, ,X']}
= 2fo(qo —b—1/2) =0. (41)

The left side of (41) va.nishes since the trace operation
is invariant under a cyclic interchange of factors. Only
in rare instances can we expect fo to vanish, so it
follows that

go= $o+1/2. (42)

The existence of an Einstein condensation in this
system is easily seen. If go/V and $p/U vanish in the
volume limit, Eqs. (36)—(38) reduce to (27), (28), and
(30). But these latter equations cannot be satisfied
simultaneously since by assumption J(k,p) is a J~
kernel. There is no alternative but

lim
V~CO, fixed p

&0/U= lim gp/VWO, T&T.. (43)
V~oo, fixed p

'6 For the present discussion it is safest to delay the limiting
procedure of replacing sums by integrals.

marks not as a proof, but rather as giving plausibility
to the assumed form of ek.

In the present section we shall assume that U is large
but finite, and further that &0=0, whereas e~/0 for at/

nonzero values of k. With this assumption the complete
equations (25) and (26) apply only to nonzero k. In
the remainder of this section, unless written explicitly
to the contrary, all momenta are nonzero. In this
instance one finds the following equations'"" for fk
and hg.

(k'/——2m) p+—p~ (0)
+U—

'&Oi(k)+(2V) —'P '
v(p —k)

)& [(J"p/ep) coth(-', Pep) —1], (36a)

fo= ~+ar'(0)+(2U) ' Z~'~(p)
X t (f~/~ p) coth(~P p)

—1], (36b)

kg ——V 'goi;(k) —(2 U) ' Q, '
v(p —k)
X (hp/ep) coth-', Pep, (37a)

ko ———(2 V)
—' Q, '

v(p) (k p/op) coth-', Pe, . (37b)

As mentioned previously, a prime on a summation sign
means that the zero index term is to be omitted.
Further, the auxiliary condition (30) is replaced by
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That is to say, for T(T, the system undergoes an
Einstein condensation.

Using (36b) and (37b), we find as a further conse-
quence of (39) that

(45), (46), and (48) give

f(k) = f(0)+ss(0)+0(k')

h(k) = —f(0)+ss(0)+O(k')

(49)

(50)

1 " f(k)
p =ps(0)+ dk k's(k) —coth(-', Ps) —1

4s' p s(k)

so that

e(k) ——+ $4ss(0) f(0)+0(k')$'~'-.
0~0

(51)

h(k)
dk k'-r(k)—coth-,'Ps(k). (44)

e(k)

We can now eliminate p from (36)—(38) in favor of

s=(s/V, the density of particles occupying the k=0
state:

k2 00

f(k) = -+ss(k—)+ dp p'LJ(k, p) —J(O,P)]2' 0

f(P)
coth(arises) —1

-e( )

h(p)
+ dp p'J(O, p) coth —,'pe(p), (45)

0 e()
h(p)

h(k) =ss(k) — dp p'J(k, p) coth-,'pe(p),
s e()

(46)

p= S+
4m'

f(P)
dp p' coth(-,'pe) —1

—e(p)
(47)

h(k)
f(0) = —h(0) = dk k'J(O, k) coth-,'Ps(k).

0 s(k)
(48)

Equations (45)—(48) which are applicable when T&T,
complement (31) and (32) which describe the system
above the transition temperature.

Two remarks are in order at this point: (a) In con-
trast to (28), the equation for h(k) when e(k) is positive-
definite, Eq. (46) is not a homogeneous integral equation,
and therefore it does not possess the trivial solution

h(k) —=0.
(b) Equations (45)—(47) have been obtained by

Wentzel' and by Zubarev and Tserkovnikov" in their
respective studies of K~. In both studies use was made
of the Bogoliubov approximation a0&~&=%0'~', but the
111.ethods for determining E0 were somewhat different.
One can, therefore, conclude that within the framework
of the pair Hamiltonian the Bogoliubov approximation
is rigorously valid for all temperatures T&7, for those

systems characterized by J+ kernels.
To conclude this section, we shall give a brief and

incomplete analysis of (45)—(47) discussing first the
structure of the excitation spectrum. For small k, Eqs.

We therefore conclude, in agreement with Girardeau
and Arnowitt, " that a gap separates e(0) (=0) and
e(k), k/0. Equations (49) and (50) show clearly the
role of the Einstein condensation in e&ecting (51).
Furthermore, the discontinuous behavior of f(k) and
h(k) is easily traced back to the definition of Kz where
in order to avoid repetition of terms it was necessary to
impose index restrictions on the exchange and pair
scattering terms. "

We wish to emphasize that the result (51) does not
satisfy a theorem due to Bogoliubov ""that a system
of bosons whose Hamiltonian sat;isfies a certain gauge
condition possesses an excitation spectrum which is
linear at low momenta. Specifically, Sogoliubov's
theorem applies to a system whose Hamiltonian is in-
variant under the infinitesimal transformation ak —+ ak'
=uk i(a\t+s+—rs]t q)I5$, where tl is an arbitrary vector
and 8$ is an arbitrary infinitesimal c-number quantity.
The complete Hamiltonian given by (1) is invariant
under this transformation whereas 3'.r and Hs (see
footnote 16), truncated versions of (1) are not. As such
the linear spectrum of II~ must be regarded as a
fortuitous result.

I

Although we do not wish to discuss the solution of
(45)—(47) in this section, it is nevertheless instructive
to quote the results of an iterative procedure for solving
these equations.

(a) Zeroth approximation Lv(k) =0]:

e'(k) =f"(k) =k'/2ris, h'(k) =0, (52)

s /p= 1—(T/T )s~ I:Tps= 27rD (s)1 ~sp ~ /yg. (53)

"This perhaps may explain why Valatin and Butler (see foot:-
note 12) found e(k) ~x: k for small k."N. N. Sogoliubov, Dubna Report D-781, 1961 (unpublished),

'8Hugenholtz and Pines (footnote 8) enunciated a similar
theorem somewhat earlier, but, as mentioned in Sec. I, be-
cause they assumed for the complete Hamiltonian the validity
of the replacement ao&~) =E0'~' their proof cannot be regarded as
complete."We shall frequently encounter the quantity l (al = Z„q"e ',
the Riemann zeta function. Values of this function are given in
E. Jahnke and F. Emde, Tables of J"uectzons (Dover Publications,
Inc. , New York, 1945},4th ed. , p. 273.

Equations (52) and (53) describe the ideal boson gas."
(b) First approximation: The quantities f, h, s, and s

which appear on the right sides of (45)—(47) are replaced

by their values obtained in the zeroth approximation.
The left sides of these equations give the results of the
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k'(k) =s'v(k),

1(k)
I fl(k) 2 kz(k) 2]1/2 (56)

erst approximation:

k2 Go

f'(k)= +s'v(k)+2 dp p'LJ(k p) —J(Op)]
2es ~ 0

1
(54)

exp(PP'/2m) —1

spectrum of the system is found by solving the integral
Eq. (31) subject to the auxiliary condition (32). For
this purpose it is convenient to write (31) in the follow-
ing equivalent form:

k2

e(k) = e(0)+
2m

00

+2 dP P'I:J(»p) —J(O,P)], (58)
ej' —1

f'(k)
dk k2 coth(pt3e') —1 (57) 00

~(0) = l+pv-(o)+2 dp p'J(0 p) et' —1
(59)

This iteration procedure can be continued in an obvious
fashion. Equations (54)—(56) ha, ve been given by
Zubarev and Tserkovnikov (ZT)."Since for small k the
quantity J(k,p) —J(0,p) is of order k' the excitation
spectrum e'(k) is linear in this range. In fact at T=O
Eqs. (54)—(56) reduce to the values of f, k, and e which
describe H~ (see footnote 16). It should be mentioned
that ZT refrained from continuing this iterative pro-
cedure since they felt that a treatment based on the
Bogoliubov approximation a0&t) =310'i' should be valid
only for weakly interacting bosons. However, since we
have not made the Bogoliubov approximation we feel
justified in continuing this iteration procedure. In
particular, an energy gap, which already appears in the
second approximation, is an inescapable characteristic
of the pair Hamiltonian model.

It can be shown that the results of the first approxi-
mation can be obtained by considering a Hamiltonian
which consists of the forward and exchange scattering
terms of K& and only those pair scattering terms which
were retained by Bogoliubov. ' "This criticism of the
work of ZT is of more general importance: If one wishes
to obtain the correct consequences of the pair Hamil-
tonian model something approaching an exact solution
of (31) and (32) and (45)—(47) is necessary. In particu-
lar, the above iteration procedure, whose zeroth approxi-
mation describes the ideal boson gas, appears ill-suited
for this purpose except for systems of very weakly
interacting bosons.

III. SOLUTION OF INTEGRAL
EQUATIONS (T) T,)

1. Preliminaries

In this and the following section we display an ap-
proximation method for solving the integral equations
which describe the system when J(k,p) is of the J+
form (see Sec. II 2). This method can be justified if
IT—T,

I
(T,/10, and if we restrict our attention to

short range repulsive interactions and to systems for
which pv(0) possesses a certain prescribed upper bound.
%e shall first treat the case of T& T.. The solution for
T(T, forms the discussion of Sec. IV.

Above the transition temperature the excitation

P2

e(k) = +2
27Ã

dp p'LJ(k, p) —J(o,p)], (60)
ence 1

dPP
etc~

(61)

where P,=1/~T, . The resemblance between (32), (58),
and (60), (61) is not accidental. Indeed, we expect that
the equations which describe X& for T&T. become
identical with those that apply for T)T,. when
T —+ T, . This is acco—mplished if e(O, T,)=0. The
alternative, namely, that e(k) is discontinuous for all k
when T= T, is physically unacceptable, for such implies
that the thermodynamic potential is discontinuous at
that temperature.

We now return to the discussion of the solution of
(58). It is convenient to measure the strength of the
interparticle potential V(r) in terms of an energy W
rather than in terms of a coupling constant. The spatial
variation of V(r) is expressed in terms of the dimension-
less quantity r/R, where R plays the role of a range
parameter. Thus, we write

V(r) =Wy(r/R)

The Fourier transform of V(r) is given by

(62)

v(k) =4v 8'R'X dx xp(x) sinkRx. (63)
kR 0

It is essential to note that v(k) is a function of kR.
Throughout the remainder of this work we shall re-

quire @ to satisfy the following two conditions:

y(x) &0 (all *),
12~/14( 6(2~—1) l (tv) 3)

(64)

(65)

Note that e(k) is a function of both k and T; for brevity
we have not written the latter dependence explicitly.

We shall brieQy digress in order to study the form
assumed by Eqs. (45)—(47) when the temperature is
raised to T,. At the transition temperature the density
s of particles occupying the k=0 state is zero. Thus, the
limiting form of (45)—(47) is
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where

dx x"y(x).

(58) as
v(0) k'

(66) (k) =P (0)+k'/2m)—
2x' k, ' 0

'p p'
e&'—1

Using (29) and (63), one finds 1
dp p'P(»p) ~(—0 p))

e&'—1

J(k,k) = dr V(r) sin'kr (67) 0&k&k, . (72)

Because of (64) it follows that J(k,k))0 as is required
of a J+ kernel (see Sec. II 2).

Two examples will illustrate the nature of the re-
quirement of Eq. (65). If P(x) =e */x and x ' exp( —x'),
one finds

Iz /I4 ——-,'(2m —1)!

z6(2n —1)!48/2'"(m —1)!(2B—1)) '

respectively. Quite generally, Eq. (65) is satisfied if
g(x) rapidly decreases to zero when x) 1.

The purpose of (65) is twofold. First, it assures that
e(k) may be expanded as a Taylor series about kR=O
with a radius of convergence not smaller than kR= 1.
Specifically,

e(k) =~(0)(1—(k'/k. ')S(kR)), kR&1, (68)
where

We can anticipate that for a sufBciently small range
parameter R the value of k, is so large that (ee' —1) '
will serve as a strong convergence factor, so that one
might be able to ignore the third term on the right side
of (72). Indeed, using Eqs. (64) and (65) one can show

(see Appendix C) that the exact solution of (58) has as
a lower bound a rapidly increasing positive function of
k: e(k)) 0, e(k)) (k'/2m)+[a(0) —2pz~(0)), whichever is

larger. The consequence of this is that the ratio of the
third term to the second term of (72) is less than

(k '/2maT)'i'{expP/(k, '/2m) —2pv(0)) —1) ',

as long as k, '/2m~T, )9 and 0(T T.& T,/—10. If, for
example, 2pv(0) =KT, this ratio is less than 10 '. For
weak short-range forces, or for short-range forces and
systems of low density, these conditions will be satis6ed.
For such cases, we feel justified to write (72) as

k, '=6(Iz/I4)(1/R')) 0. (69) e(k)=e(0)+k'/2m*, 0&k&k„ (73)

The precise form of $(kR) is of little interest. The
essential point is that because of (65), and this is the
second purpose of that equation, S(kR) satisfies the
following inequality (consult Appendix C)

1 1 1 v(0)

m* m 7r' k, '
dk k' (74)

expP[a(0)+k'/2m*) —1

where m*, an eRective mass, satisfies

(kR)'
~~(kR) —1~&, kR&1.

1—(kR)'
(70) With the same accuracy and subject to the same condi-

tions we can write (32) as

~(k) =~(0)(1—k'/k. '), 0&k&k„ (71a)

e(0) k'
J(k,P) = J(O,P)—,0&k,p&k, . (71b)

4z' k, '

Define k, as k, =(10R) '. It follows from (70) that
S(kR) diEers from unity by less than 1% as long as
k(k, . Note further that a small value of the range
parameter R assures a large value of k, ~ Similar con-
siderations apply to J(k,p), although in this case there
is the added condition k,R&1. This latter condition is
well satisfied if, as is the requirement for the validity of
(65), P(x) drops to zero rapidly when x) 1. In what we
refer to as the "eRective-mass approximation""

dk k' (75)
expPPe(0)+k'/2m*) —1

Comparison of (74) and (75) shows that

m*=m)1 2mpv(0—)/k 2) z)m- (76)

Note that m* is temperature independent. That the
effective mass is larger than the true mass is a direct
consequence of (64), the requirement that V(r) be
non-negative.

We now determine the transition temperature T,.
Because e(O, T,) =0, Eq. (75) becomes"

2. Method of Solution

We now proceed to display our approximation method
for solving Eq. (58). Making use of (71b), we write

P-
27r2

dk k'
exp(P k'/2m*) —1

(m*~T,)'"
~

r(l). (77)
2' )

~0 The reason for this terminology will become clear presently. Mole important, for the same particle density the
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Tc~p 3 FIG. 1. Qualitative plot
of the transition tempera-
ture T, given by I,

'79) as a
function of density. The
quantity T, is the cor-
responding quantity for
the ideal boson gas.

pl.oduct of m* and T, is equal to the corresponding
quantity for the ideal boson gas; that is to say

m*T,.=mT, ' (const p), (78)

where T,' is the ideal gas transition temperature [see
Eq. (53)]. Combining (76) and (78), it follows that

T,=T„o[1.—2mpv(0)/kg](T, o. (79

A qualitative plot of T,. as a function of p is shown in
Flg. 1.

As is well known, the lambda transition in liquid He'
occurs at Tq ——2.18'K, whereas the transition tempera-
ture in the ideal boson gas of the same density occurs
at T,'=3.13'K."The unanswerable question of course
is whether the result (79), in particular T,(T,o, is
just fortuitous, being peculiar only to the present model,
or possibly wouM result from more advanced models of
systems of bosons interacting via repulsive forces.

It has been pointed out that k,E.&1 must hold if
(71b) is to be a good approximation to J(k,p). It is then
easy to see that (79) is valid only for very siriall differ-
ences T,' T,. (With —k, '/2m=9«T„2pv(0) =«T., and
k, =R ' one finds T, T,= .555X—1 O'T, '.) We, there-
fore, cannot, apply (79) to a discussion of the density
dependence of the transition temperatures for which
HeI and HeII are in equilibrium. Nevertheless, it is
int:cresting that according to (79) the quantity BT,/Bp
is negative for suKciently high densities (see Fig. 1).
Indeed, the HeI —HeII equilibrium curve in the T 1/p-
plane is so characterized.

It is unfortunate that we have been able to obtain an
approximate solution of (32) and (58) only for the range
of parameters previously mentioned. In view of the
nontriviality of 3Cp it would be interesting to determine
the functional dependence of T, on p for more general
values of these parameters.

IV. SOLUTION OF INTEGRAL EQUATIONS (T(T,,)
In this section we present a method for obtaining an

accurate approximate solution of Eqs. (45)—(47) in the
temperature range 0(T, T&T./10. Because we a—re
interested in the thermodynamic properties of the
system in the immediate vicinity of the phase transition
we shall not attempt to extend our treatment to lower
temperatures.

Our method is based upon the following considera-
tions. At T= T. the density s of particles occupying the

3'K. R. Atkins, Iiqzrid ITelilm (Cambridge University Press,
j,ondon, 1960).

hp(k) =0,

k'.,(k) =f.(k) =—+2 dp p LJ(k,p) —~(0,P)]
2m

(80)

(b) First approximation:

X (81)
exp[/ pp(p) ]—1

hi(k) =sv(k),

fi(k) =sv(k)+ op(k),

pi(k) = ( oo(k) [po(k)+2sv(k)]) 'i'

(c) Second approximation:

(83)

(84)

sv(p)
h&(k) = sv(k) — dp p'J(k, p) —coth,'p«(p)

o o(P)

k' 00

f (»=-—+»(k)+ dp P'[~(k,p) —J(0,P)]
2m

f (P)
X ——coth(-', Pp, ) —1

—pi(p)

sv(p)+ dp p'J(0, p) coth~p. ,(p), (86)
0 &i(p)

pp(k) = + [fio(k) —hp'(k)]'i' (87)

It is instructive to give a physical interpretation of
the equations of the zeroth approximation. Had we
started with a Hamiltonian, say BC', „consisting of only
the forward and exchange scattering terms of X~, one
can show that for T& T, the system would be described
by Eqs. (31) and (32), the very equations which describe
the pair Hamiltoriiari model in this temperature range.
That is to say, the pair scattering terms of 3C~ are of
physical consequence only if the k=0 single-particle
state is populated by a finite fraction of the system,
i.e., only if T& T,. Now then, for T slightly smaller than
T, one expects that the pair scattering terms are playing
a very minor role. Accordingly, for T= T, it. is reason-

k=0 state is zero, in which case the only solution of
(46) is h(k)=—0. Slightly below the transition tempera-
ture h(k)=0(s); i.e., h(k) is very nearly zero. This
suggests the following: Consider a value of T only
slightly smaller than T.. Set s=0 in (45) and (46) and
obtain the solution pp(k) of the resulting integral equa-
tion. Replace f, o, and h on the right sides of (45) and
(46) by fp(k)=op(k), and hp(k)=—0, respectively. The
left sides of these equations are denoted by fi and hi.
These results are used to repeat the process. This is
shown explicitly in the following:

(a) Zeroth approximation (s= 0):
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re the air scattering terms
'

ms in theable to totally ignore e p
'

to determineation and simply use BCJ,, o
d fo T&T th foHowingthe excitation spectrum. Indeed, or

equations describe 3C~, ,

~ k in the followingIl' ' E (81) we can writeUsing q.
useful form:

fg(k) = ee(k)+sir(k) —h2(k)

k2

e(k) =—+sir(k)+2
2ns

dp p'P(k, p) —J(O,p)]
dp p'ee(p)LJ(k, p) —J(O,p)]

X— —,(88)
exp LPe(p)] —1

X —coth(-.,'Pet)—
-er(p) eo(p)

coth(-,'Peo) . (92)

t the ri ht sides of Eqs. (85) and (92)
h 11have been expan e

'
p

d
'

ne can obtainhat to lowest order in s onIt can be shown that
: and h2 using the following simp i e or

(85) and (92):

s't) 1' "'"".
, -.L-.,(]-0

p=s+
2%2

dp p'
exp[p. (p)]—1

it sir(k) is electively zero and (88)

be compared with that of Zu arev

'd 1 boson gas. There is
h

ation is the i ea oso
a roximation or er oy pp

which have a closer resem ang'
exact solution of (45)—(47 t an o

k'. Thus, from Eqs. (80)—(87) one fin s ee

ei(k) =0(k), whereas

(93)

f2(k) = ee(k) +sir(k) —h2(k)

2 dp p'eo(p) LJ(k,p) —J(0,p)]

1

ei(p) e~"—1 ee(p) e~'0 —1
(94)

by n(k)/4rr a (

KT 95h k = —2rr '"Ltr(k)/try]or"'S(or), or=sir(0)/Kh2 k = —2rr

tr i ——(2rr/ma T)"'.

(98)

eo(k) =k'/2m,
(99)h, (k) = —(2~~) 'r't. (k)/. ,]+0(~).

h, k) = sir(k), f,(k) = str(k)+ k'/2m,
in (94) by J(k,O), and byLikewise, by replacing J(k,p in

(91 ususing (91) one obtainsI/Ok2 k'
+2sn(k)

252 2'ei(k) =
k'

,(k) = +sir(k)+ —(tr(k) —tr(0)]f
Vy

~ ~

ted that our iteration sc emme is of value"It should be appreciate a '
m

for all J(k,p), The unsatisfactory aspec o
can solve (81) only in limited cases. X [5:(~)—g(-', )]—h, (k), (100

stron convergence of the factor
e2(k) --D)0.

k-&0

(e~"—1) ', we can replace J'(k,p an
nd tr 0), respectively. One obtainsBecause 02( g pe ~kz ossesses an energy gap, evaluation o

0' in Sec. V will be made using t e resu
a proximation.

as was used
oo — ' —1/2

96
ego t

* (0&k&k,). In contrast to t e e

0
'1' hl )h resent case is s ig ytive mass in the p

d t As in Sec. III the validity oit of the approxima-

(»)&T 10Si th k 1

d for solving (81 imp ies

is w uentl en-
f (81l r e k the exact solution o
m* is

imilar to h(or). For i us rcounter integrals simier than m, in t is e
poses, wee present a detailed eva ua ion

g y g

dix D. For small values of co
ma for simplicity take &0~k = m

n. "'(1.460)or" '+
Indeed, we have ven e t a does

8(or)=1—(2 n. ' . or
ssentials of our results or enot alfect the e

dynamic uncf ctions. " Equations
Th to lowest order in sus, 0written as

(90)
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where

2
S(o/) =

For small cv

co p(/s+ 1)t/s 1]3/s
dt

(/s+ 1)'/s

For small values of a and b, one has
j.

(101) g(a' f/) =2 612 (2v.) t '(a+9)' '+1 460
—-', (2v) "'a"'+ . (113)

Retaining all terms of order s Eq. (109) becomes

Note that if we set v(0) =0, i.e., no interaction between
particles, Eq. (114) reduces to Eq. (53).

For the remainder of this discussion it will be useful
to introduce the following parameters:

where
c= (1/2m)+2(2v)"'(v(0)/v/)(1/k ')o/"' (104)

and
v=sv(0)+(2 vo)/' '/v( 0)/ v/ (105)

Also in this range the excitation spectrum is of the form v(0) 8vm
(115)

sv(0) v(0)
vY 7 P 7 S

2' KT sz'KT
es(k) = [(cks+D)(cks+F)]&/s (106)

S(o/) = 2.612—2(2v) "'o/"'+3(1.460)o/+ . (102) p(s) t+(2 ) t/s t$(p +py) y/s

In the range 0(k(k, we use Eq. (71a), so that —(2') '"(1.460)Pv ——,'(2v) "'(2.612)(/3v)'j (114)

fs(k) =ck'+ p, 0 (k(k„(103)

where
D= 2sv(0),

F= (8v-a&) t/'v(0)/vr. (107)

Rather than D and F, we shall frequently use v and
'A where

/ = ,'(D+F), ) = (-DF)'/'. (1o8)

When s=0, Eq. (114) reduces to p=f'(s)vv '. Thus,
y=y, =0.383pv(0)/aT, and v=4.814pv(0)(k, s/2m) '. So
as to satisfy the requirements of Sec. III, we must take

y ~x and s&2X10 '.
Making the change of variable x'~'= —tty'~2, so that

q ~ s'/', Eq. (114) becomes a quartic (biquadratic) equa-
tion in the quantity q:

Prior to evaluating the thermodynamic potential, we
shall use Eq. (47) to determine the temperature de-
pendence of the density s of particles occupying the
single-particle state k=0. We begin by writing (47)
in the form

where

I'(/J) =A q' Bq' Cq'+—/J y—=0, —

A =1+1.460y —0.653y'

8=—,'ys, C= 1—1.460y,

(116)

(117)

S=p—
4Vr2

fs(p)
dPP

-es(p)

1

27r2

fs(p)

es(P) ee"—1

and

2.612/y, T. 1 1 kT f T—
y

—=—pvv'
2' 5 T y' 2v. v(0) (T.

The quantity of interest is

(118)

where

KT
= 27r' c/(p/; p) ), (111)

4+c

—(f2+ 1)1/2 1—1/2

B(a &)=
f2+b 2/a2

X- (112)
exp La(ts+/)'/a') "'j—1

Since the main contribution to the integrals of (109)
comes from those values of p less than k„we can use
Eqs. (103) and (106) for f&(k) and. e&(k), respectively.
One obtains

fs(P) W2

dp p' —1 = vs/'+0(s'/'). (110)
es(p) 3c"'

Similarly,

fs(p)
dP P

'&(P) exp'&&s(p) l—1

s= 2v-yq'/vr.

So much for preliminaries. One can show that the posi-
tive real root of (116) is the only root which vanishes
when y=0 (T=T,)."

Formulas exist for the four roots of a quartic equation,
but because they are so unwieldy they are ill suited for
practical work. With the aid of a computer, one can
obtain numerical values of the required root as a func-
tion of the coeKcients 3, 8, C, and y. The results are
shown in Fig. 2. However, since s will appear as a
parameter in the thermodynamic potential and its
derivatives, we must also obtain a useful analytic ex-
pression for s. The following method which is valid for
small values of y, i.e., T=T„will give the required

"Because 1'(Woo)=+~ and I'(0)(0, it follows that r(q)
possesses at 1east two real roots, one positive and the other nega-
tive. Further, one can show that for values of A, 8, and C which
are appropriate to our work the cubic equation F'(q) =0 has only
one real root. Thus, F{q) has no more than two real roots. Finally,
using Descartes' rule one 6nds that if p=0, then Kq. (116) is
satisfied by q=0 and a negative real value of q.
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V. PHASE TRANSITION

1. Thermodynamic Functions (T& T.)
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Fin. 2. Fractional po ulation s/p of the lr =0 single-particle state as
afunctionof1 —T T, for variousvaluesofy, =03 28pB(s)0/ s,T.

result. "This method can be used for algebraic equations
of any degree. We write (116) as

q =&+Cq'+Bq' Aq4. —
On the right side of this expression, substitute for q the
quantity y+Cq'+Bqs ArJ4. If this proc—ess is repeated,
the terms involving q are of increasingly higher order
in the small quantity p. Through O(y') the desired root
of (116) is

q =7+C7'+y'(B+ 2C')
+q4(5BC—3+5C')+ ~&&1. (120)

It is important to realize that for fixed positive values
of T, Twe cannot allow—v(0) to approach zero in (120)
and expect to obtain the ideal gas result (53). This is

because y = OLk(T, —T)/pe(0)] is no longer small when

such a limit is taken.
Using Eqs. (117)—(120), we find that

s/p =0$(1 T/T, )'] for T +T—. —

One can easily show that this behavior is due to a gap
in the energy spectrum. Indeed, were we to use
Eqs. (82)—(84), the first approximation results for f,
k, and e, because ei(k) ~k for small k, we would find

&/p=OL(1 —T/T )'] "
'4 In general, this method gives a valid result only for T,—T

considerably smaller than those for which (114) is an accurate
approximation of Eq. (109).However, for the purpose of studying
the phase transition it is the behavior of s for the linzitieg values
T —+ T,—which is of greatest importance."One should be careful not to identify s with D„ the superfiuid
mass density of the two-Quid model of liquid helium (see footnote
31).For T ~ Ti the quantity D, is of order 1—T/T—

p = —(cia/8 V) &, p,

5= —(ciQ/clT) v, ,—1V(Bp/BT) v „
(»/~p) "-/(~./~p). ..

Cv = T(clS/BT) v,

(121)

(122)

(123)

(124)

The thermodynamic potential 0' can be written as
Lsee (22) and (23)]"

f2= —V sp'&(0)+-
27l 0

cN k'
e~' —1

dp p'J(k, p) — I(T
e~' —1 2m'

X dk k'ln(1 —e s') . (125)
0

Following the reasoning of Sec. III, because of the
extreme rapidity with which the factor (es' —1) ' drops

to zero for large values of k, it is justifiable to approxi-

niate J(k,p) by (71b), and e(k) by (73) for al/ values

of their respective arguments. Iri that event, Eq. (125)
and the auxiliary condition (30) assume the form:

0= —V(~T/t r*)
X t 1 —3po(0)vs*/k, ']gsi (s*)—Vp'e(0), (126)

p= (1/»')uses(s*) (127)

"Henceforth, we shall drop the superscript on 0' since we shall
restrict our attention to volumes so large that Qo is equivalent to
the true thermodynamic potential Qz.

The first part of this section is devoted to the study
of the thermal properties of the system just above the
transition temperature T.. In this temperature range
the low-momentum portion of the excitation spectrum
is of the form e(k) = e(0)+k'/2m* )see Eq. (73)]. Con-

sequently, one might be tempted to describe the system
as an ideal gas of. particles of mass m*. Alternately,
because c(0) does not coincide with —p as it does for a
gas of free particles, but instead they are related through
(59), we can expect the thermal properties of the system
to be somewhat diGerent from those of the ideal boson
gas.

In the present work it is of decided advantage to
choose T, t/", and p as independent "external" variables
rather than T, t/, and p as is generally done. In terms
of these variables one finds the pressure p, entropy 5,
mean number of particles Ã, and specific heat at con-
stant volume Cz to be related to the thermodynamic
potential 0 by
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Pair,
H 'It Ideal Boson

as FrG. 3. Specific heat per
particle as a function of
temperature.

Ideal ~
Boson

FIG. 4. Full lines and
dashed lines denote iso-
therms and loci of points of
condensation, respectively.

In (126) and (127)

g.(s*)=
I'(a)

dxx' '
(1/z')e' —1

(128)

to (121) and (126) it follows that

P = (liT/vr*)

X L1—g pv(0)(kc'/2m*) ']gsi2(s*)+p'v(0) (137)
s*=expL —I3e(0)],

vv* ——(2'/m*~T) 3I'.

(129)

(130)

=P'LP, T,~*(p)]
+pv(0) Lp

—
2 (eT/vv*)(k, '/2m*) ']. (138)

Let us for the moment fix the density of our system
at a value p. According to (76) this fixes the value of the
effective mass m*/m= Ll —2mpv(0)/k, '] '. Now let us
imagine a gas of noninteracting bosons of (real) mass
m*(p), and of arbitrary density. The equations which
describe this latter system, called i (ideal), are obtained
from (132) and (133) by setting v(0)=0 wherever it
appears explicitly, i.e., only in Vp'v(0):

0,+P,Vp;= —VkTL(1/v&*)gsn(z, )—p; lnz, ], (134)

p'= (1/»*)g3~2(v')

s;= exp(Pp, ).

(135)

(136)

It is important to realize that if the value of p; is set
equal to p, the quantities s; and s* are equal for all tem-
peratures T)T,. That is to say, s*(P,T)= z,fp, T,m*(p)].
Now according to (122) and (124) the quantities S and

Cv are obtained by differentiating 0+pVIi with respect
to T, holding p and V constant. Since the term Vp'v(0)
in (132) does not contribute to these derivatives we
conclude that S(p, T) =S,LP, mT*( )]pand C v(p, T)

Cv; pL, Tm*( )p]. That is to say, in this model, above
the transition temperature the entropy and specific heat
of a system of bosons of (real) mass m, and of density p
are the same as those of a system of noninteracting
bosons of real mass me(p) and of density p. The tem-
perature dependence of Cy is shown in Fig. 3. No such
statement can be made about the pressure, for according

The chemical potential p is related to e(0) by (59).
Using (71a) one finds

p = —e(0)+2pv(0)
——,'v(0)(k, '/2m*) '(rT/vi*)g~i2(v*). (131)

By combining (126) and (131), we find

fl+ PV. = VkTD1!"*)-g'i. (z*)
—p in'*]+ Vp'v(0), (132)

p=(1/v' )g / (v ). (133)

where t (o) =P„=i"iv ' is the Riemann zeta function.
With lnx= —e(0)/KT the rapid convergence of the
series in (139) is evident. Using (133) and retaining
only the two terms of (139) which are of lowest order
in lnx, one finds

e(0) = AT inz*=0.54—3I~TL1—pvv/f (-,')]'. (140)

Referring to (76) and (130) one notes that vv* is
density dependent for fixed T. Furthermore, it was
shown in Sec. III 2 that for T)T, the excitation
spectrum is correctly given by Eq. (73), only if
pv(0) (k,2/2m) ' is very small compared to one. To lowest
order in this small quantity one has

m*(p) =no*(p.)$1—(p,—p) v(0) (k,'/2m)-'], (141)

vr*(p)=f(2)p. 'L1+2(p.—p)v(0)(k. '/2~) ']. (142)

Further, using Eqs. (76), (130), and (142) one finds

IIT.=3.313p."'m 'L1 p.v(0) (k, '/2—m) '] (143).
Using Eqs. (140)—(143) and approximating g&i.(z*)

in the same way as gei2(s*), one obtains

P= 1.70p, ""m '{L1—1.06(1—p/p, )']
—~.L2 5—5 82(1—p/p. )']}+p'v(0), (144)

where
u, =p,v(0)(k, '/2m) '. (145)

Ke denote by p, the value of the density associated
with the transition point in the p —1/p plane. So as to
study the isotherms of the system we shall express P
solely in terms of p and p, . Specifically, we shall express
g*, yg*, p~~, and T in terms of these variables.

The quantity s* is related to T and p through
Eq. (133). Although it is impossible to express gg&(s*)
in closed form in terms of familiar functions, one can
express it as a rapidly converging power series when T is
just above T,. If 0. is real, positive, and not an integer'

00

g.(;,) = (—lid&).-&r(1 —~)+ P —l.(~—n)(lnx)", (139)
n=-o ~l
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f condensation is given byThe locus of points o con e "n b

, =1 70 '"m '(1—2.5a,)+p„.'v(0,p(p. =1. p. m

in contrast to
po(p )=1.)0p 2/om

(146)

(147)

to evaluateintegral of ) i148) it is necessary to ev

=2rm"'"//Tv "2$(Pv; Pl1), (150)
o(k) exp/Pe(k) 7—1

as articles of mass m). Schematic
plots of these results are given in ig.

oo — (t2+ 1)1/2 1
—1/2v2

. "' (+ )('+"/ )

s T(T)2. Thermo ynh dynamic Function (

of the systemss the thernlal properties o yWe now discuss t e ei o y
m

h 111
'

n

e shall set k, = 4C in aFor simplicity, we s — '
a

i.e., we shall ignore termsof or er
ansion of v(k)."

~ ~

imomentum expa
r rane un er cd onsideration the

the k=0 state is ofP rticles occupying t e
T ~4. Because 0 an p, ar

in all'll b
at

11 d dit suffices o cffi t consider the fo owing re
for 0:

1
0= — V or2pov(0)

27r2

(»1)
exp La(/!2+ b'/a')1/2 j 1—

11in A endix D, for smaUsing t e ech t chnique discussed in ppe
nd b one obtains

= a'/' a b) '"—(2/or)" (1.460)a"'+

e second integral of (148) requ'The analysis of the secon in
the integration over w

On the other hand all terms..„.„,„.;., (9.) ..dlnvo viilg k are left intact. Furt er, usi
(106) we write

h(k)
dk k'v(k)

o o(k)

dk k' h( ) ( )
0 " v'(k)

v(0) o o(k)

+ dk k2$(k) dp p'J(k p)&(p) L(D+ l. '/2m)(T+k2/2m)] «20

h(k)
k'

h(p) 1
dp p' J(k p)

o( ) ee' —1

dk
o(k) o

h(k) 1
dk k'

h(p) 1
dp p' J(k,p)

2( ) ee' —12(k) ee' —1

KT
2X 0

99 and (106), re-()

integrals of (148). Using Eq. , o

dk k' (k) dP Poj(P) =2ropov(0). (149)
0

contribution of the thirdIn order to determine the contri u ion

orms the calculations~ed that if one performs
lfent section avoiding the simp i n

ur results are unaffected.' H in h(0) actually cans
The discussion of Sec. II 3 shows t a

dk kov(k)h(k)/o(k)
0 = —162r2/4Tyx'/2P3(T. )—2y x2/2xi/4 (154)

2~2mI(T '~2B(T)= B(T.) =2r 1/2y(k. 2/2m/rT

+Lm/42rov(0)] dk v'(k). 155

mbols x and y are defined by q.E . (115).
f (148) can be written asThe last integral o

dk k' ln(1 —e e') = —(22r2/vv)X(Pv, ,

where

X(u; b)=—
2 —(/2+ 1)1/2 1 —1/2

a"2 dt t
Qir /2+ 10

XlnL1 —expa(&'+b2/a2)'/2 . 15/

+2m 'v '() ( )
v(0) /,

Through order s, one'~4 one obtains
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For small values of u and b, one has

X(a; b)=1.341—2.612a+43(2ir)' '(a+b)"'(a —-'b)

—-', (1.460)a'+ . . (158)

Collecting these results, through 0(s3/'), one obtains

Q(T) = —V{1.341(~T/i/r)

+p'i/(0)+2m'y(y —0.831)x"'
+-'ir'y"'[1 —8.760v+6B(T,)]x"'). (159)

Upon setting k, = ~ in Eq. (126) we see that 0 is con-
tinuous at the transition temperature as is to be ex-
pected. The first term of (159) is the value of 0 for the
ideal boson gas for T&T,.

It is to be emphasized that to obtain (159) we
have expanded (Pv+PX) '/', involving the quantity
(x"'+y'/') ' in increasing powers of (x/y')"'. Since
x/y' ~ (s/p) [zT/pi/(0) j, it is clear that such an expansion
is convergent for T& T, only if i/(0) is nonzero. That
is to say

ai ———2.442+2.939y„

a2 ———3.048y, '+9.336+(7.328b, —17.520)y„
a3——4.886+ (3.567—4.886b,)y „,

a4 ——4.570y,—'+ (2.880—6.093b,)—(2.929—1.568b,)y,.

(166)

The quantity b„ independent of i/(0), is given by

—B(T )/y ~—i/2(k 2/2mKT )i/2

+1.039'(k, '/p) (k, '/2m~T, ) ', (167)

where p is given by

and

dx g'(x), (168)

and

p(T) =p~(0) [1+(TIT.)"']
K(T. T)—[a&(1 T/—T,)+a4(1 T/—T,)'j (165)

whereas

lim Q(T) W [Q(T)]„&0&=0,

lim lim n(T) = [Q(T.)]„(oi=o.
v(0)~0 T~Tc—

(160)

(161)

~(k) =n(0)g(kR).

Using Eqs. (122) and (124), one obtains

$(T, )=Ã~(1.2835——3.918y,),

(169)

(170)

Note that (160) dictates that the double limiting
process can only be performed in the order shown in
(161).Furthermore, because of (160) we can expect that
$(T, ), Cv(T, ), and—BCv(T,—)/BT, wh—ich arise
from derivatives of Q(T), may not behave in the fashion
of (161). Of course this curious situation is a conse-
quence of the nature of the energy gap in the excitation
spectrum.

The chemical potential p is given by Eq. (44). Since
we have just discussed the evaluation of all integrals
appearing in this equation, we shall only quote the
final result

/
=p~(0)L1+(TIT )"'j

47r//Ty [1+0.730y—B(T,)]x"'—
+2mxTyi/'x3/'. (162)

We now proceed to write our expressions for 0 and p,

in powers of T,—T. Using Eqs. (115), (117)—(120), in
a straightforward fashion, one obtains

x' '=0 389it '[1+(1179+1247y ')(1 T/T~))
X (1—T/T. ) ' (163)

x'/'= 0.2425y. ' '(1—T/T. )',

where y, =y(T,)=pr/(0)/t (,')~T,. Using (163), o—ne finds
that through order (1—T/T, )'

Cv(T, —) =1l/~[6.812

+(11.053—9.772b, )y.j, (171)

-DCv E~
(T„,—) = [(36.558b, 65.552)—

—p, v Tc

+(134.726—63.148b.)y.—9.132y. 'j. (172)

Several comments are in order at this point:
1. In Sec. V 1 we have seen that for T)T, the entropy

per particle is the same as for an ideal boson gas. In par-
ticular, for a system of iV particles $(T,+)= 1.28351Vx.
Comps, rison with (170) shows that

S(T,—)=$(T,+)—(3.918y,)E~. (173)

That is to say, at the transition temperature there is
associated a latent heat (3.918y,)xT, per particle. The
latent heat is due to the fact that p contains a term
which is linear in T,—T. We therefore conclude that
the phase transition is of first order. Hypothetically, a
perfect temperature resolution measurement of the

specific heat would show a delta function behavior at T,.
2. If we allow rt(0) to approach zero S(T, )ap-—

proaches the corresponding quantity for the ideal boson
gas. In contrast,

lim Cv(T, )ACv'(T, ) =1.925N~,—
v(0) ~0

Q(T) = —X~{0.5134(T/T, )"'
+(T.—T)Lai(1—TIT.)+a2(1—TIT.)'j}

Apr/(0), (16—4)
lim

v(o) o

BCV BCvo
(T.—)& (T.—) = 2.8875—.

T.
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This situation has been anticipated earlier in this
section.

3. Note the rather unexpected result that Cv(T.—)
Cvs—(T,) decreases linearly for increasing values of y, .
4. A graph of BCv(T, )/—BT as a function of y, for

various values of b, is given in Fig. 5. Since, as discussed
in Sec. III 2, our results are valid only if 2pv(0) &»T„
i.e., y, &0.191, the curves are not drawn for values of
y,)0.195. One striking property of these curves is that
for a large value of b, the ordinate takes on a wide range
of values. More interesting is the fact that for very
small values of y, the value of BCv(T,—)/BT is propor-
tional to (—1/y, ). The situation is even more curious,
for except in a narrow temperature region below T, of
width proportional to pv(0) our expressions for s, 0,
and p (and thus 5, Cv, BCy/BT) reduce to the corre-
sponding values for the ideal boson gas. The existence
of this narrow temperature range is most clearly seen
from (116), the equation which we use to determine s.
Note that for v(0) =0 this equation is of the form

I'(q) = q' q'+q y—=0. —

I20

90

60—

30—
Al

0—
t

I—

o 30

-60

-90

-I20

-I50—

-I80
0.06 0.I2

' b=I0
C

O.I8

Now for large values of y, i.e., pv(0)«»(T, —T), the
real positive root" of this equation is q=y"4 so that
s=p[1—(T/T, )'~'7=s' [see Eq. (53)]. On the other
hand, for va'lues of T such that pn(0)&»(T, —T) to
obtain the desired root it is necessary to find the root of
the full quartic equation, and it is evident that for such
values of p the quantity s no longer bears resemblance
to s'. We can anticipate that the rapid change in the
functional form of s in this narrow temperature region
will cause an equivalent effect in Cy in the same tem-
perature range. Indeed, to accommodate a situation
where Cv(T) =Cue(T) except for T such that
T, pv(0)/» &T&T„an—d BCv(T, )/BT ~ —»T,/p—e(0)
it seems necessary to assume that C& shows a very high
(positive) peak at approximately the middle of this
temperature range.

It should be noticed that Cy must be such that the
area under the curve bounded by T= T,—pv(0)/» and
T=T, must vanish in the—limit v(0) —+0. This is a
consequence of the fact that the entropy is continuous
at T, iri this limit.

Without resorting to extensive numerical techniques,
we do not see any method for studying the detailed
shape of the speci6c heat curve just below T, in the
limit v(0) ~ 0. To carry out such a study it would pre-
sumably be necessary to obtain expressions in closed
form for s, 0, and p, . Now our procedure for obtaining
the desired root of the quartic (116) is valid only if
p&(1. Thus, it would be necessary to use the complete
analytical expressions for the roots of a quartic. Of a
more serious nature, it would be necessary to evaluate
all integrals contributing to 0 and p in closed form, and
this is eGectively impossible.

To conclude this section, we briefiy discuss the iso-

FxG. 5. Slope of the specihc heat curve at 1=T,—as a function
of y.=0.3828pv(0}/»T, for various values of the parameter b,
)see Eq. (167}g.

therms. Using Eqs. (120), (121), and (159), one obtains

p = 1.70m 'p, "s+p'v(0) —F(p —
p )'+G(p —p.)s, (174)

where

Ii = 1.306»T,(0.831—y,)p, ',

G = 1.086»T,[—0.831y, '+3.761

+ (2b,—5.840)y,jp, '. (175)

At the phase transition the pressure is continuous:

P(p.+)=P(p. )=1 7—0p,"'m. 'gp, 'v(0)

Furthermore, [f}p(p,)/Bp ']r v is continuous having the
value —2p, 'v(0). These results are shown in Fig. 4.

VI. CONCLUSIONS

This work has concerned itself with a soluble model
of a nonideal boson gas. Although the predicted behavior
of the thermodynamic functions does not resemble that
of liquid He4 it has been possible to consider several
questions which are of importance for an understanding
of many-boson systems.

%ithout making any assumptions, it has been possible
to formulate a quantitative criterion for the occurrence
of an Einstein condensation. This criterion when satis-
6ed also insures the presence of a zero in the quasi-
particle excitation spectrum. Involved with this matter
was the proof that the fiuctuations of quantities like
uo~ao are small, and further, that within the context of
the present model the Bogoliubov approximation of

replacing the zero momentum creation and destruction
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operators by a t." number is justified, In addition, we
have found that although the present model is a
generalization of Bogoliubov's classic model, it predicts
an excitation spectrum possessing an energy gap. The
model also predicts a slight lowering of the transition
temperature as compared to the ideal boson gas of the
same density. So as to obtain this result, it was necessary
to restrict our attention to weak short-range repulsive
interparticle forces, or to short-range forces and to
systems of low density. Because of these conditions, it
was impossible to apply our results to liquid helium.
Finally, it was found that the entropy and the specific
heat have a finite discontinuity at the transition
temperature.

One tends to conclude this study with a certain degree
of disappointment, for it seems dificult to develop a
soluble model which includes further terms of the total
Hamiltonian (1). Involved with this is the following
question of principle: Is there any hope of understanding
the lambda transition as long as one restricts oneself to
a description of the many-boson system in terms of
noninteracting excitations? To answer this question it
would surely be helpful to have available detailed ex-
perimental data for the dispersion curve of the excita-
tions in the liquid in the vicinity of the X point. The
broadening of the spectrum of scattered neutrons with
increasing temperature' of course indicates the decrease
of the mean free path of the excitations. However, this
does not preclude the possibility that using the experi-
mental dispersion curve and treating the excitations as
infinitely lived (so as to evaluate the partition function)
one might properly describe the thermodynamical be-
havior of the system. In fact, it is possible" to cite
examples where such a procedure is successful. Although
from the point of view of the theory an answer in the
negative would not be accepted jubilantly (the phrase
"cooperative interactions between excitations" really
means "proceed to diagonalize the nonlinear many-body
Hamiltonian"), any answer would do much in helping
to point the way to a successful soluble model.
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dur. du„X'(u, ) 5(."(u„), (A2)

X'(u) = Lexp(uXP)]X, 'Lexp( —uXP)]. (A3)

The ensemble average in (A1) is defined by Eq. (12).
Suppressing all integrals, the nth term of the sum in
('A2) involves expressions of the form

(2n—m}

V "(LBp't']" E' ' '2 8.„„), 0&m&2is, (A4)

where S2 involves the product of 2e—'m operators
Bp., k/0. The (2e—m)-fold sums include all noesero
momenta. For brevity, we have ignored the subscripts
X=1, 2 of Bg),.

Because of the independence of the contributions of
different momentum states to R', Eq. (A4) can be
written as

(2n—m)

V "([&o't']")2 ' ' '2 (0' — )

As shown by Wentzel, "for large volumes V

(AS)

(2n—m)

P (O,s„)=0[Vi" ~'i], m even,
(A6)=0{V'" ' +""') m odd.

Thus, if4'

(Lao ap —(ap"+o)] )=OLV '] m even,
(A7)=OLV'"-'&~'], m odd,

each term (A4) gives a volume independent contribution
to exp/(Q —Qi ).

We now proceed to prove that (A7) is indeed satisfied.
One can show, 4' very generally, that if a quantity A
possesses the property that ((A —(A))')=0(V), then

(A8)

(A9)

4o According to Eq. (42) (apao) = iaptap). Thus, (A7) is sufficiently
general.

4' R. H. Farrier, Statistical Mechanics (Cambridge University
Press, London, 1955), 2nd ed. , p. 762.

APPENDIX A

In this Appendix we sketch the proof that K', defined
by Eq. (S), fails to contribute to the volume-propor-
tional part of the thermodynamical potential Q~. In
particular, we shall limit our attention to systems in
which an Einstein condensation occurs. Starting from
Eqs. (10a) and (10b), in a straightforward manner
one obtains

exp'(Q' —Qi) = (U(P)),
where
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It, therefore, suKces to prove that

((ae'ae —(ae'ae))') =0(V).

For brevity, let ae ae= «, Qk' ak"&k

pk gktak ——X. Then4'

Multiplying (81) by e'"' and integrating over all space,
one finds that; P(k) satisfies the following integral
equation

—(~'+k2/2~)y(k) =(2~) ' dp ~(lk —&l)y(&) (84)

((«—(«))')= ((&')—(&)')—((&")—(&')') (A1o)

Now it is well known that v(k) = dr e'"'V(r) (85)
BQ

(x2)—(x)'-= —Ps —s
~s ~s —rv

(A11)

APPENDIX 8
In the first part of this Appendix we shall prove that

if the kernel J(k,p), defined by (29), has only positive
eigenvalues (J~ kernel), two-body bound st.ates are
impossible.

If r is the relative position vector of the two particles
the Schrodinger equation is

The reduced mass of the system is denoted by p, and
we assume that the interaction between the two particles
is a function of their separation distance only. We
further assume that the two particles form a bound
state (W) 0).

For large values of r the wave function drops rapidly
to zero. It, therefore, follows that

dr elk r~2P k2y(k) (82'l

where44

y(k) = dr e'k "P(r) (83)

4' Note carefully that it is the independence of the contributions
of di8erent momentum states to K0 which effects (A10).

4' For a discussion on this point see G, Wentzel. S'. Heiseeberg
(Viewig, Braunschweig, 1961).

44 If the two particles did not form a bound state

dr e'k'~2/+4' dr e'"'p= de e'k'f~p 2k&)WO, —
r r

where 7. is the volume of integration and Z is its surface.

where s= exp(Pp). The fugacity s is volume independent,
whereas Q=O(V). Thus, the left side of (A11) is of
order V. Further,

(&")—(&')'= Pk' L((~k ~ik~k Qk) —(ak ~ik)')

((+k +k+—k +—k) (+k +k)(+—k +—k))7 (A12)

Now each term of (A12) can be evaluated using (16)—
(20); they are all volume independent. The sum is
therefore of order V. Thus, the left side of (A10) is
of order V.

We, therefore, conclude that if the sum of all terms
(A4) which contribute to (A1) converges, 4' K' fails to
contribute to the volume proportional part of the
thermodynamic potential Qp.

I.et us confine our attention to s states, so that
P(r) =y(r) and 4(k) =y(k).

In this case (84) can be written as

—(tV+k'/2~)4(k) =2 dP p'.~(k,P)4(P) (86)

As in Sec. II 2, we multiply both sides of (86) by
k2&(k) and integrate from k=0 to k= ~. The left side
of the resulting equation is negative-semidefinite,
whereas the right side is positive-semidefinite if J(k,p)
has only positive eigenvalues. That is to say, for J+
kernels two-body bound states are impossible.

In the second part of this Appendix we shall give an
example where the interparticle potential is predomi-
nantly positive, i.e. , 2P(0))0, and unable to sustain
two-body bound states, but yet J(k,p) is not of the
J+ fol lTl.

Consider the potential V(r) = —Vi, (0&r &a);
V2, (a&r&a+b); 0, (r)a+b), where Vi and V2 are
both positive. The space average of V(r) is positive if
3V,b) V,a. Further, J(k,k) is proportional to

—V& a——sin2ka
2k

+ V2 b sin2k(—a+—b)+—sin2ka
2k 2k

If b«a and k = a/2r, one has

J(k,k) —V,a+ V,bO(b2/a" ). -

In addition, we would like V(r) to be such that the
two-body system has no bound states. The Schrodinger
equation is easily solved since we need only consider
s states. One finds that bound states are absent if
simultaneously 222V2b'«1 and 4222Via2/2r'&1. It is easily
seen that these last conditions are quite compatible
with the earlier requirements b&(a and 3V~b& V~u. Since
J(k,k)) 0 is a necessary condition that J(k,p) be of the
J+ form, the result claimed at the outset is proved,

As discussed in Sec. II 2, the two results of this
Appendix show the inadequacy of the usual criterion
v(0))0 for the existence of an Einstein condensation
in boson systems.
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APPENDIX C

The Fourier transform of the central interparticle
potential Wg(r/R) is given by

Because of Eq. (64), it follows that

sinkRx sinpRx sin&Ex
y(x) 1—

( &y(x) 1—
kRx pRx kRx

n(k) =4xWR'(kR) ' dx xp(x) sinkRx. (C1) for all values of x, k, and p. Using (C7), we conclude
that for all p and k

Expanding sin(kRx) in a Taylor series about x=o and
term-wise performing the integration, one obtains

0(J(O,p) —J(k,p) (J(0,0)—J(k,O),

l~(k)l &~(0).
(C9)

where

i (k) =v(0) L1 —(k'/k. ')S(kR)), (C2) According to (58)

l
e(k) —e(0)—k'/2ml

and where

S(kR)= P(—1)" 'a (kR)'&" '&,

n=l
(C3)

&2 dp p'l J(k,p) —J(o,p) l

—. (clo)
et' —1

I2n+2

(2e+ 1)! I4

Using (C9) and (32), it follows that

l
c(k) —e(0) —k'/2ml &2pv(0). (C11)

The quantities I„and k,' are de6ned by (66) and (69),
respectively. Two examples will show the eGect of the
functional form of P(x) upon the value of k,R. If
g(x)=e */x (screened Coulomb potential) and p(x)
=x 'exp( —x') one obtains (k R)'=1 and (k,R)'=12,
respectively. Quite generally, the more rapidly @(x)
decreases to zero for x&1 the larger is the value of k.E.

Because of Eqs. (64) and (65), it follows that
0&@„&1.For kR&1, the power series S(kR) converges
absolutely since

This verifies the claim made in Sec. III 2.
Finally, we shall determine the ratio of the third

term to the second term of Eq. (72). According to
(C9) it suffices to obtain the ratio of jp' dp p'(ee' —1) '
to Jt "dp pi(ee' 1) i —By writing (e~' —1) i as a
geometric series and by using Eq. (73), one obtains

1 2x 2 ) 1
dP P' =

l Q y(3,ek, '/2m*~T)
ee' —1 v

* rr»'j n ig'i&=

(kR)'
8(kR) —1l &(kR)' p (kR)'~= . {C5) where"

1—(kR)

Xexp[ —gP (0)), (C12)

The kernel J(k,p), defined by Eq. (29), can be
written as

v(l,y) = dx x"'e '=-'m'" r (y' ') —y' 'e— (C13)

01 as

J(k,p) = dy yv(y),
8~'kp

(C6)
erf(y) =

+7r
(C14)

J(k,p) =
sinkRx sinpRx

dx x'y(x) (C7)
kRx pRx

For (k+p)R(1, substitution of (C2) for v(k) in (C6)
yields

v(0) k'+ p'
J(k,p) 1— —&J(0,0)(k,R) '

4m2 k,2

1 1—R'(k —p)'
X ln —L1+R'(k'+p')) . (CS)

4kpR' 1—R'(k+ p)'

For k,R&1 and kR=pR=1/10 the right side of (CS)
is less than 5&10 4 times the value of

J(0 0)9—(k'+p')/k. ').

Finally, mr* is given by Eq. (130). If k, '/2m*=AT, it
follows that the incomplete gamma function in (C12)
can be replaced by y(23, ~) =-',g~ with an error of less
than 0.1 jo as long as T T,&T,/10. Bec—ause of the
narrowness of this temperature range, we shall set
T=T, in the following. Using (C11), one finds in a
similar manner

dp p' —&2m'p
I'(-')f (-')

X g ri "'I'(-,',rik '/2mgT, ) expL2eP, pv(0)), (C15)
n 1

4~In (C13) and (C16) we use the notation for the incomplete
gamma function as given by Erdelyi et a/. , Higher Transcendental
Fgnctions (McGraw-Hill Book Company, Inc. , New York, 1953),
Vol. II, Chap. IX.
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pne 6ndswhere

1 (a y) = 1'(-', )—v(2 y). (c16)
d~Q

eu ]Using the following asympm tptic fprm

=e ""'3'( )
—{1—O[ /(yr(„y)

foun& tp be less thanratio of (C15) to (C
&(P)f(P,)+—I'(-', )f(2)+ ' ' ' '

s . . . , (D7)

;on» and 1'(s) isist e iem ann zeta functipn,where f( )
Fu„thermore,the gamma function

(clg)
(~ P(k &j2m) —2/»(0) j)

aIld

3/2e —auQQ
p

p/p 2 I/pal/2 (Dg)S 8/2 ~ g )

(D())

APPENDIX D

r oses we evaluated f r illustrative purposesIn this Appen ix o
the following integral 1/2 —1/2e "=x' 8QS

x2 —(t2+ 1)(/P

B((p) =—o/ dt
7l p

(D1) Finally, 4'

(D10)h following identities":Employing t e o

-(tP+1)(/2 1
—1/P

t2+1

p

'n use of (D10),y
'

. D7)—(D9) and making usBy adding Eqs. (Ddu e "J,/, (ut, —D2)
one obtains

1/2 Z1/2

dt e 't' 'Ji/p(ut) =
Q 8

(D3)

Eq. (D1) becomes

2
h((p) = —(au i/p (D4)du e "'u"' P-

=& I 0

Thus,

1 1'=- -+
+s 2 u

2 1 1

I e2~u —1 u2
(DS)

&I ~~

'
1 Bessel function. The,Nt is a usuaTh quantity J&]2

~D4) is easily eva ua einfinite series in
sum formula4'

APPENDIX E"

(all k) kp)6k+0)

if the interparticleIn Sec. II 2 we have seen that i
t

. In
zero

critical value Telpw a certain cri i
0

f temperatures be owor
he assumption a5 II 3 we made theec.

consequen'ces of this assumptionf 1/ k/0. Amo g t epl 0

' o v)' (b)state isk=o single-particle
hatseparates 6p and 6I,pp.

(E1)

=0 V'"'), (all k &kp)(a( az =O

0&x(k) =o(1)&1,

Q (a(,'ak)=O(V) .

(E2)

(E3)

in term by term,din e '" and. integratingNow by expanding e

d thatr that we have assumedNote, in particular, t a we

V-'(a, 'a, ) —~ 0.

mbridge Uni-on Theory of Besset I/ttnctions (Cam
'

g

ods o Theoretzcad H. Feshbach, 3IIetho sa . , o s
(McGraw-Hill Book Company, n ., r
p. 467.

eor of the Ezemael Zeta Fgnctzon

lt of th' App di h bS eral of the,reau" a.' „, ~a~ve,een,oev
Dr. M. Girar eau,dependently by r.
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h(P)
dp p'J(k, p) coth-', P«(p),

«( )
(E10)

(i) (a» u»)=O(1) for k) ko, whereas «»
——0 for k&k«.

(See end of Sec. II 2.)
(ii) ko ——O(V ") whe~e y)0. )If k«were O(l) the

number of single-particle states for which k(k0 would
be O(V). But then (E2) and (E4) would be
contradictory. )

(iii) The number of states for which k&k« is O(V'),
where 0(s&1. (This follows from (E3).)

(iv) «»WO for any nonzero value of k such that
k=O(1). [According to (ii), one need only consider a
system whose volume is such that k0 is less than the
value of k under consideration. $

We now investigate the consequences of (E1)—(E4)
upon the form of the quasi-particle excitation spectrum.
For k)ko the complete Eqs. (25) and (26) are valid.
Thus, for all values of k we may write Eqs. (8) and (9) as

f(k)
dk k' coth(-,'P«) —1 (E11)

«(k)

It is important to note that according to Eqs. (ES)—
(E11) the effects of the smeared Eiristein condensation
upon the thermal properties of the system are described
solely in terms of one parameter, namely s. Conversely,
s is the only property of the condensation which can
be obtained from these equations. Although 0' correctly
gives the volume proportional part of 0&, it is only by
including those corrections to Qp which are of lower
order in V that one can determine the details of the
smearing.

The properties of «(k) for small k are easily deter-
mined from Eqs. (E9) and (E10): f(k)+h(k) =0(k')
whereas f(k) h(k) =—2f(0)+O(k'). Thusf»=(k'/2~) —p+pv(0)+V 'v(k) 2 5p

The assumptions of (E1)—(E4) imply the following:
h(k) = sv(k)—

+(2V)—' P v(y —k)[(fp/«v) coth(-', 8«p) —1], (E5)

Since f» and h» are continuous functions of k, if we
choose fo+h, =O it follows that f»+h» 0, and t——hus

Yt»+ O(1), for all k (ko. Let

lim
V~oo, fixed p

(E7)

According to (E4) this quantity is nonzero for T(T,
In the volume limit,

p= pv(0)+2sv(0)

f(p)+ dp p'J(0, p) — coth(-,'p«) —1
0 -«( )

h» ——- V 'v(k) Q
y(1cp

—(2V) i Q v(p —k)(hv/«~) cothiP«~. (E6)

«(k) —+ ck.
k~0

That is to say, the assumption of a "smeared" Einstein
condensation of the form of (E2)—(E4) results in a
linear low energy spectrum.

We now turn to the question, under what conditions
are the assumptions of (E1)—(E4) tenable? For this
purpose we shall make the simplifying assumption
that J(k,p) is a factorizable kernel. Although the
assumption is true in only a very few cases we believe
that the following conclusions are true more generally.
Since J(k,0) = (47r') 'v(k), in the factorized form

J(k,p) =[4v'v(0)3 'v(k)v(P) (E12)

Equations (E9) and (E10) are now easily solved:

f(k) = —-', (y —rt)v(0)+(k'/2m)

+k(v+~)Lv(k) —v(0)3. (E13)

h(k) =—,'(y —g)v(k) = —f(0)v(k)/v(0), (E14)

where

h(P), p=2s+—
dP P'J(O, P)—coth2P«(p), (Eg) 4~'v(0)

«

k'
f(k) =—+s["(k) 2v(0) j

2m

dk k'v(k)

f(k) h(k)—
X

«(k)
coth(-', P«) —1, (E15)

+ dp p' [J(k,p) J(O,P)]-—
f(p)
———coth('-, P«) —1

-«{ )

h(p)
+ dp p'J(O, P) coth-,'p«(p), (E9)

«( )

f(k)+h(k)
dk k'v(k) coth(-,'P«) —1 .

4x'v(0) « «(k)
(E16)

Equations (E11), (E15). and (E16) serve to determine
the three unknown quantities p, p, and s in terms of
T, p, and v(k).

~ The author is indebted to Dr. M. Girardeau for the clari6ca-
tion of this point.
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FIG. 6. Schematic plot of
the Fourier transform v(k)
representing a two-body
potential consisting of a
repulsive hard core (pseudo-
potential) and a weak, long
ranged attractive portion.

&(k)

~R~~ ~2~I+a/R
I

I v(k)

FIG. 7. Qualitative be-
havior of the quasi-particle
excitation spectrum (K19)
using a two-body potential
whose Fourier transform is
shown in Fig. 6.

av/a
k

According to Eq. (25), in order to insure that
(astuk) &0 it is necessary that f(k) & e(k) & 0 for all k& ks.
Now because f(k) is a continuous function of k, and,
further, ks ——O(V "),y&0, it follows that f(0)&0. If we

assume v(0) &0, then according to (E13) it is necessary
that y —tf(0. But using (E14)—(E16), one finds

s(V 9)—=~+ —.t(0)
4v'v'(0)

v'(k)
dk k' cothPPe(k))&0.

e(k)

Only if v(0) (0 is this contradiction avoided. The answer
to our question is now clear: The smeared. Einstein
condensation of (E1)—(E4) can occur only if the inter-
particle potential is predominantly negative.

We now proceed to study the form of e(k) in greater
detail. For this purpose we choose a two-body potential
composed of a hard core of diameter u, and an attractive
potential of range R»a. For v(k), we write

such that

sinka
v(k) = v+(0) +v (k),

ka
(E17)

v+(0)&0, v (0) &0, v(0)(0. (E18)

In (E17) the hard core is represented by the pseudo-
potential vq. (0)&&(sinka/ka). " The assumption E»a
insures that v(k)=v~(k) for k&A '. These properties
of v(k) are displayed in Fig. 6.

"R.Ahe, Progr. Theoret. Phys. (Kyoto) 19, 699 (1958).

According to (E13) and (E14), with v(0) = —
~
v(0)

~

e(k) = (L(k'/2m)+y
i v(0) ~+yv(k)]

XL(k'/2m)+y
~
v(0) ~+rtv(k) j) '~'. (E19)

We note that. e(k) = (k'/2m)+y ~ v(0)
~

whenever v(k) =0.
That is to say, e(k) intertwines itself with (k'/2m)
+y~ v(0) ~. For the specific choice of (E17) and (E18)
t:he nonmonotonic behavior of e(k) is shown in Fig. 7.

We have not pursued the analysis of (E19) any
further, for without the aid of a computer the evaluation
of the integrals in (E11), (E15), and (E16), and thus
the determination of y, g, a,nd s, is a prohibitively
difficult task. Nevertheless, it is an exciting possibility
that the peculiar properties of liquid He' are to be
understood in terms of a smeared Einstein condensation
of the type (Ei)—(E4). The notorious results of those
treatments" which include an attractive portion to the
interparticle potential within the framework of a usual
Einstein condensation certainly provides incentive to
attempt to verify the ideas of this Appendix.

In conclusion, we wish to add that v+(k) of (E17) is

such that j+(k,p) is rigorously factorizable in the forni
(E12). Now because R»a, it seems likely that (E13)
and (E14) are accurate solutions to (E9) and (E10)
for k&R '. In such an instance the nonmonotonic
behavior of e(k) would be assured.

"See, for example, W. E. Parry and D. ter Haar, Ann. Phys.
(New York) (to be published}.


