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The Sommerfeld-Runge law, a law of geometric optics expressing that the propagation vector is irrota-
tional, is useful for general deductions and for computations of geometric-optical wave fields, for which it
proves without supplementary notions sufficient under a wide range of conditions. Application to in-
homogeneous anisotropic media, though not necessitating recourse to the concept of rays, yields the equation
of ray paths. Absorption and lateral intensity variation of waves are accounted for by introducing complex

propagation vectors.

A four-dimensional generalization of the law is applicable to modulated waves and time-varying media.
The four-dimensional considerations, to which it leads, deal with group propagation (in time-constant and
time-varying media), with isotropy in space-time (relating to the law #v=¢?), and with refraction and
reflection at discontinuities in time and at moving boundaries. A brief discussion of focusing and diffraction
in the scope of four-dimensional geometric optics is also given.

1. FUNDAMENTALS
1.1. The Sommerfeld-Runge Law

WAVE field in geometric-optical approximation

is supposed to be fully described by the propaga-
tion vector as a function of the coordinates. A solution
of a propagation problem may in geometric optics
be given in two forms: either as a representation of
propagation vectors (or wave normals) or as a picture
of ray paths. Wave normals and ray directions are not
identical in anisotropic media. Wave normals have
the obvious meaning of normals to the phase planes.
Ray paths are paths of propagation in some physical
sense (see Sec. 2.3). The intensity of waves, although not
so much a matter of geometric optics, is derivable in
some approximation by assuming energy flow along the
ray paths. The limitations of this idea will not be in-
vestigated in this study which is based on geometric
optics.

When some emission of waves occurs in a medium
whose characteristics at all places are given, the wave
normals and propagation vectors throughout the wave
field are determined by theorems of geometric optics
such as Fermat’s principle or Snell’s law. In case of
anisotropic media both these theorems involve wave
normals and ray directions. The proper application of
Snell’s law in this case will be discussed later (Sec.
2.2). The Sommerfeld-Runge law is another law of
geometric optics determining the wave normals or
propagation vectors. It is equivalent to Snell’s law in
application to boundaries and inhomogeneous isotropic
media, as will be seen, yet it is quite generally usable in
its simple formulation, not requiring reference to ray
directions in anisotropic media.

The direction of the wave normal and the refractive
index # in combination may be represented by a vector
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n. The Sommerfeld-Runge law,' 3 stated by Sommerfeld
and Runge as early as 1911, says that n is irrotational,

VXn=0. 1
Introduction of the propagation vector
k= Ilko (2)

(i.e., the product of n and the propagation constant in
vacuum k) leads to the alternative formulation of the
law:

VX k=0. (3)

The Sommerfeld-Runge law is an immediate conse-
quence of the existence of a uniquely defined wave

function,
u=C exp[i(wt—/k-dr)], 4)

in which the propagation vector k is a function of the
coordinates (r). This wave function is a first approxima-
tion of the WKB type.*~® The quantities # and C may
be scalar or vectorial; C may vary slowly with coordi-
nates, but no time dependence of the three quantities
C, w, and k is considered at present. In order that the
wave function be uniquely defined, there must be?7?

f k-dr=0, )

over any closed path. This postulate yields the Sommer-
feld-Runge law, Eq. (3).7
The wave function, Eq. (4), and the Sommerfeld-

( 1 A. Sommerfeld and J. Runge, Ann. Physik (Leipzig) 35, 277
1911).

2A. Sommerfeld, Op#ik (Akademische Verlagsgesellschaft,
Leipzig, 1959), 2nd ed., pp. 306-309.

3M. Born and E. Wolf, Principles of Optics (Pergamon Press,
New York, 1959), pp. 123-124, 129-131, and 681-683.

1S, Fligge and H. Marschall, Rechenmethoden der Quanten-
theorie (Springer-Verlag, Berlin, 1952), 2nd ed., pp. 152-165.

5 K. Suchy, Ann. Physik (Leipzig) 13, 178 (1953).

8 H. Bremmer, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. 16, pp. 552-557.

7 G. B. Whitham, J. Fluid Mechanics 9, 347 (1960).
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SOMMERFELD-RUNGE LAW
Runge law are usable under all conditions appropriate
for geometric optics, including both sufficiently slowly
varying media and discontinuity surfaces (boundaries
between materials), at which the refracted wave is
considered as a continuation of the incident wave. In
transition from the incident wave to the refracted wave,
the Sommerfeld-Runge law requires continuity of the
k (or n) components tangential to the discontinuity
surface.! Discontinuity of a tangential k component
would lead to an infinite VXk and prevent a continua-
tion of the wave field described by Eq. (4).8 The require-
ment of continuity of the tangential k components is
equivalent with Snell’s law in this case.! The amplitude
factor C, of course, will, in general, be discontinuous at
the boundary.

The reflected wave originating at a discontinuity
surface is another continuation of the incident wave.
The postulate of continuity of the tangential k com-
ponent in transition from the incident to the reflected
wave provides the necessary continuity between the
wave functions of the incident and reflected waves
(disregarding C).

As to the characteristics of the medium or the wave
field, the only limitation is the assumption of slow or
discontinuous variations, which is imposed by geo-
metric optics. The medium may be anisotropic and
inhomogeneous in a general manner and the propagation
vector may be real or complex.

Sommerfeld and Runge dealt with isotropic, non-
dissipative media only. Suchy® in his studies of the
transition between ray and wave optics used the
Sommerfeld-Runge law as a law of refraction also for
inhomogeneous anisotropic media.

No assumption on the nature of the waves will be
made in the present paper. The field may be scalar or
vectorial and the waves may be electromagnetic, hydro-
dynamic, matter waves, or any other type of waves.

1.2. Four-Dimensional Generalization

When the propagation vector k and the angular fre-
quency w vary slowly with coordinates and with time,
the wave function may be written

u=C exp[i / (wdl—k-dr)]. (6)

Also the amplitude factor C is now assumed to vary
slowly with time and coordinates. The postulate of
unique definition of the present wave function leads to

f(wdt—-k‘dr)=0. (7

8 This argumentation implies that the wave function, Eq. (4),
is usable at a very steep, in the limiting case, infinite gradient of
the propagation characteristics and that k remains finite in the
limiting case, thus permitting no discontinuity of the exponential
term of the wave function.

9 K. Suchy, Ann. Physik (Leipzig) 11, 113 (1952).
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(to be integrated over any closed r, ¢ path) or with in-

troduction of the four-vectors
r=(tict),

k= (k,iw/c).

f k-dr=0. (9)

Boldface italic is used to denote four-vectors. Equation
(9) as four-dimensional analog of Eq. (5) yields the
four-dimensional generalization of the Sommerfeld-
Runge law,

)

to

OXk=0. (10)
The four-dimensional operator replacing V is
a 09 0 10
D=<_> Ty T _~—>' (11)
dx dy 0z ¢ Ot

Equation (10) consists of six component equations,
three representing the three-dimensional Sommerfeld-
Runge law, Eq. (3), the other three, in three-dimensional
vector notation, reading

Vet 9k/9t=0. (12)

A variation of the frequency, as referred to in Eq. (12),
may result from an emission of variable frequency or
from propagation in time-varying media.

The three-dimensional Sommerfeld-Runge law and
Eq. (12), now appearing combined in the four-dimen-
sional Sommerfeld-Runge law, have been used in con-
junction by Whitham’ in a treatise on group propaga-
tion. Alternative derivations of Eq. (12) are based on a
consideration of the phase of the wave (MacDonald)
or on the postulate that in propagation of a wave train
the number of waves is conserved (Whitham?). The one-
dimensional version of Eq. (12) [Eq. (37)] is more often
met with in the literature. A study of group propagation
on basis of the four-dimensional Sommerfeld-Runge law
will follow later (Secs. 4.1 and 4.2).

The four-dimensional Sommerfeld-Runge law applies
to media varying in space-time, provided the variations
are slow enough to render the wave function, Eq. (6),
a good approximation. Analogy with the three-dimen-
sional case shows that, in addition, the law is applicable
to discontinuity surfaces in space-time, if discontinuity
of C is allowed for (cf. Sec. 4.3).

1.3. Equivalence with Snell’s Law in
Isotropic Media

At boundaries between materials the three-dimen-
sional Sommerfeld-Runge law was seen to lead to a
continuity condition equivalent with Snell’s law. In
order to deduce Snell’s law for inhomogeneous isotropic
media, we multiply Eq. (3) vectorially by k, thus

10 G. J. F. MacDonald, J. Geophys. Res. 66, 3639 (1961).
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obtaining

kX (VXk)=0. (13)
A simple transformation yields

(k- V)k=£kVE, (14)

with & denoting the magnitude of k.

Because in isotropic media the direction of k (i.e.,
the wave normal) is the ray direction, Eq. (14) may be
interpreted as saying that in progression in the ray
direction the k components parallel to the surfaces of
constant £ stay constant. This is Snell’s law combined
with the statement that the wave normal remains in
the plane of incidence (now considered part of Snell’s
law).

Equation (13) relates to only two components of
VXK, the components normal to k. Disappearance of
the third component, as equally required by the
Sommerfeld-Runge law, is expressed by

k- (vXk)=0. (15)

This equation, in fact, is deducible from the theorem
of Malus and Dupin,? which states that surfaces normal
to the k lines (wave surfaces) do exist. The deduction
given by Sommerfeld and Runge for homogeneous
media [cf. their Eq. (4), which corresponds to our
Eq. (15)] can readily be transferred to inhomogeneous
media.

If the existence of wave surfaces and the resulting
Eq. (15) are taken as self-evident, we may identify the
Sommerfeld-Runge law with Eq. (14) or, in application
to isotropic media, with Snell’s law. The Sommerfeld-
Runge law, however, has the advantage of appearing
in a very simple vectorial formulation.

1.4. Eikonal and Phase

The Sommerfeld-Runge law, Eq. (1), indicates that
n is the gradient of a scalar, the eikonal,’=37

n=VS. (16)
We may alternately write
k=FAVS. (16a)

The four-dimensional Sommerfeld-Runge law sug-
gests introduction of an eikonal @ in space-time, cor-
responding to

k=019. an

This eikonal is the analog of £oS. It appears, multiplied
by —i, in the exponent of the wave function, Eq. (6),
and consequently represents the running phase of the
wave, if it is real. A complex ® includes phase and at-
tenuation coefficient.

2. ANISOTROPIC MEDIA
2.1. Basic Facts

In an anisotropic medium, the propagation constant is
dependent on the direction of propagation. The de-
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pendence on both the location and the direction is
expressed by an equation!—13

F(r,k)=0.

The function F characterizes the medium throughout
the space under consideration. No attention is paid
now to variation with frequency; the frequency is
assumed to be constant.

Equation (18) with assumption of a fixed r determines
a surface in k space, which is the “refractive index
surface”$1* scaled up by the vacuum propagation
constant k. (Various names are found for this or an
equivalent surface in the literature.) Double-valuedness
of the surface with the possibility of coincidence of two
branches at some place, indicating coupling of two
waves, is not a matter of geometric optics and will not
be considered here.

In a specific wave field, in which a definite wave
normal is assigned to each location, Eq. (18) enables
us to compute the magnitude of k for all locations. A
picture of the wave normals or their connecting lines,
the phase trajectories (Fig. 1), may therefore be con-
sidered an adequate description of a wave field in a
medium of known characteristics. The phase trajectories
in anisotropic media are, however, not ray paths; ray
directions, in general, differ from wave normals, as is
known.

(18)

2.2. Variation of k in Propagation

The Sommerfeld-Runge law and Eq. (18) together
provide a sufficient number of equations to have k
determined throughout a wave field, when it is given
at some boundaries or in the vicinity of the sources of
waves. Let us assume that k has been computed for all
points on a surface in the wave field. Then, there are
three conditions determining the increment of k in a
differential departure from the surface to a neighboring
point: The VXk components parallel to the surface
must disappear and dF=0. As can be seen from Eq. (23)
and the succeeding explanations, a necessary supposition
is that there exists a ray path element by which the
point is linked with the surface. If such a ray path ele-
ment does not exist or, in other words, the surface is
parallel to the ray direction (direction of V.F), the
three conditions are interdependent or incompatible.

Constancy of F in a wave field, as required, is
expressed by

VF=0. (19)

In differentiation, it has to be noticed that F depends on

1 R. Courant and D. Hilbert, Mathematische Physik (Springer-
Verlag, Berlin, 1937), Vol. 2, pp. 82-92.

12 J. Bazer and O. Fleischman, Research Report No. MH-10,
Division of Electromagnetic Research, Institute of Mathematical
Sciences, New York University, New York, 1959 (unpublished),
pp. 14-19.

B K. G. Budden, Radio Waves in the Ionosphere (Cambridge
University Press, New York, 1961), pp. 200, 252-254, and 276-278.

14 H. Poeverlein, Z. Naturforsch. 5a, 492 (1950).



SOMMERFELD-RUNGE LAW
r directly and indirectly through k. By introduction
of a gradient V, referring to the direct dependence on
r and a gradient V, in k space, Eq. (19) becomes

V.4V (k- V) F=0. (20)

The closing bracket in the last term might be placed
before or after I, however, the operator V is supposed to

apply to k only. This suggests the transformation

Now we introduce the Sommerfeld-Runge law, Eq. (3).
It allows us to simplify Eq. (21) to

V(k-Vi)F= (ViF-V)k, (22)
and thus to transform Eq. (20) into
V,.F+ (V,F-V)k=0. (23)

Equation (23) expresses the variation of k in progres-
sion in the direction of V. and will be seen to describe
propagation of the waves. The equation is related to
Hamilton’s equations of geometric optics, which are an
alternative formulation dealing with propagation. The
Hamiltonian minus a constant may be taken as function
I in the above representation. Constancy of the Hamil-
tonian corresponds to the equation determining the
characteristics of the medium, Eq. (18). Derivations of
Hamilton’s equations frequently make use of the fact
that k is representable as a gradient," occasionally
also of the Sommerfeld-Runge law.”® Budden'® arrives
at a version of Eq. (23), specialized for one-dimension-
ally stratified media, [his Eq. (14.16)] in an intermedi-
ate stage of his derivation of Hamilton’s equations.

The gradient V,.F relates to the stratification of the
medium as it appears under the assumption of a con-
stant direction of k; in a surface element normal to
V,F, the condition F=0 leads to a constant magnitude
k for fixed direction of k. Equation (23) thus is found to
say that, for progression in the direction indicated,
the k components parallel to the stratification (i.e.,
normal to V,.F) do not vary. This is Snell’s law as formu-
lated, for example, by Haselgrove.'s It refers to progres-
sion in the direction of V.F, which in the limiting case
of an isotropic medium becomes the direction of k. That
this direction of progression is the “ray direction” will
be understood in the next section. The reference to
both the ray direction and the stratification makes
Snell’s law in the present form impractical for propaga-
tion problems of a general character.

The previous version of Snell’s law, deduced from
Eq. (14) for isotropic media, remains as an alternative
form applicable to anisotropic media, though one must
avoid identifying the direction of progression in this
version, i.e., the direction of k, with the ray direction.
The gradient VZ, appearing in this version, is obviously

15 J. Haselgrove, Report of the Physical Society Conference on
the Physics of the Ionosphere (Physical Society, London, 1955),
pp- 355-364.
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a measure of the variation of the magnitude % in space,
thus seeming to describe some kind of stratification,
but it is defined only for the wave field under considera-
tion and is not representative of the medium.

2.3. Ray Paths

The concept of ray paths is based on the idea that
generation of a wave field at or around some location
entails propagation of a wave along a certain path, a ray
path. The field on the ray path thus is supposed to arise
from that generated at the initial point. Along the entire
ray path, consequently, some quantity characterizing
the wave field is determined by the field at the initial
point.

Equation (23) shows that a path element parallel to
VF is a ray path element in this sense and the propaga-
tion vector k is the quantity determined along a ray
path or ray path element. The equation yields dk for
every path element parallel to ViF7. A path composed of
such path elements and being described by

ViFXds=0, (24)
hence, is seen to have the characteristic that k is deter-
mined in all its points when it is given in an initial
point. Equation (24) is the equation of ray paths. It
has been derived from Eq. (18), the equation describing
the medium, without introducing anything but the
Sommerfeld-Runge law and some axiomatic idea on
ray paths.

Uniqueness of our ray path element follows from the
fact that Eq. (18) and the Sommerfeld-Runge law to-
gether leave some freedom for choosing the variation
of k along any line element that is not parallel to V,F.

The ray direction as the direction of V;F is the
normal to the surface F=0 in k space and to the refrac-
tive index surface, which is similar to the surface F=0
(cf. Sec. 2.1). This is a well-known law of geometric
optics of anisotropic media.!?-4

In conventional terms, a ray is a beam of waves show-
ing an intensity structure with a maximum in the center.
Such a beam can be represented by complex propagation
vectors. We simply have to introduce in a plane normal
to a given ray path a small imaginary part of k, pointing
toward the ray path, disappearing on the ray path, and
increasing with departure from the ray path. Because k
is left unaltered (real) on the ray path, it will remain
real on the entire ray path and maximum intensity will
be encountered along the path. From this representation
it becomes evident that a beam of waves in fact follows
the course of a ray path as determined by the above
formulas [in particular Eq. (24)].

The model of a beam of waves suggests splitting an
extensive wave field up into an assemblage of inde-
pendent adjacent beams. The separate consideration of
individual beams leads to the concept of energy propaga-
tion as taking place along ray paths.
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Curves along which some quantity is not open
to choice appear as characteristic curves in the theory
of partial differential equations. The ray paths, in fact,
are characteristic curves of some partial differential
equation: the eikonal equation (or ‘“Hamilton-Jacobi
equation”), which is obtained by substituting %,V.S
for k in Eq. (18).11.12

2.4. Example

The above explanations are illustrated by Figs. 1 to 3.
In the example chosen, waves are emitted from a point
source and propagated in a medium varying with one
coordinate, z. The medium is homogeneous and isotropic
in the vicinity of the source (located at z=0) and starts
varying, becoming at the same time anisotropic, at 2= zo.
Only one plane, containing the source, is shown in the
figures. The underlying propagation problem will be
outlined later.

Phase trajectories are represented in Fig. 1, ray
paths in Fig. 2. Phase trajectories and ray paths coincide
in the isotropic part of space (z<z), but are separated
and intersect each other in traversing the anisotropic
area (2> 2).

Figure 1 or Fig. 2 might be considered as the solution
of the present propagation problem. The wave field in
geometric-optical approximation is readily obtained
from Fig. 1. The phase surfaces are the normal surfaces
to the phase trajectories and the propagation constants
corresponding to the given wave normal directions
follow from the characteristics of the medium (cf.
Sec. 2.1). The ray paths (Fig. 2), on the other hand,
may be thought of as having more physical significance.

The Sommerfeld-Runge law, referring to propagation
vectors only, yields as immediate solution of a propaga-
tion problem the propagation vectors and hence the
representation of phase trajectories, Fig. 1. Most other
geometric-optical theorems (e.g. Fermat’s principle or
Snell’s law in the first version of Sec. 2.2) involve propa-

A
z
z=2Z,
z=0 |
x=0 —

Fic. 1. Example of phase trajectories (normal trajectories to
the phase planes). The wave source is located at x=0, 2=0. In
the region z>z,, the medium is anisotropic and variable with z.
Dashed lines are loci of cusps.

H. POEVERLEIN

gation vectors and ray directions, thus requiring more
complicated computational procedures in determining
the propagation vectors. Figure 3, showing phase
trajectories and the intensity structure of a beam guided
along a ray path, is the picture that might emerge from
introduction of a complex k in the Sommerfeld-Runge
law as explained in Sec. 2.3. This representation of a
beam, based on geometric optics, fails in the case of
focusing, i.e., in the present example, at the caustic
separating the “light” from the “dark” area.

The waves in our example are supposed to be matter
waves corresponding to monoenergetic electron beams.
A nonvarying scalar potential and a vector potential
disappearing below z, and increasing linearly above zo,
being pointed there in the x direction, are assumed.
This corresponds to a constant magnetic field of the y
direction (direction normal to the plane of drawing) in
the region above z,. The graphical constructions were
begun with the ray paths (Fig. 2), because they are now

—

—_—=

X
F16. 2. Ray paths in the example of Fig. 1.

x=0

particle paths consisting of straight lines in the field-free
space and parts of circles in the constant magnetic
field. The propagation vector for given particle velocity
u and vector potential A is derived from the Schridinger
equation as being

k= (1/%) (eA+mu). (25)

The refractive index surfaces (obtained by varying the
direction of u) are eccentric spheres.!*!®

3. ATTENUATED WAVES

The wave function, Eq. (4), with insertion of a com-
plex propagation vector k describes attenuated waves.
The Sommerfeld-Runge law, following from the unique
definition of the wave function, applies to complex k.
Theorems based on the ray concept, however, become
useless when complex ray directions (directions of V.F)
lead to complex coordinates for which the medium is
not defined.

16 M. Cotte, Ann. phys. (Paris) 10, 333 (1938).
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Fi16.3. Beam of waves.
The strong lines are
phase trajectories (cor-
responding to the ex-
ample of Figs. 1 and 2).
The density of hatching zZ=
indicates the intensity
structure of a beam.
Slow intensity variation
due to contraction or
expansion of the beam
is not shown.

The real and imaginary parts of a propagation vector

in general, have different directions. The imaginary
part expresses both attenuation due to dissipation of
energy (absorption) and lateral intensity variation as
considered in Sec. 2.3 and Fig. 3.

The two types of attenuation are easily separated in
isotropic media, as will be shown now. The propagation
constant % in an isotropic medium is a function of the
coordinates only. The imaginary part of % (being fixed
for a given location) indicates then energy dissipation.
From

P—¢+i2(p- =4, 27
we conclude in this case that a q component parallel to
p relates to energy dissipation, whereas a q component
normal to p, expressing lateral attenuation, does not
involve energy dissipation. Keller'” gives examples of
complex k in nondissipative isotropic media. He uses
(in isotropic media) complex (or “imaginary”) rays,
which correspond to our complex propagation vectors.

A constant % for a given location in an isotropic
medium is an approximation implied by geometric
optics. From the refined formulation of the eikonal
equation,®

ko(RoVS-+iV) - VS=«? (28)

(with & being a constant of the medium at a considered
location), we obtain by means of Eq. (16a) the
relationship
(k+iV) k=42, (29)
or
P—¢—V-q+i[2(p-9)+V-p]=#. (30)

Notice that in case of small q (corresponding to low
attenuation) the term V-q may be essential for the
deviation of p? from the real part of &%

4. CONSIDERATIONS IN FOUR DIMENSIONS
4.1. General Statements

In space-time, a four-dimensional version of the
Sommerfeld-Runge law has been seen to apply (Sec.
1.2). All deductions made from the three-dimensional

17 J. B. Keller, Proceedings of Symposia in Applied Mathematics
(American Mathematical Society) 8, 27 (1958).
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Sommerfeld-Runge law may therefore be transcribed
to four dimensions.

The inclination of the four-dimensional propagation
vector k [Egs. (8)] toward the time axis is

tana= —1ikc/w, (31)

or

tana= —1in, (32)

and is apparently —¢ times the refractive index =.
For electromagnetic waves in vacuum (characterized
by n=1), the space component and time component
of k are of equal magnitude.

A medium being isotropic in four dimensions is one
in which the magnitude of k at a given point in space-
time is independent of the direction of k in space-time.
The square of this magnitude is

k-k= (n*—1)w?/c%

Four-dimensional isotropy means invariance of this
expression for varying direction of k in space and for
varying angular frequency w, which multiplied by i/¢
represents the fourth component of k. Electromagnetic
waves in vacuum are a trivial example of four-dimen-
sional isotropy. The corresponding magnitude of k&
is zero. In the case of electromagnetic wavesin a plasma,
we have the refractive index formula

(n—1)w?=—wy (34)

Comparison with Eq. (33) shows that this is another
case of four-dimensional isotropy. Despite the isotropy,
there is, however, an asymmetry between space and
time coordinates, resulting from the appearance of the
imaginary unit in all time components. Four-dimen-
sional isotropy (of matter waves) and its implications
were treated by Synge.!® For further remarks on four-
dimensional isotropy it may be referred to the following
Sec. 4.2 and to a paper in preparation.

As in three dimensions, a medium may be described
by an equation

(33)

F(r,k)=0, (335)

which now determines the characteristics of the medium
for all points in space-time and for all frequencies. For
a fixed point (r) and a fixed direction of k, Eq. (35) is
the “dispersion equation.”

In three dimensions, the condition F=0 together
with the Sommerfeld-Runge law led to Eq. (23), an
equation expressing the variation of k in progression
along certain path elements, which were recognized as
being differentials of ray paths. Equation (23) and its
derivation are readily transcribed to four dimensions.
(The four-dimensional transcription of the double vec-
tor product of Eq. (21) is a four-vector composed of
[ +F and [ ]Xk.) With retention of the three-dimen-
sional symbols and introduction of the new function F,

18T, L. Synge, Geometrical Mechanics and De Broglie Waves
(Cambridge University Press, New York, 1954), in particular
pp. 6-59.
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the transcribed Eq. (23) becomes in four dimensions the
set of equations

V E+[ViF-V— (0F/dw)(9/0t) Jk=0,
—OF/0t+[ViF-V— (3F/dw)(8/0t) Ju=0.

It may be emphasized that this set of equations follows
from the four-dimensional Sommerfeld-Runge law in
conjunction with Eq. (35), the characteristic equation
of the medium.

Equations (36) may be used as basic equations of a
four-dimensional geometric optics. Synge'® developed
an alternative four-dimensional geometric-optical
theory by means of four-dimensional generalization of
Hamilton’s theory of geometric optics. Equations (36)
and the four-dimensional Hamiltonian formulations are
relevant to the propagation of wave groups. Traveling
wave groups obviously are the four-dimensional analog
of ray paths. An auxiliary variable, in Hamilton’s
equations needed to denote space-time points on the
four-dimensional group paths, does not appear in the
present formulations. Equation (35) is referred to by
Synge as “slowness equation.” The “slowness” in his
terms is a four-vector proportional to k. The following
four-dimensional considerations are partly based on
Eqs. (36), partly on the four-dimensional Sommerfeld-
Runge law immediately. Some emphasis is placed on
specialized situations permitting a simple interpretation.

(36)

4.2. Group Propagation

Group propagation in a time-constant medium may
be studied, as Lighthill and Whitham?+*® demonstrated,
by following a section of a definite frequency in propaga-
tion of a variable-frequency wave train. Equation (12)
and the three-dimensional Sommerfeld-Runge law,
together making up the four-dimensional Sommerfeld-
Runge law, prove to be immediately usable for this.
Only the simple example of spatially one-dimensional
propagation may now be depicted in Whitham’s repre-
sentation.” Equation (12) in the one-dimensional case
reads

e/ 95+ 9k /31=0, (37)

or, because % (assumed in the z direction) is not ex-
plicitly dependent on ¢,

o/ 32+ (9k/80) (90 3E) =0. (38)

This formulation shows that in traveling with the
velocity

u=1/(8k/dw), (39)

which is the one-dimensional group velocity, one sees a
constant frequency.

Intensity variation within a wave train, correspond-
ing to the conventional notion of a wave group, is ob-
tained by introducing a small varying imaginary part

19 M. J. Lighthill and G. B. Whitham, Proc. Roy. Soc., A229,
281 (1955).
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of w. Zero imaginary part, relating to maximum intensity
in the wave group, is found to travel with group velocity,
just as any definite w. We may recall the three-dimen-
sional analog : complex k, representing a beam of waves
that is propagated along ray paths.

In the general case of a medium varying with time and
spatial coordinates, the laws of group propagation
follow from a four-dimensional transcription of the
considerations on ray paths that emerged from Eq. (23).
Equations (36), the four-dimensional analog of Eq. (23),
show that a group path element in space-time is parallel
to

OWF=[ViF, —ic(IF/dw)]. (40)

These group path elements form a group path, on which
k, once given in an initial space-time point, is deter-
mined everywhere. The group velocity, being ic times
the ratio between space and time components of Eq.
(40), is

ds/di=—VF/(dF/dw). (41)

The velocity ds/dt has the direction of a ray (direction
of V,F) and, as Eq. (42) will prove, a projection on the k
direction equal to the differential quotient dw/dk for
given location and time. It thus is in agreement with
conventional formulas for the group velocity,*** though
its applicability is now not limited to conditions of no
time variation. Differentiation of F=0 for constant
7 and fixed direction of k yields the expression for dw/dk
corresponding to Eq. (41)

dw/dk=— (k-V,F)/k(3F/0w). (42)

In a time-constant medium, the behavior of the waves
in group propagation is found as it is supposed to be:
According to the second equation of Egs. (36) the fre-
quency in a wave group remains constant. Maximum
intensity, earlier (in the spatially one-dimensional case)
seen to correspond to a disappearing imaginary part of
w, follows group propagation.

In time-varying media, the variation of k in a wave
group is determined by Eqgs. (36). Apparently, dk in a
wave group is parallel to [0.F. If we take the z axis
in the direction of the three-dimensional gradient V,F,
this means that in a wave group there is

dbo=dk,=0; (43)
(this is Snell’s law) and
dw oF ,oF
=— — (44)

dk, at 93

The expression on the right-hand side of this equation
represents a virtual velocity of the medium; traveling
with this velocity V in the z direction, one finds the
medium invariable for fixed direction of k and fixed
frequency. Equation (44) may be written

Vdk,—dw=0.
20 K. Suchy, Ann. Physik (Leipzig) 14, 412 (1954).
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A four-dimensionally isotropic medium, as noted in
Sec. 4.1, exhibits a magnitude of k independent of the
direction of k and of w. From Eq. (33), we obtain in
this case

F—w?/c*=const, (46)
or
kdk— (1/*)wdw=0, (47)
and hence the group velocity
u=dw/dk=c*(k/w). (48)
The phase velocity is v=w/k. Thus, we have'®
uv=_c=2 (49)

This law is known to be valid for electromagnetic waves
in plasmas, the case recognized as four-dimensionally
isotropic in Sec. 4.1, and for matter waves in field-free
space, provided their frequency is defined properly (in
fact, proportional to the energy mc?® of the moving par-
ticle). The law, Eq. (49), is characteristic of four-dimen-
sional isotropy. Matter waves thus are seen torepresent
another case of four-dimensional isotropy. In all cases
in which Eq. (49) does not hold, we deal obviously
with four-dimensionally anisotropic media.

Isotropy with respect to one spatial coordinate and
the time coordinate is found in propagation of electro-
magnetic waves in wave guides. Equation (49) applies
also to this case.

4.3. Time-Varying Media

A time variation of the frequency and the propagation
vector may result from a modulation of the emissions
at the wave source or from a variation of the medium
with time. This section deals with variable media, for
the most part, under specializing assumptions. The vari-
ation may be continuous or discontinuous.

The locations in space-time at which a discontinuous
variation of the medium is encountered may be given by
a relationship between all four coordinates of space-
time (or between some of them). This relationship
describes in four-dimensional space a discontinuity
surface (in fact, a three-dimensional structure) and in
three-dimensional space, in general, a moving boundary.
At the discontinuity surface, we have to postulate con-
tinuity of the tangential k2 components in order to keep
O X k finite.

A sudden, simultaneous variation of the medium
throughout space represents a discontinuity in time.
The discontinuity surface in four-dimensional space,
corresponding to {=1, is the three-dimensional space
viewed in this instant. Consequently, the spatial propa-
gation vector k, comprehending all spatial components
of k, has to stay continuous. The frequency has to jump
in accordance with the condition prescribing the charac-
teristics of the medium before and after the discontinu-
ous variation (F=0).

The condition F=0 with a given k will, in general,
yield more than one solution for w. Frequently, two solu-
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tions are obtained: a positive and a negative w of the
same amount. The propagation vector k is supposed to
be the same for the two solutions (with respect to magni-
tude and direction). The wave corresponding to negative
w, however, travels in the direction opposite to k. We
term this wave “reflected” and the other, which travels
in the direction of the “incident wave,” “refracted,”
understanding by refraction and reflection the processes
at a discontinuity in time. In case of emission from a
localized source, the refracted wave is an expanding
wave, the reflected wave a collapsing wave.?

An interesting special case of a varying medium to
which attention was called by Morgenthaler” is a
medium varying continuously in time, but being homo-
geneous in space. Equations (36) with the condition
V,F=0 indicate in this case constancy of k in group
propagation. The frequency in a wave group must there-
fore vary. The case apparently is inverse to that of a pure
spatial variation of the medium, in which w was seen to
remain constant in a wave group. The time variation,
of course, has to be slow enough to leave the four-
dimensional Sommerfeld-Runge law valid.

Now a discontinuity of the medium al a moving
boundary, a case treated in some generality by Synge,®
will be considered. In a small space-time volume, the
boundary is assumed to be plane and to travel witha
constant velocity V in the z direction as described by

z—Vi=0. (50)

The function F (characterizing the medium) can,
around the considered part of the discontinuity surface,
be thought of as containing space and time coordinates
only in the combination z— V¢ and varying discontinu-
ously as z— V¢ passes through zero.

The quantity z— V¢ is the scalar product of r with a
vector (0, 0, 1, iV /c). The discontinuity surface, con-
sequently, is normal to this vector, and the three %k
components parallel to the discontinuity surface, which
have to be continuous, are k., ky, and (i/c)(Vk.,—w)/
(1—V2/c®)'2, As in three-dimensional theory, continuity
of these components is required in transition from the
incident wave to both the refracted and the reflected
waves departing from the discontinuity surface.

Formulation of the present continuity requirement
for a differential step of a medium yields Egs. (43) and
(45), which describe the variation of k and w in group
propagation. This is analogous to the inference in the
three-dimensional considerations that Snell’s law, origi-
nally stated for boundaries, applies on a ray path to
differential steps of a continuously varying medium.

The limiting cases V=0and V — o refer to a station-
ary boundary and to a discontinuity in time. In slight
deviation from the limiting cases, the reflected wave
shows shifts of the frequency and of % proportional to
V or 1/V, respectively (provided, certain singular condi-

2 In terms of advanced potentials the collapsing electromagnetic

wave corresponds to a sink at the place of the actual source.
2 F, R. Morgenthaler, IRE Trans. MTT-6, 167 (1958).
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tions are excluded). The shift proportional to V is
known as Doppler effect. The shift proportional to 1/V,
which is a consequence of nonsimultaneity of the varia-
tion in the entire space, may accordingly be called “in-
verse Doppler effect.”

Under more general conditions, in particular relating
to intermediate V, there may be a larger number of solu-
tions for waves leaving a discontinuity surface. This
may prevent a clear distinction between refracted and
reflected waves. Rydbeck® discusses a similar phenome-
non in emission of radiation from a moving source in a
dispersive medium (in fact, a plasma). In the one-dimen-
sional problem, occasionally more than two emitted
waves (as would correspond to the two directions of
propagation) are found.

As to the processes leading to a time-variation of the
medium, various possibilities may be noted. In addition
to motions and deformations of material bodies, there
are shock fronts, in which the state of matter appears to
be propagated, eventually without transportation of
matter. Jonization or dissociation of a medium by
ultraviolet light is a possible means for almost instan-
taneous or properly timed variation of a medium in a
wider volume. In ionospheric radio wave propagation,
frequency fluctuations have been observed,*?5 which
may be a Doppler effect due to displacement of the
ionospheric reflection level or, more generally, the result
of a modification of the ionosphere while the waves pass
through it.

4.4. Focusing and Diffraction

All the considerations of Secs. 4.1 to 4.3, being
subject to the limitations of geometric optics, are a
part of a four-dimensional geometric optics. We may
now touch on a topic of particular interest in geometric
optics: focusing. Focusing of first degree occurs at a
caustic, which in four-dimensional space is a three-
dimensional structure, corresponding in r space to a
moving (and perhaps varying) surface. The waves ap-
proach a caustic from one side and leave it toward the
same side. In the case of a caustic at rest, this requires
that the rays (or ray paths) are tangential to the caustic
(the caustic is an envelope surface to the ray paths).
At a moving caustic, the group velocities of the two
waves coincide and their components normal to the
caustic must correspond with the velocity of the caustic
in this direction. Otherwise, the wave field as determined
by the group propagation concept (Sec. 4.2) would
extend beyond the caustic.

A somewhat unusual focusing effect is encountered in
the collapsing wave field resulting from a reflection of
an expanding wave field at a discontinuity in time

2 (. E. H. Rydbeck, Research Report No. 10, Research Labora-
tory of Electronics, Chalmers University of Technology, Gothen-
burg, Sweden, 1960 (unpublished).

2T, Ogawa, Proc. IRE, 46, 1934 (1958).

(1;5612(). L. Chan and O. G. Villard, Jr., J. Geophys. Res. 67, 973
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(Sec. 4.3). With a small jump of the medium, the col-
lapsing wave field resembles closely the emitted expand-
ing field and is, consequently, well focused on the source
of the emission. The focusing is spatial only, yet in three
dimensions.

It may be noted that in four dimensions focusing up
to the fourth degree, including time-focusing, might be
thought of.

A geometric-optical treatment of diffraction, as
suggested in three dimensions by Keller,'” is possible in
four dimensions. Diffraction in space-time is to be ex-
pected, in particular, at discontinuity lines (i.e., singly
infinite assemblages of space-time points) and at two-
dimensional discontinuity surfaces (i.e., doubly infinite
assemblages of space-time points). The k components
parallel to the lines or surfaces have to remain con-
tinuous in transition from incident to diffracted waves,
just as the k components in three-dimensional diffrac-
tion theory.!” The relationship between this concept of
diffraction and the process of refraction (taking place
at a triply infinite assemblage of space-time points) is
elucidated by Synge’s consideration of ‘‘refraction
through a hole,”*® which, in fact, represents diffraction.

4.5. Concluding Remarks

The above considerations, developing out of the four-
dimensional Sommerfeld-Runge law, are not the only
way to arrive at the various statements of the four-
dimensional theory. In place of the four-dimensional
Sommerfeld-Runge law, for instance, the postulate of a
uniquely defined, continuous phase of the waves could
be used to start with. The Sommerfeld-Runge law, on
the other hand, proved to be very suggestive by calling
attention to a number of processes in space-time, many
of them analogs of well-known three-dimensional phe-
nomena. The Sommerfeld-Runge law in three and four
dimensions is not only a means for general deductions
but, as the discussion of a three-dimensional example
(in Sec. 2.4) indicated, also a tool for computation
purposes.

The presented four-dimensional theory, as a geo-
metric-optical approach, is applicable to discontinuities
and to sufficiently shallow gradients in space-time. In
three dimensions, the WKB method with inclusion of
internal reflections and related procedures®?® deal with
arbitrary profiles of a medium by using geometric optics
at differential slabs of the medium. Transfer of such
procedures to four dimensions leads to wave theories
based on four-dimensional geometric optics.
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