
PHYSICAL REVIE%' VOLUME 128, NUMBER 2 OCTOBER 15, 1962

Theory of the Feiuiion Liquid*
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The ground-state wave function generated by a system of interacting bosons is used as the correlation
factor in a trial function describing the interacting fermion system. Expectation values are computed by the
technique of the generalized normalization integral. The resulting cluster integrals are evaluated by intro-
ducing simple approximate forms for the n-particle distribution functions de6ned by the boson wave func-
tion. To illustrate the method, it is applied to establish a connection between known results for fermion and
boson forms of a hard-sphere system at low density. As a second illustration experimental information on
liquid He4 is used to work out properties of a hypothetical fermion-type system of mass 4. Results are given
for the energy, effective mass, and magnetic behavior. The application to He waits on the evaluation of the
radial distribution function and liquid structure factor for the corresponding arti6cial boson system of
mass 3.

I. INTRODUCTION

A LARGE number E of identical interacting fer-
mions of mass M are con6ned in a volume Q. We

are interested in the ground state and low excited states
of this system in the limit )7 ~~, Q ~ ~, subject to
the constraint p=X/0 held constant. We begin by
choosing a trial function P as a product of two factors, a
completely symmetrical positive valued correlation
function it B and an antisymmetrical model function p
for which the simplest choice is a single Slater de-
terminant constructed from plane wave orbitals and
spin functions. ' ' Thus,

P(1,2, ,$)=it (rr, rs, . . . ,rN) ip(rior, rsos, , r. ~voN)

v =Z.(—1)""&«v

~ —II eike. rn

I

A cubical shape for the container 0 is convenient since
it permits the explicit determination of the wave vector
k by a periodic boundary condition. The zero-spin
ground state is characterized by a maximum wave
number kf= (3m'p/v)'", 2v being the degeneracy of the
spin states (v=1, 2 for He' and nuclear matter, re-
spectively). The spin functions S„(o) are normalized
and any two are either identical or orthogonal in the
spin space (two orthogonal spin states for He' and four
for nuclear matter). Spin denotes either the true spin
(as in He') or both spin and isospin (as in nuclear
matter).
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Our first concern is the correlation factor PB. This
function should contain a large part of the physical
effects produced by the interactions among the particles.
These interactions generate strong short-range repulsive
forces when two or more particles approach closely. It
is plausible that correlations produced by the short-
range repulsions depend little on the boundary condi-
tions and type of permutation symmetry satisfied by the
space part of the wave function. Thinking along these
lines one is led to consider that the boson-type ground-
state eigenfunction it oB of the Hamiltonian operator H
possesses all the qualitative features demanded of a
correlation factor and also includes almost all of the
correlation efI."ects generated by the short-range repulsive
component in the interaction. To include both He' and
nuclear matter in a general formulation let the total
Hamiltonian H be written as a sum of two terms Il= IIp
+Hi, with Hs involving only space coordinates and
momentum operators (in. particular, the kinetic energy,
all of the short-range repulsive interaction and part or
all of the longer range attractive component) while Hi
contains all terms with an intrinsic dependence on spin
(or isospin). The eigenvalue equation,

HQB —
+BLAB (2)

solved for the lowest state of the boson-type spectrum
at the given density p, generates a function it sB which is
identified with PB in Eq. (1). Note that in the He'
problem, H& contains only the spin-spin interaction and
the coupling of spins to an external magnetic field.

This prescription for the correlation factor possesses
practical utility, first in the sense that EsB(p) and the
essential probability distributions defined by fsB can be
computed reasonably well and second in the sense of
yielding a simple convenient formalism for computing
the properties of the condensed fermion system.

Pote added iIProof. K. Ljolje and S. F.Wang also use
PsB as the correlation factor in a trial function describing
the ground state of liquid He' (unpublished).

A detailed specification of Ps in the X-particle con-
figuration space is, of course, impossible. However only
the two- and three-particle distribution functions p(1,2)
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X ~7 n+1 ~ "N Iel'« -~) I&)

the integrations over 7- including summations over spin
(and isospin) coordinates for fermion systems. In the
special case m=2, we write p=pg and obtain for the
Bose system

and p(1,2,3) are needed in the present calculation. The
e-particle distribution function of a system described by
a wave function P is defined by

p(1,2, ,iV)

= (X—1) (&7—2) (iV—v+1)0

Direct evaluation of the integrals occurring in Eq. (9)
leads to a completely useless form because the correct
(linear) dependence of (Hp) on )V is hidden in the ratio
of two immensely complicated polynomials in Ã. This

difhculty is familiar in both classical and quantum
theoretical treatments of many-particle problems. To
avoid the difhculty, we follow the lead of Iwamoto and
Yamada'' and introduce a generalized normalization
integral

1~(P)= Qp')' exp(iP 2 k. .V-) p *~pp.dr» - v (1o)

In terms of Ilv, Eq. (9) reduces to

Here, the boson function Pp~ is taken normalized. Also

needed are the liquid structure factor

d
(Hp) =Epa+ Q k '+ —lnIiv(P)

2Mn 2M dP

S(k) =1+p e'"'gaga(r) —1jdp,

and the convenient notation

Thus, our problem is reduced to the evaluation of
(5) 1nIiv(P). This is accomplished by the familiar cluster

expansion formalism. ' Observe 6rst that the determi-
nantal wave function p is conveniently expressed in
terms of the exchange operators

(6) V'=L1 —2 p ""+ 2 (p .l'"+p l ™)
The actual computation of gil(r), the radial distribu-

tion function of the Bose system, from an assumed
interaction between pairs of particles is a formidable
task but can be carried through with the aid of extremum
theorems developed and applied in a recent paper. ' %e
will return to this problem in a later paper.

II. CLUSTER DEVELOPMENT FOR THE
FERMION ENERGY

The expectation value of JI with respect to the trial
function f is written

(H) = (Hp)+(H, ). (I)

The second term (Hi) is not considered further in the

present discussion which is concerned primarily with
liquid helium. However, (Hi) is an essential element in

the nuclear problem. To compute (Hp), we make use of

Eq. (2) and also the relation

(p „hlmn+. . .+p „hlmn

h(l (m(m

+p imp nlr+p lnp mix

+P lieP mn)+. . .j+ (12)

Here the operator I' p. .., '"' denotes a cyclic' ex-
change operation which changes state a into state n D.e.,
k ~k, S,(a.,) -+ S (o,)j, state fi in.to state P, and so
forth. Equation (12) gives all terms explicitly up to four
exchanges. Further since any I' operator corresponds to
a cyclic permutation, it is clear that the expectation
value of the exchange operator with respect to the spin
function y, is either unity when all spin states are
identical or zero otherwise; e.g. ,

(P,„""),=1 for S„=S„
=0 for 5/5 .

~neo= —~n po& (g) Next, observe that
and obtain

A2

(Hp) =Ep'+-
2M n

(pp ) zkn' V (&p &ppnppe)d&12" K
n

(WP)'p *p pp.«»" ~

4 F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).

(9)

p ann &' —gi(km'rn+kn rn)&—i(kn rm+km rn)po - nm Po
—gskmn rmn

)

expLiP(k V,+k .V )]qpP "ppp"

—~
—ill'emn pllemu emn. (15)

2

~ B.Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938).' By cyclic we mean that the P operator cannot be separated
into the product of two P operators. Thus, if one starts from any
index of the set {u} (or the set {a}since they contain the same
indices) and follows the exchange procedures, one returns to the
starting index after passing every other index of the set just once.
Thus, Pmnf, k,

"™means 0 —+ m —+ L —+ e —+ h.
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The convenient notation~

e., a. .., (1,2, ,)o)
—( 1)a i p e ()Io)e(aab +aha +' +ate )

Xei(aab rs+ao~ ro+ +aha ~ rn)(p 6 5C ~ ~ ~ tgbc" ~ ta /s

enables us to write

I~(P) = ()PP)'{1+P e „(1,2)+ P e) (1,2,3)
l&m&n

+ P [ca)~„(1,2,3,4)+ca)(1,2)e „(3,4)
h&tI&m&n

+e), (1,2)hi„(3,4)+ea (1,2)e)~(3,4)5

(16)
X = ()Po~)'e .(1,2)dn), ...a,

()Po )'ei.,„(1,2,3)dv)o. ..a,

Xa)~~= (Po ) [ea)~~(1,2,3,4)+ea)(1,2)e „(3,4)

(20)

+ea (1,2)ei„(3,4)+e), (1,2)ei (3,4)5dvio

The definitions of the 6rst three cluster integrals are

+ ' ' ' jde12".)v. (17)

A sequence of cluster integrals X „,Xz „,Xhz, is
generated by the successive approximants to Ia (P):

(P) = Qo )'Li+e -(1,2)5d~lo. ..a

—Xh)X „—Xh X)„—Xh„X) .

Equation (19) for Iv (P) is useless for computation as
it stands, since it has the same general structure (and
general dependence on S) as the integrals occurring in
Fq. (9). However, Eq. (11) tells us that lnIz(P) is the
quantity which should depend simply (i.e., linearly) on.V. Iwamoto and Yamada' derive the formula,

1nI~(P)= Q X„.+ Q (X),„„—X)„X„„
Ii „(P)= ()PP)'[1+e) (1,2)+e „(1,2)+e„i(1,2)

+ei (1,2,3)5d'vio. ..v

m&n l &m(n

—X X i—X„)X) )+. , (21)

=1+Xi,+X,„„+X„)+X).,

Iai .(P)= ()Po )'[1+e),i(1,2)+ +e „(1,2)

+ca),„(1,2,3)+ +e) „(1,2,3)

+ca)(1,2)e „(3,4)+ea (1,2)e)~(3,4)

+ea (1,2)ei (3,4)5dvio )))...
=1+Xa)+ +X +Xai +.. +Xi .

+XaiX .+Xa %.+Xa.X) +Xai

by a formal transformation of the cluster development
for I~(P). A discussion and analysis of this derivation
appears in Appendix A and also an alternative deri-
vation.

Equations (11) and (21) together give

(Ho)=I'-o~+ Q k '+ Q X' „
2M n 2Mm&n

[X',...—X „(X') +X'„))
2~ t&m&n

m(n l&m&n

+ P (Xa)X„„+Xa„X,„

It is worthwhile stressing that the first few approxi-
mants are in no sense good approximations to I~.
However, because of the law of formation of successive
approximants, the first few approximants do contain the
desired information about the physical properties of the
system.

Continuing in this manner, the final exact form is

I12 "N(P) I)v(p)

=1++X „+ Q X)„„

—X„i(X',.„+X'i„)
—Xi„,(X'„)+X'„„)5+ . (22)

Here, all quantities are evaluated at P=O. The prime
denotes the derivative with respect to P. This operation
replaces the first exponential factor in Eq. (16) by
—-'(k. a'+ +k),') .

The three-particle distribution function p(1,2,3) is

needed in the evaluation of Xt . Two approximations
for p(1,2,3) are available, the Kirkwood superposition
forms

h&l&m&n

+Xa Xi +Xai .)+ +Xio N (19)... .
px (1,2,3)=p'ge (r)o)g~ (~oo)g)) (ro)), (23)

7 The summation in Eq. (16) is over the set of (e—1) t cyclic
permutations on the indices c, 5, .t. A typical term is shown.

H. S. Green, in EXandbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1960), Vol. 10, p. 52.



and the convolution form

pc(1,2,3)=pe(1,2,3)+p2 p f(r14)f(r24)f(rp4)d~4

In the ground state the momentum distributions are
expected to fill a Fermi sphere of radius Akp for each
spin (and isospin) orientation. Let ev denote the maxi-
mum kinetic energy in a degenerate gas of free fermions;
I.e.)

f(rl )f-(r23)f (rpl) cv= k2kv2/2M = (k'/2M) (32r2p/v)'". (29)

=p' 1+f(r12)+f(r22)+ f(r21)

+f(r12)f(r»)+f(r22)f(r»)+f(rpi) f(r»)

+p f(r14) f(r24) f(r24)d(14 . (24)

(Hp) =Ev =EP+DEv,
DEv =E v+E v+E " (27)

in which terms of order higher than those given in

Eq. (22) are neglected, and

A'
Eiv= Qk ',

2M

Only pic is suitable for computing matrix elements of
singular operators. However, po has two advantages
over px which recommend its use in computing matrix
elements of nonsingular operators. These advantages
are: (a) pc satisfies exactly the sequential relation con-
necting two- and three-particle distribution functions,
and (b) matrix elements computed using po are
easily evaluated. The extent to which matrix elements
computed using px or pc are in error is not known, nor
when the operator is nonsingular, which form gives
more accurate results.

No approximation is required to evaluate the two
index cluster integral. Equations (5), (6), (16), and (20)
yield

X„„=—(1/N)e
—~'" 'u(k„„)(P ""),. (25)

For the three index integrals we use the convolution
form for p(1,2,3) and obtain

—(2/N2)c (1/2) P(24wP+k—mn +Pe4 ) $~(k( )u(k1„)
+u(k )u(k„1)+u(k.()u(k )

+u(k( )u(k .)u(k. ()](P 1'™n), (26)

With the help of Eqs. (25) and (26), Eq. (22) for the
expectation value of Hp can be reduced to the ex-

plicit form

The prescription for the expectation values of the spin
permutation operators LEq. (13)]in combination with
the condition of filled Fermi spheres reduces the energy
formula fEqs. (27) and (28)] to the explicit form

Epv= Eps+Epi" +Eppv+Eppv,

Fpg~= -', eI;LV,

evN( 3 )2
Epp'=

v (8~i
+12 u(kF+12)dxldx2

24
evN —u(2kvx) (1——,'x+2 x')x4dx,

V p

(30)

evN 3 )2
Ep,

~
F12'S(kvx12)u(kvx22)

v' 82ri

Xu (k vX21)dX1dX2d Xp.

In the integrals each variable x„ranges over a unit
sphere. Also xi ——ki/kv, etc.

The equilibrium density depends slightly on the
statistics. To compute the equilibrium density p p of the
fermion system at P= T=0 observe that t for (p—ps) 2

&(ps']

Ep (p) = Ep (ps)+ 2NMc14'DQ 011)/044]2. —(31)

Here, we use the relations

Q2 ($2E/(1Q2) QT/pQ g+Mc2 (32)

connecting the second derivative of the energy with

respect to volume with the compressibility E(p) and the
velocity of first sound c(p) at absolute zero. The
corresponding formulas for Ev (p) require evaluation of
first and second derivatives of Fp ~ with respect to p

(or 0). The leading term Epiv presents no difficulty, but
the others require knowledge of how S(k) depends on p.
To estimate the first derivative, we introduce a scale
transformation r —+ l1r into g21(r) to adapt the observed
function to a range of densities. The normalization
condition,

E2v = g k„„'u(k„„)(P„„"")„
2M% ~&~

(28) t g~(r) —1]d~= —1, (33)

3A'
Epv= — p k(„'S(k4„)u(k„„)u(k„()(P„„('"),.

2~~2 i&~&a

H. W. Jackson and E. Feenberg, Revs. Modern Phys. (to be
published).

requires p/)1'= pi1 or 'A= (p/pic)"'. The corresponding
transformation for k is k-+ k/X. Observe now that
S(kv(ps/p)'"x) is independent of p. Consequently, all

successive approximants gas in Eq. (30)]have the same
dependence on p (varying as p'").
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— BAJ~ 2
0 -sF&

80 3
(34)

This procedure may give a reasonable estimate for the
first derivative of b,E~(p) with respect to the volume,
but cannot be trusted for computing higher derivatives.
In particular, experience with related problems teaches
that the second derivative may be smaller by an order
of magnitude than the estimate derived from the ex-
pectation value of IIO with respect to the scaled wave
function.

These remarks serve to introduce formulas exhibiting
the dependence (in a schematic manner) of L&'~ and
related quantities on p (or 0). The notation

introduce a second generalized normalization integral

with the property

( P V (r;,))= —lnJ~ (gg)
dn

(4o)

and compute Jih (gg) by a sequence of successive ap-
proximations paralleling the development in Sec. II:

J (n) = (p )'e "» [1+e,„„(12)]dvig. ..iiy

JN(n) = (It, )'q'exp[a g V(r;;)]q,y,dr„...~, (39)

82DE,~ 10
b"= 02 —aI:+

802 9 PB

concentrates the uncertainty in the derivatives in
dimensionless parameters 5' and 6".From the preceding
discussion, we consider 8' 1 and 8"(&1 as reasonable
possibilities.

In terms of 6' and 6",

Jl (a)= Qo )'expn[U(rig)+V(rgg)+U(r»)]

X[1+el (1,2)+e,„„(1,2)

+e„l(1,2)+el (1,2,3)]dill. ...i~y

=1+Vi +U +V i+Ui (41)
0—Qg

E'(p) =P-'(pe) 3~E'( e)—&'

Qgg

The exact parallels to Eqs. (19) and (21) now hold for
Jill(n) with U cluster integrals substituted for the
corresponding X's. We need explicit formulas for the

d--, drttyse (td. ty'
~

~

till y-type cluster integral» and their derivatives with re-
9 iViVc&' k Oil I spect to a (denoted by F') all evaluated at a=0.

(36)
Equation (41) yields (at n=0)

It is clear that an external pressure is required to main-
tain p= p~ when the statistics is changed; consequently

is certainly positive. The correction term 5" in Eq.
(35) accounts for the decreased compressibility as-
sociated with the zero-point motion of the degenerate
fermion gas as compared with the corresponding boson
gas.

III. CLUSTER DEVELOPMENT FOR THE FERMION
RADIAL DISTRIBUTION FUNCTION

I'imn= 2

(P B)2eskmts ~ rtgd& (P mn)

(P B) V (r )[1 esktan rig(P mtt) ]dil

(,I, B'l2&i(k~r» r1+ki»» r2+k»l. r3)d& /p lmn)~'0 12 ~ Ny mnl y sp

(42)

Ke wish to express the fermion radial distribution
function in the form

g. (r) =g»(r)p(r),

with F(r) given by a practically useful cluster develop-
ment. To compute gr(r), we start from the observation
that for any function V(r)

9o')'[V(r»)+ U(r»)][e'"'- "'(P-l'")

+elks)sts rig(P mn) +eskttl'gtg(P ttl) ]dit 3

+2 (Po )'[V(r»)+ U(r»)+ V(rgi)]

Xe (kl rsl+kmmn ~ r k3+i ~ rtsgidit &(p /mrs)

g ()U()d.

Thus, gr (r) is the coeKcient of &21VpV(r) in the integral
formula for the expectation value of P;&, V (r;;).

To compute the expectation value in Eq. (38), we

The statement of results is simplified by introducing the
function

2p K/2v

h(kpr)= —P e'""'
Q n=1

=3(sinker —krr coskFr)/(kyar)3, (43)



~)48

appropriate for equal populations in all spin and isospin
states. Equations (38), (40), (42), and (43) in con-
junction with the I"-type analog of Eq. (21) and using
the Kirkwood form for p(1,2,3) now yield

1
gF(f12) gB(1'12) 1 h (~ipr12)

2p

p
gB(r22) f(r12)72'(&~r22)di 2

p+ h(kPr12) gB(r22) f(r12)
2p

Xh(k2r12)h(kPr22)d22+ . . (44)

Other two-particle distribution functions can be de-
fined by associating projection operators Q,; with the
potential V(r,;); i.e., operators to select out pairs of
particles for which the spin (and isospin) state is
prescribed. Such functions should prove useful in

studying various aspects of the nuclear problem. '

IV. CONNECTION WITH A QUASI-PARTICLE
FORMALISM

So far we have computed diagonal matrix elements of
the identity and of the Hamiltonian operator using
basis functions generated by single-model configurations.
Observe that the basis functions LEq. (1)]do not form
an orthogonal set and obviously are not eigenfunctions
of H. Nondiagonal matrix elements are needed to im-

prove the theory of the ground state and to determine
the spectrum of excitations involved in the properties of
the liquid at low temperatures. In the absence of in-

formation on nondiagonal elements, what physical con-

sequences can be deduced from the set of diagonal
elements' First of all, the ground-state energy and

equilibrium density are probably determined with mod-

erate accuracy by the single ground-state basis function.
The same remark applies to the exchange integrals in-

volved in the magnetic properties of the ground state
(although the accuracy may not be good enough to
distinguish between strong paramagnetism and ferro-

magnetism). The velocity of ordinary sound is also

given with fair accuracy simply because the elastic
properties of the ground state are largely determined by
the boson energy term E2B(p).

If we leave the ground state and ask for the level

density (or the effective mass) involved in computing
the speci6c heat, the situation is much less favorable.
Just the fact that the basis functions do not form an
orthogonal set destroys the possibility of giving a
rigorous interpretation to the spectrum of expectation
values. Nevertheless, it is worthwhile for the purpose of
orientation to use the expectation values to compute an
admittedly crude approximation to the true energy

2 (21r) 'p'

0'

K12{ni+n2++ni n, )dkidk2,

111 K,2 2T,T2T, (.,P22,"'nin2n2)dk, dk2dk2
2A'2 (21r) '

2 (22r) 'p'

X K12;3(n1+n2+n3++nl-n2-n2-)dkldk2dk2

"L.D. Landau, Soviet Phys. —JETP 3, 920 (1957); 5, 101
(1957l.

"A. A. Abrikosov and I. M. Khalatinkov, Reports on Progress
irI, Physics (The Physical Society, London, 1959),Vol. 22, p. 329;
Soviet Phys. —Uspekhi 1, 68 (1958).

spectrum. This objective is attained by using Eqs. (27)
and (28) to define quasi-particle energies in the manner
of I andau's phenomenological theory of liquid He'.""

For spin —', particles, let n~(k) denote the occupation
number of the single-particle orbital defined by the
wave vector k and the spin orientation + or —.These
numbers can be combined to form the distribution func-
tion n(k, e) expressed as a diagonal matrix in the spin
space by the formulas

n(k, e) =n(k)+An(k)0„
(k)=-', Ln (k)+n (k)), (45)

an(k) =-', Ln+{k)—n (k)$.

The implicit summation over spin states in the preceding
analysis is now replaced by an explicit trace notation
using the symbol T„ to denote the diagonal sum over
spin states + or —of the nth particle. Also, the spin
exchange operators are given by

P21 =
2 (1+121' 122), («)

&23i = I'3& ~a

The following notation proves convenient:

K12 (Ii ~12 /2ild)n(~12))

K12;2 (fi ~12 /21'�)s (~12)+{~22)n(41)1

ni=n(ki, ei), ni~ ——n~(ki), etc.

Using Eqs. (45), (46), and (47), the several terms oc-
curing in Eqs. (27) and (28) can be written in a form
suitable for arbitrary distribution of particles in the
single-particle states:

n h~h~
g Tn(k)dk

(22r)' 2M

lV A'k'
(n++n )dk,

(21r) 'p 2M

0'
K12T1T2(P,1"n,n.)dkidk,2'�(21r) '
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;s generated b
~ ~ ggE in the to"a

s the quasi
A variation "

8 Landau deane ~ .
h

th replacemen
h e@cien«f ~~

t I-+F3+ Fs .
k (F) int

e
(k ) ast e coeparticle energy e

formula for 5E~:
with

ected leavingf (g„)2 may be "'g"Terms of order o
. k„~s) in the form

55)k ks)(1+~'~2)p g) 2

T e(k, (F)bn (k,(F)dk.
322r)

27 andelo men. t of bEP from Eqs.The explicit development o
(48) yields

Efo(ki, ks) =2E

; +I(- 1+&31;2)ns s. (56)X (+12;3 23;1

e(ki, (F1)=
&'kg'

2M (22r) sp
E 12T2(F21»232)dks round-state distri-n e

' '
n to the zero-spin groIn the application o

bution, we have

(lt 12 8++23;1+ltsl; 2)1

T p»3232233) dksdks.XT2T3 281 2

(Fi) is made explicit byndence of e(ki, (F1 is maThe spin dependen
introducing

T (I' »232) =ns+o1,6232)

(51)T2Ts (&231 2
—

s»3232333) = 2 232 3+

-s i ribution (complete yn state distriF - '
) d (Fermi spheres , e ki, (F1 is in
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TABLE I.Measured and computed properties of boson and fermion systems (Mass 3 and 4) at 7=0. First and fourth rows: experimental
values at P=0; second and third rows: computed values at p =pg,

Mass Statistics

BE
FD
FD
FD

Spin

~ 0 ~

0

0

0.0218
0.0218
0.0218
0.0164

~ ~ ~

4.52
7.37
4.96

E
(atm ')

0.0122
c

~ ~ ~

0.038

C

(m/sec)

239
c

~ ~ ~

180

Eo/E
('K)

—7.14—5.45—5.62—2.52

~ ~ ~

1.21
~ ~ ~

2 82b

x/x p

c
d

11.1

K. R. Atkins, Liqgzd Helium (Cambridge University Press, New cwork, 1959).
A. C. Anderson, G. L. Salinger, W. A. Steyert, and J. C. Wheatley, Phys. Rev, Letters 'F, 295 (1961).' The present calculation may not give satisfactory numbers because either (&) density dependence of S-(k) is required fEqs. (62), (69)j; or (2) the

n-particle cluster integrals (n &3) cannot be neglected LEqs. (60), (62) j.
d Ferromagnetic ground state.

has the consequence that

X=—1Vpx/QBC

=Xpp, '/2 V"(p,0). (68)

to the formula given in reference 11 for cp'. Note that
all quantities in Eq. (62) are evaluated at the same
density.

Equation (62) reveals a curious connection between
the susceptibility and the velocity of sound. This
correlation of elastic and magnetic properties can be
traced to the fact that in Eq. (55) only one function
occurs, the common factor of "1" and "oi o2". In
I.andau's formulation the analog of Eq. (55) is

f(k, ,k,)+f'(k, ,k2) ~g. 0,, (63)

with no connection between f and i provided by the
general phenomenological considerations. In the present
context, the difference between f and f' comes from
cluster integrals involving four or more particles.

It is possible to derive alternative expressions for the
physical quantities of interest. For example, the eGec-
tive mass is given directly by the simple formula

M*=k'k p//de(k)/dk]g I, . (64)

To compute the susceptibility we observe that the
numbers E+ and 37 of particles with + and —spin
orientations di6'er from 2E when the system is in a
magnetic field. With cV~ ——xone(1+x), the ground-state
energy in the magnetic field BC has the form

Eov(p, x)=Eo~(p)+V(p, x)+V(p, x) EpXx- —
=E (p)+2 V(p,O)+x' V"(p,0)—ÃpBCx, (65)

in which
V"(p,0) = $e)'V(p, x)/crx'j. =o.

Equations (30) and (48) yield

2V(p, x) =Eog(p, x) (1+x)
+EoÃ(p, x) (1+x)'+Eoov(p x) (1+x)'. (66)

In Eo v(p, x) the first variable p enters because of the
dependence of S(k) on density. The second variable x
results from the replacement of kv by k v+= k v(1+x)' '
in Eq. (30).

The condition for minimum energy t if V"(p,O)) Oj,

x=EpX/2 V"(p,0), (67)

A general proof that the alternative formulas for M*
are equivalent has been constructed for the Eoi
and Eoov terms of Eq. (66). The complete identity of the
alternate expressions is verified in Sec. V for a particular
choice of S(k).

Equations (32) and (35) provide another expression
for the velocity of erst sound

10 AE~'

cv(ps) =c~(p~) 1+— 5", (69)
9 SMcg'

which should reproduce the result of Eq. (62) if the
density dependence of S(k) is taken into account cor-
rectly. We have verified the connection for a dilute
system of hard spheres [Eqs. (80) and (82)$.

V. A NUMERICAL EXAMPLE

To learn something about the magnitudes of the
quantities occurring in the theory we have made calcu-
lations for a hypothetical helium type fermion system
(spin o) of mass 4 (at the experimental density of He II).
For S(k) we use the empirical function obtained from
the analysis of x-ray diffraction in liquid HeII at
essentially zero pressure and temperature. "This func-
tion occupies a central position in recent theoretical
studies of the ground state and low excited states of
liquid He II.' '" The equilibrium density p& and the
binding energy per particle Eo (p&)/X are also needed.
Measured values appear in the erst and fourth rows of
Table I. Values for He' are given to show the relative
importance of the dependence on mass and statistics.

The needed integrals are evaluated in Appendix B.In
the following formulas 8 has the value 0.195.Fquations
(30), (B3), and (B4) (with v= 1) lead to

1 1 — (1 6
&o'(ps) = &o'(—pa)+-,'cv 1——

i

——-&
k2 7

3 352 472
—8— 8' 8'

—7.14+2.72 (1—0.333—0.046) 'K
= —5.45'K. (70)

"The data on 5(k) is taken from i.. Goldstein and J. Reekie,
Phys. Rev. 98, 857 (1955) and modi6ed as described in reference 4."H. %'. Jackson and E. Feenberg, Ann. Phys. (New York) 1S,
266 (1961).
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for the state of zero spin (equal populations of the
+ and —Fermi spheres). Here each term E() ~ is
evaluated separately to exhibit. the convergence of the
cluster formula. The convergence appears to be good,
perhaps deceptively so. Obviously, Eo and probably
also pz serve very well as physically meaningful zeroth
approximations in the description of the fermion system.
This result conforms to the conclusion reached by
de Boer" in his analysis of the quantum mechanical
principle of corresponding states (internal energy and
specific volume depend primarily on the magnitude of
the strength parameter A* and relatively little on the
statistics).

The combination of Eqs. (59), (60), and (B8) yields

148 1844
=1—(-,' —2B)—(B— B'+ B')+

35 525

tions to the energy from 4 and 5 particle cluster integrals
may conceivably reverse the sign of V"(p,0), (ii) the
increased range of k values associated with x=+1 as
compared with x =0 reduces the over-all accuracy of the
quadratic approximation for S(k) fEq. (B1)j, (iii) the
convolution approximation for p(1,2,3) used in evalu-

ating three particle cluster integrals may be inadequate,
and (iv) the energy may be lowered at x=0 by pairing
effects as in the theory of superconductivity.

Clearly, exchange eBects are of crucial importance in
the calculation of magnetic properties near absolute
zero. It is also clear that an adequate calculation of
magnetic properties requires great care and thorough-
ness in the evaluation of the exchange contribution.

The identity of Eqs. (64) and (71) is easily verified

using e(k) given by Eq. (BS). To compute V"(p,0) of
Eq. (68) observe first that Eqs. (66) and (70) yield
immediately

= 1—0.110—0.060+

= 1/1.21+

Xo 39 704 8024—=1—(2—6B)— B B'+ B—')+-
x 7 35 525

2 1 6

(71)
—V (px) = Be)p (p) (1+x)'I' (1+x)— 8(1+—x—)@—B

S 2 7

3 352
X (1+x)'——8 (1+x)'(' — 8'(1+x)"

7 315
= 1—0.830—0.435+ (72)

1—Ep~(pi), x= a1)S
1

E() (pri)+ V(p, 1)— —
S
1 (1 6

=—Be (pp)+ —2 e e (p ) 1—
2~~
——2 PB)

iV k2 7

)3 352 472
4~1 2 eeB 2'"B'+ 2'B')+.

I 7 315 735

= —7.14+2.72(1.587—0.745 —0.283+ .)'K

= —5.62'K, (73)

lower by 0.17'K than the lowest state of zero spin.
Thus, the literal acceptance of these computations leads
to the conclusion that the hypothetical fermion-type
mass-4 system is ferromagnetic at absolute zero. How-
ever this conclusion is uncertain because (i) contribu-

"J. de Boer, Physica 14, 139 (1948); in Progress in Iow-
Temperuture Physics, edited by J. C. Gorter (North-Holland
Publishing Company, Amsterdam, 1957), Vol. II, Chap. 1.

The negative value computed for x can be traced back
to a negative value for V" (p,0) PEqs. (65) and (66)j.
This means that we have determined x at a maximum
value of the energy and not at a minimum as required
by the physical meaning of the susceptibility.

With no external field minimum energy occurs at (or
near) x= &1 with the value

Consequently,

472
SB(1+x)2 (1+*)' . (74)

735

2 -5 2 8 5 1 10 7 6—V"(p,0) = —'e (p) —X———X—X———X—X—&
X 3 3 3 3 2 3 3 7

13 10 3 352——X—X-8—2O
3 3 7 315

17 14 472
+—X—X &' . (75)

3 3 735

VI. LOW DENSITY HARD SPHERE SYSTEM

In this section, the method developed in previous
sections is applied to a system of hard-sphere fermions

Equations (68) and (75) reproduce the result of Eq.
(72). Thus, the identity of the alternative formulas for
eRective mass and susceptibility Lat least for the as-
sumed form of S(k)$ is verified.

Equation (44) gives the radial distribution function
of the fermion system. A numerical integration is
carried out for the mass 4 system with the resulting gl
shown in Fig. 1. The curves are consistent with the
expected effect of the exclusion principle in reducing the
tendency of particles to cluster near a given particle.

Finally, we repeat that the quasi-particle formalism
is needed in this paper only to secure an estimate of the
effective mass (or level density) at the Fermi surface.
All other quantities relate to properties of the ground-
state basis function.
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LO

I l l l and obtain, retaining only the leading terms in kJu
consistent with the above prescription, the following
results from Eqs. (30), (59), (60), and (62):

1 -3 2
E—o~ e=p + —kg—a+0 (k p'a')

5 3x

M/M" = 1+O(kp'a' ink pa), (81)

0—
2.0 3.0 4.0 5.0

r (Engstroms)

I I

6.0 7.0

FIG. 1. Radial distribution functions of the Bose and Fermi
mass-4 systems at the density of the He II. g&, the experimental
curve; gJ, calculated from Eq. (44), E+=~~X.

1 A2—Eo~ ——4m up
Ã 2M

pg3 1/2

1+ +
15

( @ 2 — (pas 1/2

ceo =16~ap~
(2M

(77)

Both Eqs. (76) and (77) are subject to the restriction

k pa«1. (78)

A meaningful connection between the fermion and
boson solutions is possible only if the liquid structure
factor S(k) approaches zero at small k in all orders of
approximation. The need for this condition has been
recognized and emphasized in recent studies of liquid
He4 using a cluster development procedure. "Since the
known terms of order (kpa)s" in S(k) fail to vanish at
k=o we have not attempted to include them in the
present calculation. Consistency then requires omission
of all three particle cluster integrals in the fermion
theory. Thus, we use

(X/es)foo(k F,y)
= (1—y) f L1+8kza/3s. (1—y)j '~' —1) (79)

' T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957)."The discussions can be extended to fermions of arbitrary spin
degeneracy. The resulting energy formula agrees with that of
reference 18.

Clayton Williams, Ph. D. thesis, Washington University, 1961
(unpublishedl.

at low density. The essential function needed in our
calculation is the liquid structure factor S(k) of the
corresponding Bose system. For such a system Lee,
Huang, and Yang" find

S(k) =k(k +167rap) 'r +O(krp ~'a ~') ka((1) (76)

where a is the hard-sphere diameter. For definiteness
we consider fermions with twofold spin degeneracy"
(k p'=3''p). The energy per particle and the velocity of
first sound of the corresponding Bose system are also
given'5 as

1 fikp '- 2
ci."——— 1+ kpa+—O(k p'a'), (82)

3 3f

2
Xo/X = 1 kpa+—0—(k p'a'). (83)

APPENDlx A

Comments on the Cluster Formalism

(a) The linear dependence of inI~ (P) on iV requires, in
general, ' that

X i" 0(1/1V" ' ') (A1)

The index l denotes an additive component in X~2...„
which vanishes unless t relations of linear dependence
hold among the wave vectors ki, ks, , k . To obtain
estimates of the cluster integrals we introduce the
generalized superposition approximation"

P(1,2, ,r~)=p" ' lI g(~* ),
1&i P j(n

(A2)

and find without difhculty that condition (A1) is verified
for m~&5. The first failure occurs at v=6 in the result
X/934M&" O(1/E'). We interpret this result as evidence
for the increasing inadequacy of the superposition form
as e increases, an inadequacy which has catastrophic
consequences in this application at n=6. Nevertheless,
the superposition form, when nothing better is available,
can be used to obtain a reasonable and possibly moder-

' T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).

The first three formulas as far as they go are in agree-
ment with those given by Lee and Yang" and by
Abrikosov and Khalalinkov. " Also, Eq. (83) gives an
explicit formula for the susceptibility.

An improved formula for S(k) would permit evalua-
tion of higher order terms in Eqs. (80)—(83) and make
possible a more complete comparison with the expan-
sions in reference 11. Exact agreement cannot be ex-
pected because unavoidable errors are introduced by
use of the Kirkwood approximation (or the alternative
convolution approximation) in evaluating the three-
particle cluster integrals. Also the restriction of the
model function to a single Slater determinant may
introduce errors in evaluating terms of higher order in
kpa. However, this restriction is not essential to the
method. The possibility of a general linear combina-
tion' " of determinants should be explored.
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ately accurate evaluation of the four- and five-index
cluster integrals.

(b) The derivation of the cluster expansion for 1nI)q
will now be examined. We erst attempted to extend the
method of Iwamoto and Yamada' beyond the three-
index approximation of Eqs. (21) and (22). Our efforts
revealed an inconsistency in the basic equation Lrefer-
ence 1, Eqs. (23) and (25)]. We are indebted to Dr.
Iwamoto for an illuminating comment on this point.
These equations can be modi6ed, as indicated by
Iwamoto, to give consistent results, but we prefer to
describe a simple alternative procedure. The discussion
may start from the general cluster sum

~+ — +~~, +

-Q +~+++--
Fin. 2. Diagrammatic representation of Eq. (AII).

transform Eq. (A"/) into

'Qp qpn
p n&p

(A9)

E(1,2, &V)=g( X" X" }
m1 faCtOrs

Xf Xhi . X„}.
, (A3)

m2 factors

in which the summation extends over all possible
products subject to the conditions (i) no repeated
indices; (ii) permutations within a bracket not dis-
tinguished; (iii) each X a symmetrical function of its
indices, and (iv) Pi=i" jlil=E. Let

or the equivalent form

e' g=q1+gx, „e 'gp+P x,„„e 'gp '~" + . (A10)
n(p

We pause to note that 86„ is independent of l'lt; also
that the exponent G —()Gq —lIGp in Eq. (AS) fails to be
exact by terms of order O(1/.V). Equations (A9) and
(A10) can be solved by an obvious iteration procedure.
The result is

then

&ij ~ h l Xij "h l/XiXj ' ' ' XhX lq

E(1,2, jV) =Xi Xh(I(1,2, JV) I

(A4)
e q = 1+P xqp P xqpxpn+q P xqpn

np np

+s Q Xqmnp P (qXqpXpnm+XqpnXnm)

I(1,2, 1V)

= 1+ Q xmn+ Z x)mn
m(n Z(m&n

+ P (Xltimn+Xh(Xmn+XhmXln+XhnXim)
h&l(m&n

+ P (Xhinstnp+Xh lXmnp+ ' ' ' +XnpXhlm)
h& l &m&n& p

+ .. (AS)

Next, consider the functions generated by omitting
all terms in Eq. (A5) containing indices in the set
(ij k). The reduced I functions defined by this
process are written

I(;j...» =I(1, 2, i 1,i+1,— j—1,j+1,
fi —1 0+1 jV). (A6)

To simplify the following analysis let I=I(1,2, . S).
The reduced function I(,) obtained by omitting a single
index q is easily seen to satisfy the equation

I(q) =I QxqpI(qp) —g xqpnI(q—pn)
p n(p

+ P (xqpxpnxnm+xpqxpnxpm)+ ' ' '
~ (A1 1)

A diagramatic representation (Fig. 2) is found useful at
this stage to characterize the different terms. The
meaning of the diagrams is obvious as seen from com-
parison of Eq. (A11) and Fig. 2; i.e., the open circles
refer to free dummy indices of a summation, the solid
circles to an index with the value q. This is illustrated in
Fig. 3.

Equation (A11) yields the equation represented dia-
grammatically in Fig. 4. Figure 4 is essentially a differ-
ence equation for G. The solution can be found by
inspection. We get, up to terms involving five indices
(not given in Fig. 4), the equation represented in Fig. 5.
The first few terms are in agreement with those given in

xqp ~ ihI(qp "ih) ' ' ' xlq ~ )q (A7)
h&l

The substitutions
I=e6

Fn. 3. Meaning of some
simple diagrams.

mn nlAnp

~6—56q

~6—56 —86@
(ep)

(AS)
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SGq~ + ~i . — +2 +~i

+ 2 2 +2 +~ +5

-g~+Q +. Q ) +--

FIG. 4. Diagrammatic equation for 8G~.

reference 1. A discussion of the procedure and the rules
for getting the general coeKcients in the expansion of
G will be given in a forthcoming note.

Observe that four distinct cluster types with four
indices appear in the formula for G. The explicit reduc-
tion of the cluster integrals using approximate forms for
p(1,2,3) and p(1,2,3,4) reveals a large amount of
cancellation among the four types, confirming expecta-
tions based on the properties of the cluster development
for the classical sum of states. " Internal cancellation
(within a single type) is also important in determining
the magnitude of the fourth-order contribution to the
physical theory. To illustrate one aspect of the internal
cancellation consider the cluster integral X~, ~ „as
defined in Eq. (20). Possibilities for internal cancellation
occur in the component of X&& ., generated by the
independent pair component of p(1,2,3,4):

X'"i„~ from p'ff(ri~) f(r2q)

+f(r&3)f(r3,)+f(rsi)f(ri2)]. (A12)

The explicit products of two-index X's cancel out leaving
a remainder which vanishes unless relations of linear

Q = — + — —— +— +—

dependence such as ki„i——k„„hold among the four wave
vectors LEq. (A1) and reference 1]. Some internal
cancellation occurs within the remainder because of
alternations in sign associated with even and odd
permutations.

It appears that the ultimate residue remaining in
fourth order after all cancellations, internal and ex-
ternal, cannot be estimated without elaborate numerical
calculations. We have not attempted these calculations,
but venture to suggest that a partial inclusion of fourth-
order terms in the physical formulas )as, for example,
contributions from X&"i„i „] can hardly be justified
before the complete fourth-order contribution has been
evaluated.

APPENDIX B

Evaluation of Integrals

The integrals occurring in Eqs. (30), (52), and (57)
can be computed by standard methods of numerical
integration for given S(k). However, the fa,ct that the
experimental S(k) for He' is represented fairly well

by a quadratic function of k on the range 0~&k~&2kp
=1.628 A ' makes possible an analytical evaluation.
The formula

S(k) =8 (k/k p)' =Bx', 0 & x & 2

with 8=0.195 is found to give the integral

(81)

S(2krx)x"dx,

with an error of less than 1.3% on the range 1 &~ n ~& 8.
An error of only a few percent can be expected in using
Eq. (81) to evaluate the integrals occurring in Sec. IV.
We find, with the aid of Eq. (81),

1 3 1 6
24 x4u(2krx) (1—-', x+-,'x') dx= —— 8, (85)——-

0 52 7

+ Q +
xi2 S(krx12)u(kpxi3)u (kpx23)dxidx2dx3

l+ + 0 ~ ~ ~ ~

2 8 6

FIG. S. Diagrammatic equation for G.

3 3 352 472=- -a — s+ a ). (s~)
5 7 315 735

Also Eqs. (52), (57), and (58) become

3 1 3 1 51
e(k)/er ——x'+ —+x'+—x4 8——+—x' — +—x'+—x' 8

14 2 10 2 140 2 4

241 221 19 1 q 109 149 333 3
+ *'+—x'+-x' ~&'+ + x'+- x'+—*' ~' (85)

420 140 20 4 j 490 210 350 10

T. L. Hill, An Introduction to Stutistzcol 3fecfzanzcs (Addison-Wesley Pub1ishing Company, Inc. , Reading, Massachusetts, 1960),
Chap. 5.
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—fo(424) =yxu'(»iP —1)——»12 1 xk+x2 + ++~ xk'+ x2 +xkx8~+ xk'X2+

6 kI 2 16
+8 (Bx&2'—1) ——+2xP+2x2'+x&'+x&' ~+8 —+—xk x&+ (xP+x8')

7 i 3 7

xk'xy+xk x2 ~+4$1 x8 +8 (xk +x8 ) ~ 2 (36)

E 19 200 884f„(k—y) [(2,8=—1)+(1 48)y+28y—'j+ 8+ 8—' 8')—
ep 7 21 105

296 788 16 12 q 4
+(28 8'+ —8' y+ —8+—8'+—8' ~y' 8'g . —(82)

35 105 S 7 J S

The integrals needed in Eqs. (59)—(62) are now evaluated:

3$

4e~

3g

4ep

8 139 103
f (k y,y)dy (48 ',=) 48 —-8—'+ 8—'),

7 10 10

148
f (kg, y)ydy (,' —28)=—

-CB
— 8'+ 8'I

35 525

Here, in each formula the contributions from the two- and three-particle cluster integrals are grouped separate1y.


