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F16. 1. Perturbation
@) terms for 7’=0. Dashed
lines correspond to zero-
momentum  particles,
solid lines to excited
particles.
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two-body potential, we obtain for e
e = (k*/2m)*+NoV k%/m. (3.2)

For the charged boson gas with a uniform positive
background,
Ve=4re’/k%, k=0,

0, koo, (3.3)

where v is the volume of the system, and it appears
that we obtain an energy gap for k— 0. This results
from taking 2’s which are not well behaved at the
origin, namely,

hka# Vo.

k—0
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Thus, the energy gap is probably a result of the approxi-
mations. The uniform positive background model leads
directly to this discontinuity and the replacement of
this by discrete positive charges will remove it. Further,
higher approximations to the 2’s may not have the
1/k?* dependence for low k.

Lastly, we notice that the importance of using factors
Ny rather than &V in Eq. (3.1) has often been stressed.
It is, however, easy to see that the sum of all diagrams
like those in Fig. 1(b) contributing to 2 (k,w) give us
2N’V ¢ for low values of k and w approximately, whereas
the diagram in Fig. 1(a) gives us No(Vo+Vy), the
contribution we have already included in Eq. (3.1),
giving a total contribution of 2NV V. A similar argument
can be applied for Z1,°(k,w) at nonzero temperatures.
For slowly varying potentials it may, therefore, be a
better approximation to put

211'3(k,w) = N(V0+ Vk).

Similar considerations could apply if we replaced V'
by a reaction matrix element. There is no analogous
argument for Zos. A reasonable model for discussing
the condensed boson gas at temperatures different from
zero might be to assume that ;; was independent of
temperature and that Zos depended on the temperature
solely through its factor of V.
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A single-channel scattering process with the set of quantum num-
bers C is completely characterized by a phase shift, n¢. A common
approximation in the determination of 5¢ for the scattering of a
particle by a compound system is to assume that, apart from the
possibility of an exchange of the incident particle with an iden-
tical target particle, the target is unaffected by the incident
particle. The incident particle is then scattered by the static
potential generated by the target in its ground state. The phase
shift determined in this approximation, to be called 5¢?, can be
calculated for a number of scattering processes. Let H represent
the Hamiltonian of the entire system, incident particle plus target,
let Epo be the ground-state energy of the target, and let E’¢? be
the smallest energy for which E'¢2+4Ero— H is a negative definite
operator in the space in which the given quantum numbers are C

1. INTRODUCTION

HE minimum principle formulation for the de-
termination of the scattering length in single-
channel scattering!2? has most of the properties that one

* Supported in part by the Geophysics Research Directorate
of the Air Force Cambridge Research Laboratories, Air Research
and Development Command, by the Army Research Office,
Durham, North Carolina, and by the Office of Naval Research.

and in which the ground state of the target is projected out.
Utilizing the generalized optical potential formalism due to
Feshbach and others, it can then be shown that ne>ne? if the
incident energy is less than E’¢?. (The bound is probably valid
for higher energies, perhaps for all energies for which the process
remains a single-channel process. If so, however, the difference
between n¢ and n¢? for these higher energies will generally be large,
of the order of a multiple of m, and the bound will not be im-
mediately useful. We will, therefore, be concerned primarily with
incident energies £’ less than E’¢®.) Furthermore, as one allows
for more and more virtual excitation of the target system, the
approximate phase shift is guaranteed to improve if £’ is less than
E'¢?, and E’'¢? will itself increase. Applications are given to the
scattering of electrons and of positrons by hydrogen atoms.

would want to have. At nonzero incident energies,
however, the minimum principle formulation for the

1 A preliminary report of this work was given at the New York
Meeting of the American Physical Society [Bull. Am. Phys. Soc.
7,41 (1962)].

11. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959);
117, 1095 (1960).

2 L. Rosenberg, L. Spruch, and T. F. O’Malley, Phys. Rev. 118,
184 (1960).
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determination of the phase shift in single-channel scat-
tering and of the elements of the reactance matrix for
multichannel scattering requires® truncation of some of
the potentials and the erection of potential barriers,
with the consequence that the complexity of the calcu-
lation can be very much increased. There is an alternate
method* which can provide upper and lower variational
bounds at zero or nonzero energies, but this latter
method requires among other things the evaluation of
matrix elements of A%, where H is the Hamiltonian, and
can therefore also be quite cumbersome. It would be
very useful to have a minimum principle valid at non-
zero energies that did not require any artificial tamper-
ing with the potentials and that did not require the
evaluation of matrix elements of H2. We will not in this
paper present such an improved minimum principle,
but as a preliminary to doing so, and because it is of
interest in its own right, we will show that a bound on
the phase shift for single-channel scattering can often
be obtained by a method which does not require the
evaluation of matrix elements of H? and which treats
the true potential.

We will be concerned with the case for which the
incident particle, the target, and the energy are such
that elastic scattering is the only possible process and
such that the scattering can be decomposed in some
a priori way, through conservation of angular mo-
mentum for example, into uncoupled channels. When
the incident particle is distinguishable from the target
particles, a standard approximation in the study of such
single-channel processes is the static or one-body ap-
proximation, in which it is assumed that the target
system remains in its ground state throughout the
scattering process. In this approximation, the problem
reduces to the one-body problem in which the incident
particle is scattered by the static potential generated
by the target in its ground state. For an incident rela-
tive energy E'=7%%k*/2u, where p is the reduced mass,
the static approximation phase shift for angular mo-
mentum L will be denoted by 7.7 (k) ; the index L and
the argument % will, however, often be omitted. When
the incident particle is indistinguishable from some of
the target particles, the possibility of exchange must be
taken into account, and the approximation analogous
to that described above is sometimes again referred to
as the static approximation and sometimes as the static
exchange approximation. We will use the phrase static
approximation to describe both the distinguishable and
indistinguishable cases.

Among the many scattering problems that satisfy
the requirements that we have imposed are the scatter-
ing of positrons by hydrogen atoms at energies below
3(13.6) eV, to avoid the possibility of pickup, and the

3 L. Rosenberg and L. Spruch, Phys. Rev. 120, 474 (1960); 121,
1720 (1961); 125, 1407 (1962).

¢T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951);
L. Spruch and L. Rosenberg, Phys. Rev. 117, 143 (1960);
R. Bartram and L. Spruch, J. Math. Phys. 3, 287 (1962).
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scattering of electrons by hydrogen atoms at energies
below £(13.6) eV, to avoid the possibility of excitation.
The possibility of electron-positron annihilation is
ignored in ¢tH scattering, and the possibility of radia-
tive capture is ignored in ¢"H scattering. (The inter-
action with the radiation field will be ignored through-
out.) For fixed energy, there is one phase shift for each
value of L for ¢tH scattering, and there are two phase
shifts, a triplet and a singlet phase shift, for each value
of L for ¢ H scattering. What makes the above two
examples of particular interest is that the true phase
shifts for L=0, n¢(k), are known with considerable pre-
cision for a range of values of k. The values of 9.7 (k)
can be calculated to practically arbitrary precision and
many calculations of very high precison have been per-
formed.® To our knowledge the observation has not
previously been made, but an examination of the data
shows that #o(k)>n0F (k) for all cases for which both
phase shifts are known. It will be the primary purpose
of the present paper to give some insight into the
origins of this inequality and to delineate as precisely
as possible the conditions on L and on & under which
this inequality can be expected to hold for the ¢e"H and
etH problems, and for other problems. (The methods
to be discussed are not in any sense limited to atomic
scattering problems.) The question is of some interest
for the static approximation is an extremely simple one
and a knowledge that 917 (k) provides a bound on 7z (%)
can be very valuable.

Furthermore, with the advent of high-speed com-
puters, it has become feasible to solve to more or less
arbitrary precision the problem for which the less re-
strictive approximation is made that during the scatter-
ing process the target can be in its ground state or can
be virtually excited to one of m excited states, where
for present computers m should not be more than
perhaps 5, and where the states would generally be
taken to be low-lying states. Examination of the nu-
merical results® for e”H and ¢*H scattering shows that
the results improve as one introduces additional states,
and that the results remain below the true value. This
point will also be discussed.

The basic equation in our approach is Eq. (2.14) [or
its equivalent, Eq. (2.26")]. This equation, which
contains a generalized optical potential, represents the
equivalent one-body scattering problem. (The potential
is, in fact, often referred to as the equivalent potential.)
The equation is of considerable importance, particularly
in nuclear physics, because it provides the theoretical
foundation for the optical model. Furthermore, one can
use the same approach to derive the resonant aspects of
scattering without having to introduce a channel radius,

§ A very nice review of the work that has been done on low-
energy scattering of electrons and positrons by hydrogen atoms
is contained in a paper by P. G. Burke and K. Smith, Revs.
Modern Phys. 34, 464 (1962). This paper gives the formulation
of the static approximation and of the improved approximations

in which some low-lying hydrogenic states are included, as well
as the numerical results that have been obtained.
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that is, without having to truncate the potentials. The
equation has been derived by a number of people.t7
Our notation follows that of Feshbach most closely.

2. STATIC APPROXIMATION—INCIDENT PARTICLE
DISTINGUISHABLE

The simpler case for which the incident particle is
distinguishable from all of the target particles will be
considered first. For purposes of simplicity, it will be
further assumed that the incident particle is spinless
and that the total angular momentum of the ground
state of the target is zero. The method can be readily
generalized to a much wider class of problems. It is
obviously generalizable to ¢"H scattering for which the
spins of the electron, of the positron, and of the proton
play no role. It can also be applied to the scattering of
a particle of spin by a target whose ground state has
a total angular momentum of zero, where the inter-
action of the incident and target particles can include
spin-spin and tensor forces. Finally, though all of our
considerations will be limited to the case for which
there is no Coulomb interaction, there would be no
difficulty in extending the results to include that
interaction.

Let q represent the coordinate of the incident particle
relative to the center of mass of the target and let r
represent the spatial and possibly the spin and isotopic
spin coordinates of the target particles. The total
Hamiltonian and total energy of the entire system,
target plus incident particle, will be denoted by H and
E, respectively. The ground state of the target has a
wave function ¥ro(r) and an energy Ero. E'=E—Er,
=7%?/2u will then be the relative incident energy. The
excited state wave functions and energies of the target
will be denoted by ¢71(x), ¥72(r), - - - and Ery, Erg, - - -,
respectively. By assumption, E lies below Eri, or
equivalently E’ lies below Eri—Ero, so that excitation
is not energetically possible. It may be necessary to
impose more severe restrictions on £ in order to elimi-
nate other processes, such as pickup, for we are con-
cerned throughout only with single-channel processes.

The regular solution ¥ (r,q) of

(H—E)Y.(r,q)=0, (2.1)
which satisfies the boundary condition that as ¢ — o,

W 1.(r,q) = ¥ro(r) Pr(cosO) sin(kg—3Lr+n)/q (2.2)

determines the phase shift 7z to within a multiple of .
O is the angle between q and some fixed axis.

We now introduce two projection operators, P and
Q, which operate in the space of the target particle
coordinates. P is defined by its operation on an arbitrary

S H. Feshbach, Ann. Phys. (New York) 5, 357 (1958); see also
H. Feshbach, in Ann. Rev. Nuclear Sci. 8, 44 (1958).

L. Fonda and R. G. Newton, Ann. Phys. (New York) 10,
490 (1960). Also, G. Breit, Phys. Rev. 58, 506 and 1069 (1940),
69, 472 (1946), B. Zumino, New York University, Courant
Institute of Mathematical Sciences, Research Report No. CX-23,
March, 1956 (unpublished) contain related materials.
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function f(r,q),
Pf(l',q) = [¢T0><‘I/T01 f: ‘I/TO(r)/'pTO(r,)f(r’yq)dr/) (23l)

that is, P projects onto the ground state of the target,
while Q projects onto all of the excited states of the
target, including the continuum states. The operator
P+Q is then the unit operator, and we can rewrite
Eqgs. (2.1) and (2.2) as

(P4Q)(H—E)(P+Q)¥ . F19=0, (2.4)
WP+ — o (r) P (cosO)
Xsin(kg—§Lr+n17t9)/q, (2.5)

where there is no difference between ¥ P*+¢ and ¥y,
nor between 7,7+ and 5.. The superscript notation is
unnecessary for present purposes, but will prove to be
convenient when some virtual excitation is allowed.
(See Sec. 4.)

Since P and Q operate in orthogonal spaces, Eq. (2.4)
can be rewritten as the pair of coupled equations

P(H—E)(P+Q)¥ . +9=0, (2.6)
QH—E)(P+Q)¥F+2=0. 2.7)

(The latter equation is, of course, itself equivalent to an
infinite set of coupled equations.) ¥ ,7+¥ can be written

in the form
Y PHe=3" ¥ri(0u(q), (2.8)
where, as g — o,
1o(q) — [sin(kg—3Lr+n7?)/q]P1(cos®), (2.9)

and where, for i5£0, #;(q) vanishes more rapidly than
1/q. The L dependence of the #; has been suppressed.
We then have that

Q¥ LPHe=3"" Yri(H)u:(q),

where the prime indicates, here and later, that the sum
is to be taken over the excited states only. It follows
that Q¥ P+9 vanishes more rapidly than 1/g as ¢ — «
and that the continuum portion of QHQ begins not at
Erq, as does that of H, but at Er;. QHQ may also have
some discrete eigenvalues below Er;;if there exist V¢
orthonormal states of total angular momentum L which
satisfy

QH—Ep 9Q%.,9=0, =1, ---, N2, (2.11)

with Er,?<Ery, the spectrum of QHQ in the space of
total angular momentum L will include the N ;9 discrete
eigenvalues Ez,9 The spectrum of Q(H—E)Q in the
space of total angular momentum L will then include
the Np? discrete eigenvalues E;,?—E and the con-
tinuum bounded from below by the positive value
Epi—E. (See Fig. 1.)

Ignoring the set of measure zero probability that any
of the E1,? are equal to E, it follows then that there is
no solution Vhom of the homogeneous equation

Q(H—E)Q¥pom=0,

(2.10)

(2.12)



SINGLE-CHANNEL PHASE SHIFTS

which vanishes more rapidly than 1/¢ as ¢— . The
inversion of Q(H—E)Q is then unique, and Eq. (2.7)
can be rewritten as

1

Q(E—-H)Q

If we substitute this equation into Eq. (2.6), we arrive

at
P[H-i-H —
CoE—mo

Equation (2.14) still depends upon r as well as q, but
in fact the r dependence appears only through the
presence of a factor ¥ro(r) on the left, which can be
dropped. Equation (2.14) is therefore a one-body
problem, entirely equivalent to the original problem, in
which the effects of virtual excitation are taken into
account through the presence of the term

1
PHQ——
Q(E—H)Q
The factor QHP represents virtual excitation from the
ground state, the central factor represents propagation
in the excited states, and the factor PHQ represents
de-excitation. Due to the central factor the expression
is only a formal one but it is elegantly compact.

In the static approximation, one introduces a function

VP (r,q) =yro(D)ud” (q), (2.16")
which is defined as the regular solution of

P(H—E)P¥P=0,

QU Pre= QHPY P*e.  (2.13)

QH—E]NLHQ:Q (2.14)

OHP. (2.15)

(2.17)

for which
uo (q) — [sin(kg—3La-+n.?)/q]P1(cos®).

The only difference between the definitions of 5z and
of 7P is then the presence of the operator (2.15) in
expression (2.14).

Now it is well known? for potential scattering that
if VO (r) and V@ (r) are real potentials which are not
too singular at the origin and fall off sufficiently rapidly
to define (real) phase shifts & and 9® for specified
energy and angular momentum, and if VO (r) <V ® (r)
for all 7, then M >7®. The proof of the monotonicity
theorem carries through in precisely the same way for
nonlocal potentials as for local potentials for all normal
situations. (For esoteric situations such as a bound
state embedded in the continuum, it may be necessary
to explicitly assume the phase shift to be a continuous
function of the strength of the potential. See Ap-
pendix B.) It follows that if the operator given by ex-

(2.18)

8 This theorem has been known for years but does not appear
in any of the standard texts. For a proof for local potentials, see
L. Spruch, in Lectures in Theoretical Physics, Boulder, 1961, edited
by W. E. Brittin and W. B. Downs [Interscience Publishers,
Inc., New York (to be published)], Vol. 4.
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F16. 1. Schematic plot of the spectra of (a), the total Hamil-
tonian A, and of (b), the Hamiltonian QHZQ in which the ground
state of the target has been projected out, in the space of angular
momentum L. Ero and the Ep; for 2>0 are the ground state and
excited state energies (of all angular momenta) of the target. E is
the total energy of the system and E’ is the incident relative kinetic
energy. For E'<F'1@, the static approximation phase shift 5.7 (k)
can be guaranteed to provide a lower bound on the exact phase
shift nz,(k), a lower bound which can generally be expected to be
within 7 of 9z, (k).

pression (2.15) is negative definite, then 5z,(k) > 5P (k).
Since

(Xz, PHQ[Q(E—H)Q'QHPXL)
= (QHPX1, [Q(E—H)QQHPXL), (2.19)

where Xz is a normalizable function and has a total
angular momentum of L but is otherwise arbitrary, the
phase shift inequality will necessarily be wvalid if
[O(E—H)QT™" is negative definite in the space of total
angular momentum L. Finally, since an operator is nega-
tive definite if its reciprocal is, we have our basic result,
that n.(k)>n.P (%) if Q(E—H)Q=Q(E'+Er—H)Q is
negative definite in the space of total angular mo-
mentum L.

From our definition of the Er,¢, it follows that
E'[2=E1,°%— Er is the greatest value of E’ for which
Q(E'+Er—H)Q is negative definite in the space of
total angular momentum L. Our basic result can then
be restated as follows:

nu(B)>niP(k) if E <E'L°. (2.20)

In arriving at (2.20), we need not fix the arbitrary
multiple of 7 in the definition of #.F. The particular
choice of the multiple that is made is irrelevant, for it is
only the difference between the phase shifts that ap-
pears in the inequality, and the difference is uniquely
determined by studying the (continuous) change in the
phase shift as the interaction in expression (2.15) is
slowly turned on.

We cannot hope to actually determine E’.9, but we
can hope to find a lower bound on E’.?, and if E’ were
less than the lower bound it would certainly be less than
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E’1°. 1t is of course unfortunately true that no general
method exists for finding a lower bound on the energy
of a many-body problem, let alone a lower bound that
can lead to useful results. For ¢ H scattering, however,
the determination of a useful lower bound is a triviality.
(This will be shown in Sec. 3. The question of the nega-
tive definiteness of Q(E—H)Q, with Q somewhat dif-
ferently defined, will also arise when there are identical
particles.) The determination of a useful lower bound
does not appear to be so simple for etH scattering; at
the sacrifice of rigor, one can use reasonability argu-
ments there.

Equation (2.14) can be put into a slightly less ab-
stract form. With the motion of the center of mass
subtracted out, we write

H=H(r,q)=Hr(r)+T(q)+V (r,9),

where Hr(r) represents the target Hamiltonian, T'(q)
the kinetic energy operator of the relative motion of
the incident particle and the center of mass of the
target, and V(r,q) the interaction of the incident
particle and the target particles. Since

HyP=PHy=FEpoP,

(2.21)

(2.229
we have
PHQ=PVQ,

and Eq. (2.14) becomes

QHP=QVP, (2.23)

T+ Vo+PVO——— VP—-E')P\I/———O. 2.24'
(474 . (2.2)
where

V= Vi) = f YOV (e (O dr= Vi,

i=0,12, (2.25)

Introducing the column vector Vo, with elements V1,

Voo, " and dropping an irrelevant factor ¥ro(r), we
can write
(T+Voo+vof Vo—E’)uo=0, (2.26)
where -
Hy=Vi(Q+[T(@+Er b5, i>1, j>1. (2.27)
The potential
V="Voo+V iHVo (2.28")

which appears in Eq. (2.26) is referred to as the gen-
eralized optical potential. It is clear since the problem
under consideration is a single-channel process with a
real phase shift that U is real and that O falls off suffi-
ciently rapidly so that a phase shift can be defined.
(U will fall off only as 1/7* for the scattering of a charged
particle by a neutral polarizable system, for electron
scattering by a neutral atom, for example, but that is
fast enough.)
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There is one last formulation which we would like to
record here, even though it is equivalent to those
already given, because it will be useful when we come
to the scattering of nucleons by nuclei. We substitute
the expansion for ¥ as given by Eq. (2.8) into
(H—E)Y¥=0, with H given by Eq. (2.21), and take the
inner product with ¢ ;. We arrive immediately at

[T+ Vii— (E*-ET]‘)]M]‘= - Zi;éj Vit (229)

Isolating the equation for j=0, the #; for i#0 can be
eliminated and we arrive at Eq. (2.26").

Energies above ‘“Resonance”

We have just seen that g1? is less than gz if £’ is less
than E’;9. The question remains as to how the two
phase shifts compare for incident energies greater than
E’1°. The question will of course not arise unless there
exist “bound state” eigenfunctions ®1,° of Q(H—E)Q
with energies E1,9 less than Ery.

An equation of the form of Eq. (2.24") is still valid
even if eigenfunctions ®;,9 do exist, but in that case the
factor [Q(E—H)Q T will contain terms of the form

| ®2,9)(@r0?
E_ELnQ .

We have not made a thorough investigation of the
matter, but it seems rather certain that the effect of
any one such term, if E.,? is “sufficiently far away”
from any other energy eigenvalues, is to increase the
true phase shift by an amount of the order of 7 as the
energy changes from a value somewhat below E.,9 to
a value somewhat above.? Since the value of the static
approximation will not change appreciably in this
energy interval, the inequality relationship between the
exact and static approximation phase shifts will remain
valid.

The inequality may well remain valid even when
there are eigenvalues rather close together. We will not
pursue this any further, however, for the question as
to whether 77, remains above 5. for incident energies
above E’;?is not of very great interest from the present
point of view, even for isolated ‘‘resonances.” The
reason is that the difference between the exact and
static approximation phase shifts will then be of the
order of a multiple of 7 and since contributions to the
cross section involve the sine of the phase shift, the
knowledge that n.P provides a bound on 7z will not
give any immediately useful information about #r.1

9 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics,
(John Wiley & Sons, Inc., New York, 1952), pp. 398-404.

10 The present paper can be thought of as providing an extension
to incident energies other than zero of a theorem obtained by
L. Spruch and L. Rosenberg, Nuclear Phys. 17, 30 (1960) on the
exact and static approximation scattering lengths, A4 and A”. The
theorem states that AP provides an upper bound on 4 if the static
approximation gives the correct number of composite bound
states. If there are fewer composite bound states, n will almost
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The realization that the bound may well be valid at all
energies below excitation is nevertheless useful in that
it provides some insight into the methods of the mini-
mum principle for the phase shift, for there one of the
major steps that has to be taken is to “subtract out”
the effects of any of the “resonances” that occur at
energies lower than that under consideration.

We have nothing further to say about incident
energies above E’r? in the present paper. It should
however be made clear that any proofs of the existence
of a bound for incident energies less than E'19 are not to
be taken to imply that the bound is necessarily false
above E'.°.

3. STATIC APPROXIMATION—INCIDENT PARTICLE
INDISTINGUISHABLE

A. Two Fermions and a Center of Force

We will begin by considering the scattering of a
fermion by an identical fermion bound to a center of
force. A prototype problem is the scattering of an elec-
tron by a hydrogen atom, and for simplicity the method
will be discussed in terms of that problem. The only
effect of the spins of the two electrons is to impose the
restriction that the scattering wave function be either
symmetric or antisymmetric in the spatial coordinates
of the two electrons.

We will again introduce a projection operator P,
but the choice of P is not now quite as obvious as it
was for distinguishable particles. To begin with, P must
clearly treat the two electrons on an equal footing.
More significantly, the choice of P and of Q must be
such that Q(E—H)Q is a negative-definite operator in
the space of the given angular momentum for a sig-
nificant range of values of E. The values of E that are
of present interest are from E=Ep,=—13.6 eV, for
E'=0, to E=1Ep;=—34¢eV, for E'=10.2¢eV, the
threshold for excitation. The continuous spectrum of
QHQ must therefore be bounded from below by a value
greater than —13.6 eV if we are to obtain any useful
results. It follows that neither electron can be in the 1s
(ground) state. We therefore choose Q=Q:Q2, where Qy
for k=1 or 2 is a projection operator in the space of the
kth electron which projects onto any one of the excited
hydrogenic states. Letting Py for 2=1 or 2 be the
ground-state projection operator in the space of the kth
electron, so that Py=1—Q, P is then given by

P=P1+P2—P1P2. (31)

P is therefore one if either or both electrons are in the
1s state and is zero otherwise. More formally, the
effects of P and of Q can also be described as follows.
Given a function ®(r;,rs) which has a specified sym-
metry and a specified angular momentum but which is

certainly be greater than #P, by a multiple of =, but one cannot
then say how 4 and AP compare.
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TasrE I. Lower bounds on E’L? for the scattering of electrons
by hydrogen atoms for all values of L and for the singlet and
triplet cases. For incident energies less than this lower bound, the
static approximation phase shift is guaranteed to provide a lower
bound on the exact phase shift. These bounds are rigorous but
they can be crude because the ¢?/r,; term was ignored. The value
8.7 eV, in parentheses, was obtained by a more detailed calculation
in which the effect of the ¢?/r;2 term was partially taken into
account.

Lower bound on E’1%

L Symmetry Lowest states (eV)
0  singlet (25)2 or (2p)? 6.8 (8.7)
0 triplet  (2s)(3s) or (2p) 3p) 8.7
1 either 2s)(2p 6.8
2 singlet (2p) 6.8
2 triplet  (25)(3d) or (2p)(3p) 8.7
>2  either (2p)(n=L,l=L—1) (3—-1/L9)13.6

otherwise arbitrary, we can write

B (r1,15) = =P (rz,11) = 2_; Bi(ry,12),

B (r1,r2) =Yr: (1) @i(ta) L ri(r2) @i (ry).

The ¢; are not uniquely defined by specification of the
®,. (An interesting consequence of this fact is obtained
in Appendix A.) Without loss of generality, the ¢, for
170 can be chosen to be orthogonal to y¥zo. With this
choice of the ¢;, we have

P‘I’=®o,

(3.2)
where
3.3)

Qq)= Z/ @iy

where here as elsewhere the restricted sum, denoted by
the prime, excludes =0.
Since

H (r1,r2) = Hyya (1) + Hyya (1) +V (| 11—12]),

where

(3.4)

(3.5)

Hyya(r)=T(r)—é/r, (3.6)

and where V (|r;—1s|)=¢?/|t1—13| is positive definite,
it follows that the lowest energy eigenvalue of QHQ is
greater than or equal to the sum of the energies of the
two lowest hydrogenic levels which conserve the total
angular momentum and parity and which have the
correct spatial symmetry. The lower bound on E’.°
obtained in this way for each of the spatial symmetries
is given in Table I. If the lowest permissible principal
quantum numbers are #; and 7, a lower bound on
E’12is given by — (1—n12—n52)Ero. Since one of the
principal quantum numbers is always 2, this reduces
to the form (3—1/#2) 13.6 eV.

It follows that at least for E'<E'.?, . for a given
symmetry is bounded from below by the phase shift
n.F defined by

P(H—E)PY . P=0, (3.7
and by the boundary condition
WP — Ypo(r) Pr(cosOs)
Xsin(kro—3Lar+91.F)/re= (r1 — 12), (3.8)
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where 0, is the angle between r; and a fixed axis. We
now point out that the phase shift 9.” defined by
Egs. (3.7) and (3.8) is precisely the same as that de-
fined by the usual static approximation. There, one
chooses a function of the form

1. P=Yro(r1)u? (t2) =¢ro(r2)uo? (11),

which satisfies

(3.9

PV P=T1F, (3.10)

(Note that ¥1.2 is not equal to P¥ 1.) u#oF is then defined
by the integro-differential equation

/IpTo (rl) (H—E)P\I/Lp(rl,rg)dr1= O, (311’)
or equivalently, by

Py(H—E)P¥P=0 (3.12)

and by a boundary condition of the form of Eq. (3.8).
Interchanging r; and rs, we obtain

Py(H—E)P¥.,P=0, (3.13)
from which we, of course, also have that
P,P;(H—E)PY 1 P=0. (3.14)
It follows that
P(H—E)PY . P=0. (3.15)

Since P.P=P; (and P.P=P,), we can also reverse the
procedure, going from Eq. (3.15) to Egs. (3.13) and
(3.12). The phase shift as defined by Egs. (3.7) and
(3.8) is then indeed the usual static approximation
phase shift.

As for distinguishable particles, the inequality satis-
fied by #z and 7% is independent of the choice of the
arbitrary multiple of 7 in the definition of n.?.

The lower bound on E’.? for electron hydrogen scat-
tering can easily be increased by taking into account to
at least some extent the effect of the repulsive /71,
term, an effect which has thus far been completely
ignored. We will use a technique due to Bazley™ which
is applicable to a Hamiltonian which can be written as
Hy+H', where Hy is solvable and where H' is positive
definite. With the choices

Ho=Q[Huya(r1)+Huya (r2) 10,

H'=Q(¢"/r12)Q,
the theorem is then applicable to the present problem.
Though there is no such inherent limitation, we will
restrict our considerations to the L=0 singlet case. Due
to the degeneracy of the (2s5)? and (2p)? states, one must
take at least these two states into account in order to
obtain any improvement. We find

((25)2] (H")7| (25)*)=4.24(— Ex0) 7,
(25| (H')] (2p)*)=—0.944(— Er0) 7,
((29)%| (H)™| (2p)*)=3.42(— Ero)7?,
11N, W. Bazley, Phys. Rev. 120, 144 (1960).
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from which we effect the result that the lowest possible
energy of QHQ is greater than the smaller of the two
numbers 9.6 eV and 8.7 eV, where the 9.6 eV follows
from the values obtained from the matrix elements and
where the 8.7 eV is the energy associated with one
electron in an #=2 state and the other in an n=3 state.
We therefore obtain the improved value of E’'¢®=8.7
eV for the L=0 singlet case. Further improvement
could be obtained by introducing more states, such as
the (2s) (3s) and (2p) (3p) states.

The above results may well represent the first self-
contained rigorous bounds on a scattering parameter
for scattering by a compound system that have ever
been obtained, and it is important to understand why
this was possible. The bounds on 4 previously obtained
required a knowledge of the number of composite bound
states of the target plus incident particle. This number
can in principle be obtained theoretically but in practice
it has not been and one has had to rely on the experi-
mental evidence. The difficulty with the determination
of the number of composite bound states is that there is
a continuum of eigenstates of H starting at Ero and we
must consider the possibility of bound states of H in-
finitesimally below Ero. In the present situation, the
continuum of QHQ starts at Er; and we need only
consider the possibility of bound states of QHQ with
energies below E; the gap between E and Er; provides
us with the leeway which so greatly increases the pos-
sibility of obtaining a rigorous proof.

Lest the above remarks give the wrong impression, it
should be noted that very useful results can be obtained
even when complete self-consistent rigor is not possible.
This point will be emphasized in the paper on minimum
principles.

B. Many Fermions, Recoil Negligible

We will now consider problems for which there can
be many fermions but for which the recoil effects are
negligible, that is, for which there is effectively a center
of force. These include the scattering of electrons by
atoms and less accurately the scattering of neutrons
by heavy nuclei. We will further restrict our considera-
tions to cases for which the target has zero totalangular
momentum. In this last regard the problem is then
slightly simpler than the scattering of electrons by H
atoms, for the ground state of the H atom is (spin)
degenerate.

Let us discuss the problem in terms of the scattering
of an electron by a neutral atom of atomic number Z.
It will be convenient here to include the electron spins
explicitly. (We did not do so in ¢ H scattering.) We
expand the fully antisymmetrized scattering function
¥(1, -, Z+1), in which the numbers represent space

12 An upper bound of 9.4 eV on the E’¢? has been obtained in an
approximate manner by E. Holgien, Proc. Phys. Soc. (London)
71, 357 (1958). P. Burke and H. M. Schey, Phys. Rev. 126, 147

(1962), using the 1s+2s+42p approximation, have recently found
such a resonance in the singlet s-wave phase shift at 9.6 eV.
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and spin coordinates, in the form

U= {Yr:(=[Z+1Du,(Z+1)

— T b =Ru®)},  (3.16)
k=1
where
Yri(—k)=yr:(1, -+ k—1, k41, - -+, Z4+1)

represents the fully antisymmetrized ith state of the
atomic system in which all but the kth electron are
present and in which the numbers in the argument are
ordered. The w;(k) are not uniquely defined by
Eq. (3.16). Without any loss of generality, the u;(k)
for 720 can be chosen such that

(wm—[z+1j>,ém(—k>m<k>)=0, (3.17)

where the inner product is over all of the coordinates
other than those of the (Z+1)th electron, for any com-
ponent in the sum over & which was not orthogonal to
Yro(—[Z+1]) could have been absorbed into the
Yro(—[Z4+1])ue(Z+1) term. Defining the projection

operator
P(—k)= [¥ro(—k)Pro(—F)|, (3.18")
we then have that
P(—[Z+1])¥=yro(—[Z+1]ue(Z+1). (3.19)
If now we define
Z+1
P=73 P(—Fk), (3.20)

we find that
P‘I’=‘//T0(_EZ+1:|)“0(Z+1)

_kélho("‘k)uo(k). (3.21")

Note that P2¥=P¥, so that P is indeed a projection
operator in the fully antisymmetrized space. We then
choose a function ¥* of the form

VP =ypo(—[Z+1Du” (Z+1)

- é ¢T0(_k)1¢1)1’(k), (322)

k=1

which is then fully antisymmetric and which then
satisfies

PYP=vP (3.23)
with the #oF chosen so that
P(H—E)PY¥P=0, (3.24)

subject to the usual boundary conditions. The phase
shift #.” thereby determined is then guaranteed to
provide a lower bound on the exact phase shift 5y if
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Q(E—H)Q can be shown to be a negative definite
operator in the space of fully antisymmetrized functions

of angular momentum L, where

Z+1

O=1—P=1—73 P(—k)

Z+1

=32 Wri(=Rk)Yr(—k)|—Z.

i k=1

(3.26")

It would be a simple matter to combine the tech-
niques used in the two fermion cases with a center of
force and with a target of total angular momentum %
and the many fermion case with a center of force and
with a target of total angular momentum zero and to
thereby generalize the method to be applicable to the
many fermion case with a center of force and with a
target of total angular momentum 4.

C. The Few-Fermion Problem—Effects of Recoil

Consider the scattering of a neutron of orbital angular
momentum L incident on a nucleus of finite mass and
of total angular momentum zero. Consider separately
the cases for which the total angular momentum of the
target plus the incident particle is L-+% and L—%. Due
to the effects of recoil, the situation is then apparently
more complicated than those previously considered, for
we have been unable to find the projection operator
which directly leads to the static approximation. We
can, however, proceed as follows. Feshbach® showed that
even in the presence of the Pauli principle an equation
of the form Eq. (2.26") could be obtained. An explicit
expression of this form was obtained by Coester and
Kummel,”® and, more generally, by Lipperheide.® In
this explicit expression, the V,; are replaced by Uj;,
where the U;; can be expressed in terms of the two body
potentials and the ground state and excited state wave
functions of the target. Having arrived at an equation
of the same form as the one that arose in the scattering
by a target of a distinguishable particle, we can proceed
as in that case. It should be remarked that due to the
effects of recoil, the U;; are even more complicated than
are the V;;, so that the expression

1
PUQ————
QQ(E—H)Q

is an extremely formidable one. The applicability of the
monotonicity theorem should perhaps be reexamined,
but it seems unlikely that any true difficulties should
arise. More significantly, it will probably rarely if ever
be possible to obtain rigorous bounds on E’.%. The
realization that such a number exists can nevertheless
give some insight into the meaning of any numerical
results obtained.

QUP

1B F, Coester and H. Kummel, Nuclear Phys. 9, 225 (1958);
R. Lipperheide, Ann. Phys. (New York) 17, 114 (1962) ; H. Fesh-
bach, Ann. Phys. (New York) 19, 287 (1962).
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TasiLE II. A list of fairly accurate values of the L=0 singlet
phase shift for ¢ H scattering at E'=0.6X13.6 ¢eV=8.2 eV in
various approximations. Since E’ is less than E’(?, the phase shift
must improve (increase) as one adds more states. The value in
the 1s+2s5s+2p+3d approximation is less than that in the
1s+42s+42p approximation, but we firmly believe that a more
accurate calculation would show this contradiction to be a spurious
one. (The values in question are italicized.)

States

s 25 2p 3s 3p 3d Phase shift
v 0.6704=
VAR V4 0.71152
V4 V4 0.7040=
VAREVEREVS 0.7707=
VARV VAREVA 0.7738
VAREVAREV \V 0.7770=
v N v 0.7694»
VAR VAR VAREVENEV 0.7814»
IVARRVA \V (all s states) 0.75b
v v Vv v (all s and 0.88b
all p states)
VARV A VAV VARV (all states) 0.894¢

a See reference 5.
b Obtained by interpolation of results of C. Schwartz, Phys. Rev. 126,

1015 (1962).
¢ C. Schwartz, Phys. Rev. 124, 1468 (1961).

The procedure of the present subsection could of
course also have been applied to the center of force case
treated in the previous subsection, but it is clearly
preferable when possible to work with the V; rather
than with the Uj;.

4. ALLOWANCE FOR SOME VIRTUAL EXCITATION

We now introduce two projection operators, P* and
Q*, with the sole requirements that P* include P and
that P*Q*=0. P*4(Q* need not span the entire space.
We then define ¥P* and WP*+@* as the solutions of

P*(H—E)P*¥P*=0, (4.1)
d
. (P*+Q*) (H— E) (P*4-Q*)¥P*+e*=0,  (4.2)

respectively, subject to boundary conditions of the
usual form, with phase shifts »?* and »? *+Q* The
entire previous discussion then carries over, every
numbered equation without primes remaining valid
under the replacements P — P* and Q— Q*. (The
terms to be included in >_’, when it appears, must be
appropriately modified.) Our final result then is that

AP S X i QX (E—H)Q*<0,  (4.3)

that is, if the operator is a negative-definite operator.
The numerical determination of 77 is, of course, more
difficult than that of #?¥ since we now have to solve
coupled differential (or integro-differential) equations,
rather than just one such equation.

A. Electron Hydrogen Scattering
As an example, consider again ¢~H scattering. Let

P*=P1*+P2*—P1*P2*, (44)
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where P;* contains the projection operators in the
space of the kth electron of the 1s, 2s, and 2p states,
plus any additional states. The lowest possible state of
either electron allowed by Q* is then at best the n=3
state, so that

O*HO*>2X (1/9) X (—13.6) eV.

Q*(E—H)Q* is then a negative definite operator for £’
anywhere from zero right up to £(13.6 ¢V)=10.2 eV,
that is, right up to the threshold for excitation. It
follows that for 0<E’<10.2 eV, one can predict in-
equalities such as

77L> nLls+2s+2p+3s >,'.,Lls+2s+2p_

Corresponding predictions cannot be made for phase
shifts such as those associated with the 1s42s+2p43s
and with the 1s+2s+2p-+3p approximations. For
E'<E'1? as given in Table I, we can also be certain of
inequalities such as

77L> 77Lls-{—2p> 77L13;
and
7]L>77Lan s>77L18+25>77L“-

A set of values for the L=0 ¢ H singlet phase shift, in
various approximations, is given in Table II for a typical
energy value, E'=8.2 eV. The only violation among the
42 predicted inequalities is that o in the 1s+2s+2p+3d
approximation is less than, rather than greater than,
no in the 1s-+2s+42p approximation. The values differ,
however, by only one unit in the third significant figure,
the smallest difference between any two listed values;
if there is not a fundamental error in the arguments of
this paper, it must be true that a more accurate evalua-
tion would remove the discrepancy. (Among other
things, the results of the present paper should in this
regard be able to serve as a partial check on numerical
calculations.) It should, of course, be clear that Burke
and Schey were not really concerned about the third
significant figure.

B. Positron Hydrogen Scattering

Numerical results have not been obtained in as many
approximations for e*H as for e"H scattering, but those
that have been obtained® show the same general char-
acter, that is, the phase shift increases on going from
P* to P*Q*. This is the predicted behavior if there
is no discrete state of Q(H— Ero)Q in the energy region
covered by these calculations, that is, from 0 to 6.8 eV.
We have not, however, as in the case of electron scatter-
ing, been able to eliminate the possibility of such a state
a priori, nor have we even been able to obtain a rigorous
lower bound on E’12. (We might note that the plausible
assumption that a positron cannot be bound to a hydro-
gen atom leads to the conclusion that Q(H— E7)Q is a
positive definite operator; this implies in turn that the
static approximation scattering length and zero energy
phase shift, and therefore the phase shifts up to at least
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some small energy, provide bounds on the exact
quantities.)

Though we will not do so, it should not, however, be
at all difficult to examine the reasonability of the pre-
diction that P*+@* should be greater than n.7*. Con-
sidering the static approximation, for example, one
would attempt to find the lowest possible value of
(v/,HY ), with ¥, having L=0 and having the form

W= 2 Yri(r)ury),

where r, and r, are the electron and positron coordinates.
If with a reasonable effort one could not find a value
more than 1 eV for example below —3(13.6)=—6.8
eV, the bound state of positronium, (which has a lower
energy than Er;=%(—13.6), the first excited state of
the hydrogen atom), one might well believe that there
was no value more than say 2 eV below —6.8 eV. It
would then follow for £/ <—2—6.8—(—13.6)=4.8 ¢V,
that we would have 70> 0%,

There is one result for eH scattering which can be
rigorously proved. If we consider only the possibility of
s state excitation then the true Hamiltonian

& ez ¢
H(t,,r,)= (Ta-——->+ Tp+———

7e Yp Tep
can be replaced by
62 62 e?
H3(xe,1p) = <Te_—>+Tp+_"‘"‘;
e o T>

where 7> is the larger of 7, and 7,. Since

¢(1/r—1/r5)20,

we have that
e2

He(x.,1p)= (Te—--~)+T,,.

Ye

If one projects out the hydrogenic ground state, it
follows that the lowest eigenvalue of H® is +(—13.6)
eV, and we have the rigorous result for 0 E’<6.8 eV,
the threshold for pickup, that

77all c> e >7718+28>7713-

The inequality n'**?>nx' is borne out by the calcula-
tions. Note that the above argument does %ot say how
any of the s state results compare with the exact phase
shift. (Even the all-s state result would not be expected
to be particularly accurate, since the virtual formation
of positronium is expected to play a significant role.)
Since the interaction between the positron and the hy-
drogen atom that is contained in H® is repulsive, we also
have the inequality 0> n2!e.

5. POSSIBLE IMPROVEMENTS AND EXTENSIONS

The static approximation can provide a bound, but
the bound need not be an accurate one. One can improve
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the bound by introducing additional states, but the
amount of work increases very rapidly and the accuracy
of the result will often increase rather slowly. What is
needed is a minimum principle in which one can intro-
duce a trial function with an arbitrary number of
parameters which are to be varied so as to give the
greatest possible value for the phase shift. Such a mini-
mum principle can be obtained by proceeding along the
present lines, and it will be presented shortly. It repre-
sents an extension of the previous minimum principle,!-?
which was limited to zero energy. It is a considerable
improvement upon the minimum principle previously
obtained at nonzero energies® for other than potential
scattering, since the truncation of potentials and the
erection of potential barriers is not required if one
solves the static potential problem numerically. The
minimum principle is applicable to some multichannel
scattering processes, possibly to all.

A very important extension would be to eliminate
the requirement that the ground-state wave function
be known exactly.

APPENDIX A. ABSOLUTE DEFINITION
OF THE PHASE SHIFT

There is one small remark that should be made con-
cerning the absolute definition of the phase shift. The
term ¢ in the expansion, Eq. (3.3), of the spatially
antisymmetric but otherwise arbitrary function & (r,,r,)
can be chosen to be orthogonal to ¢7o. (Due to the pos-
sibility of a term yro(r1)¢¥ro(r2), this is not necessarily
so for the spatially symmetric case.) This is true in
particular for the triplet scattering function W (ry,r,)
= —W(ry,r1). The function ¢ is of course called #, for
this particular case. We then have that

o (1) = / W (r1,ro)Yro(rs)dr,

is orthogonal to ¥ro(r1). Since Yro(ry) is nodeless, 2, (r1)
must have at least one node, even at zero incident
energy. If we define the absolute phase shift for single-
channel scattering by a compound system as the phase
shift that one would ascribe to potential scattering that
would give rise to the scattering function uo(r;), it
follows without any detailed analysis that the zero
energy phase shift for the triplet scattering of electrons
by hydrogen atoms is at least m, a result that has its
origins in the workings of the Pauli principle.

This result has been obtained previously. The
purpose of the present remarks is only to point out that
the absolute definitions given previously are entirely
equivalent to defining the phase shift as that associated
with one-body scattering by the generalized optical
potential. One may thereby be able to utilize results

14 See the second paper in reference 3, and A. Temkin J. Math
Phys. 2, 336 (1961). See also P. Swan, Proc. Roy. Soc. (1. '
A228, 10 (1955). oc. Roy. Soc. {London)
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obtained, by Martin and others'® for example, for scat-
tering by nonlocal potentials. It must be recalled, how-
ever, that these analyses were concerned with energy-
independent nonlocal potentials.

APPENDIX B. CONTINUITY OF THE PHASE SHIFT

We saw in Appendix A that #o(r;) is not uniquely
determined if it is defined as the coefficient of Yz (rs)
in the expansion of the triplet scattering wave function.
uo(r1) was presumably uniquely defined though, and
hence the phase shift was also, if #0(r;) was defined as
the solution of the one-body Schrodinger equation with
the generalized optical potential, or, equivalently, if it
was defined as the inner product of Y7o (rs) with ¥ (ry,rs).
Now in fact there is in general a further assumption
that must be made if the phase shift is to be uniquely
defined, and if the monotonicity theorem as we have
used it is to be valid. This assumption is that the wave
function and the phase shift are to be continuous func-
tions of the strength of the potential. (The question
only arises under the unlikely circumstances described
below.) The assumption is a natural one for our
purposes, and is certainly an allowable one, but it is
not a necessary one. Though it is not stated so ex-
plicitly, a different assumption is used in references 15.

16 M. Gourdin and A. Martin, Nuovo cimento 6, 757 (1958)
and 8, 699 (1958); A. Martin, 7bid. 7, 607 (1958); Kh. Chadan,
bid. 10, 892 (1958).

HAHN, O'MALLEY,

AND SPRUCH

There, where one is interested in the difference,
n(E=0)—n(E= ), it is natural to assume the phase
shift to be a continuous function of the energy. It is
there found, for example, for a potential which contains
a local potential plus a nonlocal separable potential
with strength A, that as \ increases it can happen that
7 is greater by = for a particular value Ao of A than it is
for neighboring values of N on either side of Ao. The
monotonicity theorem is not then valid. The difficulty
arises because of the presence at A=2X\, of a true bound
state of energy Eo>0, that is, a bound state of infinite
lifetime embedded in the continuum. If A is fixed at X
and the energy is varied, and if the phase shift is taken
to be a continuous function of the energy, the wave
function will contain some bound state component. If
the energy is fixed at Eo and \ is varied, and if the phase
shift is taken to be a continuous funétion of A, the wave
function will not contain any bound state component
as E passes through E,. With the assumption of con-
tinuity in A, incidentally, Levinson’s theorem assumes
its usual form, n(E=0)—n(E= )=y, where » is the
number of negative energy bound states, there being no
contribution to 7(E=0)—n(E= ) due to bound states
embedded in the continuum as found in reference 15;
the effect of the positive energy bound state is to
produce a discontinuous jump in 7 as a function of the
energy (the limiting case of an infinitely sharp reso-
nance), rather than a violation of Levinson’s theorem.



