
P H YSI CAL R EVI EW VOLUME 128, NUMBER 2 OCTOB ER 15, 1962

Causality and Multiply Connected Space-Time
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With the introduction of multiply connected topologies into physics, a question of causality arises. There
are alternative routes between two points in a multiply connected space. Therefore, one may ask if a signal
traveling at the speed of light along one route could be outpaced by a signal which has traveled a much
shorter path through a handle or "wormhole. " This paper examines one such situation and shows that in
this example causality is preserved. It proves essential in the analysis to distinguish between those regions
of space-time which are catastrophic and those which are not. A catastrophic region is composed of cata-
strophic points. A catastrophic point in space-time is so located with respect to eventual singularities in the
intrinsic geometry that every time-like geodesic through it necessarily runs into a region of infinite curvature
at some time in the future —or was born out of a region of in6nite curvature at some time in the past —or
both. If a classical analysis of nature were possible —which it is not —then it would be natural to postulate
that laboratory physics is carried out in noncatastrophic regions of space-time. Two such regions are shown
to exist in the example considered in the paper. It is shown that no signal can ever be sent from one to the
other. The key point in preventing any violation of causality is simple: The (Schwarsschild) throat of the
wormhole pinches off in a 6nite time and traps the signal in a, region of infinite curvature. This investigation
also displays some of the unusual geometric features of the Schwarzschild solution of Einstein's equations for
a spherically symmetrical center of attraction. Radial spacelike geodesics passing through the throat are
calculated and it is shown that there exist regions of space-time unreachable by any radial geodesics that
issue from a given point. Also, there exist points in space-time from which light signals can never be received
no matter how long one waits.

I. INTRODUCTION

~ 'HE Einstein Geld equations, being differential
equations, are purely local in character. They

tell nothing about the topology of the space with which
one is dealing. Recent investigations of multiply con-
nected space show that this kind of topology is of great
interest in giving a natural place for electricity in a
curved empty space that is free of all "real electric
charge. " Charge --in this purely classical model of
physics which has nothing directly to do with the real
world of quantum physics —is interpreted as lines of
force trapped in the topology of space, ' However, it
might appear that a multiply connected topology
violates elementary principles of causality. There are
alternative routes for a disturbance to pass from a point
2 to a point 8. A disturbance going by one of these
routes as fast as it can—at the speed of light —may
arrive only to find itself outpaced by a disturbance
which has gone through a handle or "wormhole" and a
much shorter path. This paper examines in detail one
such situation, and shows that in this example causality,
despite erst expectations, is not violated. The key point
in preventing any violation of causality is this: that

*This work was begun while the author (RWF) was at the
University of California, Berkeley, California, and it was sup-
ported by the U. S. Atomic Energy Commission through contract
with Princeton University.

f Part of this work was done at the University of California,
Berkeley, California while the author (JAW) was on leave of
absence from Princeton University.

' J. A. Wheeler, Geometrodynamics (Academic Press Inc. , New
York, 1962).
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the "throat" of the wormhole pinches off a 6nite time.
This investigation incidentally also gives some insight
into the unusual geometric properties of the Schwarzs-
child solution.

It should be emphasized that the world of geome-
trodynamics —of the geometry of curved empty space
developing in time in accordance with Einstein s equa-
tions —is only a model. The connection, if any, between
this model and the real physical world is a matter
about which we are still in great ignorance. Therefore,
it should be stressed that the masses to be discussed
here have not the least direct connection with either real
stars or, still less elementary particles. Any consequences
that come out of the analysis are of value chieQy for
what they tell about the spirit and way of working of
general relativity, not for anything they might con-
ceivably tell about the physical worM.

II. TRANSMISSION OF SIGNALS
THROUGH WORMHOLES

The most elementary example of a wormhole —and
the one at the basis of the discussion in this paper —is
shown in Fig. 1. This illustrates schematically the
geometry of a three-dimensional space with a positive
de6nite metric, though, of course, only two dimensions
can be shown in the diagram. This three-dimensional
"spacelike hypersurface" is to be conceived as a slice
through the four-dimensional geometry; in other words
a snapshot showing the 3-geometry at a particular time.
The multiple connectedness is a multiple connectedness
in space, not in time. A wire can thread through the

9



920 R. 3V. FLtLLER AND J. A. KVHEELER

C4 CQ"

FIG. 1. Wormhole topology. The diagram shows the geometry
of space at a particular moment of time. In other words, it repre-
sents the geometry on a particular slice of space-time. For con-
venience of representation one of the three space coordinates has
been dropped. A 2-dimensional space is used here to epitomize
the properties of this 3-dimensional space. This 2-dimensional
space is curved. This curvature is most conveniently shown by
imbedding the 2-dimensional space in a 3-dimensional Euclidean
space (above diagram). The third dimension in this diagram has
no physical meaning. Only distances within the surface have
signi6cance. This surface is endowed with an unusual topology
but is everywhere free of any geometrical singularity. The topology
shows up in the existence of two inequivalent ways to connect
point A with point 8. One connection passes through the throat
of the wormhole. The other remains entirely in the quasi-Euclidean
space exterior to the mouths of the wormhole. The lengths of the
two connections happen to be comparable in the figure so drawn.
However, it is perfectly possible for the connection through the
wormhole to be shorter by many orders of magnitude than the
"normal" route from A to B. This possibility is most readily
visualized on bending the surface so the two mouths of the worm-
hole come almost back-to-back. Then the throat becomes almost
negligibly short. The possibility of sending signals through such
a shortened route is the problem of concern in this paper.

throat in this diagram. Then it supplies a connection
between the two mouths of the wormhole. Another wire
can be strung out which also goes from one mouth to the
other without ever going through the throat. The two
types of connection are topologically distinct. It is
impossible by a continuous sequence of small deforma-
tions to transform one route into the other. 3loreover,
the lengths of the two routes are metrically distinct.
The wire that stays in the nearly Euclidean space
fringing the throat —and remote from the throat —may,
for example, have to have a length of 1 km to connect
one mouth with the other. Yet in the same illustration
the other wire can run directly through the throat from
one mouth to the other with a length of only 1 m.

There is even a simple example of a connection in
which the length of the throat is zero. Start with a three-
dimensional Euclidean space. At point (x,y, s) = (0,0,b)
construct a sphere of radius a small compared to b.
Construct a similar sphere of the same size at the point.
(0, 0, b) "Remo—ve th. e points" that lie within the two
spheres. Identify the points that lie on the surfaces of
the two spheres, pairwise between one sphere and the
other. A test particle approaching the upper sphere and
crossing the critical boundary finds itself suddenly
emerging from the lower sphere. Thus the test particle-
or a ray of light —appears to have the possibility to
pass from one point in space to a point in space which
may be many miles away in a negligible amount of time.

Such a rapid communication from one place A to
another place 8 would seem to violate elementary
notions of causality. To say that any method of signaling

is impossible which would exceed the speed of light is
only the weakest way to state the conQict. Einstein
long ago stressed that such a signaling process, viewed
from an inertial system moving at a sufficiently great
but still allowable speed (s&c), will show that 8
receives the message before A transmits it.

To examine whether this difficulty will arise for
signals sent through a simple type of wormhole is the
purpose of this paper. We conclude in this special case
that the throat pinches o6 before the signal can get far
enough to violate causality. We leave untouched the
question of a general analysis suitable for the case of a,n
arbitrary multiply connected topology.

It is perfectly possible to write down a mathematical
expression for the metric of a space which has a simple
wormhole geometry just discussed. This geometry can
have a high degree of symmetry. It can be invariant
with respect to rotations about the s axis. Nevertheless,
the problems of the mathematical analysis are sufBcient
so that one would like to have a still higher degree of
symmetry if he could in order to simplify the analysis
further. This extra symmetry can be obtained if one
will give up looking at the uninteresting aspects of the
problem —that is to say the passage of light by the
"long way" from one wormhole mouth to the other-
and concentrate instead on the decisive part of the
problem, the passage of a light ray or material particle
through the throa, t itself.

With this idea of simpli6cation in mind go to the
ideal limit where the two wormhole mouths are in-
de6nitely far apart in comparison to their own proper
dimensions. In this case, a material particle or light
signal coming out of one of the mouths and traveling
even for a very long time will still not be able to arrive
in the vicinity of the other mouth and will not be aware
that it is there. The same will apply for a material
particle or light signal emerging out of the other mouth.
Therefore, for all practical purposes the single Euclidean
space can be regarded as two separate Euclidean spaces.
The only easy way to get from one to the other is by
way of the throa, t itself. Thus, the limiting case of a,

single wormhole with its mouths indefinitely far apart
may be regarded, or may be idealized, as a pair of
Euclidean spaces connected by a "bridge, "Fig. 2.

III. GEOMETRY OF THE SCHWARZSCHILD THROAT

This kind of geometry does not have to be invented;
it was already found long ago by Schwarzschild in his
famous solution of Einstein's equations for a spherically
symmetrical center of attraction, though it was only
recently through the work of FronsdaP and KruskaP
that one has come to understand the unusual nature of
the topology implied by the Schwarzschild solution.

In most physical applications the center of attraction
is portrayed as having "real mass" as, for example,

' C. Fronsdal, Phys. Rev. 116, 778 (1959).' M. D. Kruskal, Phys, Rev. 119, 1743 (1960).
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in the case of a sphere of incompressible fluid. In this
example the Newtonian gravitational potential outside
the sphere has a 1/r behavior and inside the sphere has
a harmonic oscillator character, the two functions
matching smoothly in magnitude and slope at the
boundary. In the Einsteinian description of the same
situation different mathematical expressions are like-
wise used for the geometry inside the sphere and out-
side:. the "interior Schwarzschild solution" a,nd the
"exterior Schwarzschild solution. " The mass is meas-
ured both in the Newtonian case and in the Schwarzs-
child metric by the coeKcient of the 1/r term in the
relevant mathematical expression far away from the
center of attraction.

. For a given value of this mass it is, of course, possible
to have one or another va, lue for the radius at which
the mass distribution is encountered as one goes inward.
However it is also possible to investigate the character
of the geometry when there is no "real mass" present at
all. Kruskal and Fronsdal have shown that this ge-
ometry, depicted at an appropriate moment of time, is
perfectly regular and free of all singularity. It describes
a throat of circumference

2~("Schwarzschild radius")
=2sm*= 2~I G(mass as seen far away)/c'-'].

The mass in such a situation arises entirely from the
equivalent mass-energy of the gravitational disturbance
(curving of space) itself.

In terms of the geometry that is now at hand, the
question becomes the following: "Can a disturbance
start from a point on the 'lower space' and get through
to a point on the 'upper space'?" Translated back to the
kind of wormhole geometry originally depicted in Fig. 1,
this question translates over into the question: "Can a
signal, instead of having to travel the great distance
from the neighborhood of one wormhole mouth through
the quasi-Euclidean space to the other wormhole mouth,
get through directly from one point to the other by the
short circuit through the throat of the wormhole?"

IV. GEOMETRODYNAMICS OF THE
SCH%'ARZSCHILD THROAT

It might appear that the answer is plainly yes. The
geometry of the Schwarzschild throat is perfectly regular
and light propagates there just as it does anywhere else.
However, an a,ccount has not yet been taken of the
geometrodynamical character of the Schwarzschild
geometry. Usually one thinks of the geometry as being
static because there is no time dependence of the
metric coeKcients in Schwarzschild's familiar way of
writing his solution of Einstein s equations. However,
a proper analysis deals with the intrinsic geometry as
distinguished from the coordinates. Such a,n analysis
shows that the geometry is changing with time. This
change prot:eeds in such a way that the throat of the
wormhole, like the shutter of a camera, is open only

rIG. 2. Schematic representation of Einstein-Rosen bridge
between two nearly Euclidean spaces. A slice has been taken
through space-time at the time T=0 (Kruskal's v =0). In addition
the Schwarzschild polar angle 0 has been given the equatorial
value 8=s./2. Therefore, only a two-dimensional space comes into
consideration: ds'= (1—2m*/r) 'dr'+r'dg' Here r runs from 2m~
to ~. This representation hides the fact that the proper space
is two-sheeted. This two-sheeted structure is shown in the diagram.
Analytically, the double structure is most conveniently shown by
introducing the new coordinate u. Values of this coordinate are
marked on the surface. The quantity I is dered by the equation
n,'=L(r/2m") —tge p(xr/2 )raThen .I has positive values in the
upper sheet and negative values in the lower sheet. The metric,
expressed in terms of Kruskal's' variable I (transcendental
function!) is completely regular over the entire 3-space. The
apparent singularity at r =2m* was due entirely to an unfortunate
choice of coordinates.

for a limited proper time. This circumstance by itself
would not interpose an insuperable obstacle in the way
of sending a signa, l from the lower space in Fig, 2 to
the upper space. If this were the only problem it would
only be necessary to time the start of the signal towards
the first wormhole mouth to have it get through safely
during the short interval "while the shutter is open"
and emerge from the second mouth. However, the
dynamics of the geometry has another critical con-
sequence for the propagation of the signal which is best
described by way of an analogy.

Compare the surface in Fig. 2 (which actually epito-
mizes a curved 3-geometry) with a sheet of rubber.
Around the upper and lower rims of this sheet at great
distances radial tensions can be applied or removed. In
consequence, the throat can be made to stretch out
and reach a, maximum circumference. By release of the
tensions at the two rims it can be allowed to collapse,
Fig. 3. This model of a rubber sheet provides a remark-
ably useful insight into the behavior of the Schwarzs-
child-Fronsdal-Kruskal geometry. The moment of maxi-
mum extension corresponds to the situation shown in
Fig. 2. Consider, in contrast, the phase of more and
more complete release of tension as T goes to infinity
(and the time-symmetric situation as T is traced back
to minus infinity). Then the rubber is piled up more and
more around the axis as depicted in Fig. 3. It follows
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(5)
Late. Throat closed.
Photon P caught in

pinch- of f. Photon a
.84 got through.

(4)
Throat rapidly closing.
Progress of photon P
through throat thereby

~

~

u = helped, but not helped

p 84 enough' a hindered.

(~)
Moment of maximum

0.84opening of throat,
af u=o

1 u:. —FTyK=O':O.84. . '"'u '
/Circumference of

p throat is 27rr "- l2.6m",

(2)
Still early,

0 84Throat open and growing
fast (circum. 2vrr = 5.5m").
Geometry everywhere
acceptable.

(l)
Very early space-like slice
through 4-geometry,
84 =-0.6.
P (4+u2) I/2

Throat closed (2wr =0).
Inadmissible region of infinite curvature
between two quasi-Euclidean spaces.

FIG. 3. Change of geometry with time as Schwarzschild throat
opens, reaches maximum diameter, contracts, and pinches off
(Sequence 1 through 5). The diagrams at the left depict space-
time in terms of Krushal's coordinates u and e. They show the
particular, arbitrary, slices through space-time, the 3-geometry
of which is schematically represented in the drawings at the
right. The slices were quite arbitrarily selected by values of a
coordinate p defined, as a matter of pure option, by the equation
y=s/(4+u')'i'. What goes on is most easily visualized in terms
of a sheet of rubber outward by a pull around two rims (phase of
maximum extension depicted more fully in Fig. 2) and then
allowed to collapse again. A typical photon that was moving
initially radially inward progresses with the speed of light on this
surface which is itself however best visualized as moving inward.
Points on this surface are designated by m values to provide
reference marks to measure the progress of two sample photons,
a and p. One has got caught in the pinch off. Its fate is as mys-
terious as is the condition of geometry (rippled region near axis
in diagrams 1 and 5) which has had a wave of infinite curvature
sweep over it (geometry which has turned into something like a
foam of scale, (AG/c')'i'=1. 6&(10 "cm, comparable to the di-
mension characteristic of quantum Ructuations in the metric?
See reference 1, pp. 67—77. The question still remains (see dis-
cussion in text) whether photon e is safely through or whether it
will get caught in the collapse of the rubber sheet down to a
circumference 2~r =0.

from this way of speaking that the dynamics of the
geometry is not confined to the immediate vicinity of
the throat and the opening and closing of the "shutter".
Instead the dynamics affects the geometry out to in-
definitely great distances. In effect the photon is
traveling in a medium which itself is moving —moving
away from the throat during the phase of expansion;
moving toward the throat during the phase of contrac-
tion. Consequently, there is no hope for a photon,
which starts far away from the throat to ever get to
and through this passage no matter how early it starts.
During all the critical time before the quick opening
and closing of the shutter it is struggling against an

irresistible tide. When the tide turns the assistance
comes too late. Therefore, only those photons which
start close enough to the throat have any hope to go
through the throat.

V. CAUSALITY PRESERVED BY THE PINCH OFF OF
THE SCHWARZSCHILD THROAT

These qualitative considerations can be stated quite
precisely (Fig. 4). The space-time in the neighborhood.
of the Schwarzschild throat is sharply divided by light
cones through an invariantly defined origin (singular
point of Killing vector field) into two "catastrophic
regions, "II and IV, a,nd two "noncatastrophic regions"
I and III. The track of any material particle, any atom,
or any light source is a timelike geodesic inclined to the
vertical in Fig. 4 less than 45'. Such a geodesic in region
II runs into catastrophic conditions after a finite and
short proper time. Similarly, any timelike track in IV
originates in such conditions. These are not the condi-
tions in which any laboratory experiments are ever
carried out. Therefore, it is natural to postulate that
all normal observations and experimentation are carried
out in regions like I and III. But simple inspection of
Fig. 4 shows that it is impossible to get a light ray across
from region III to region I. On this basis it is necessary
to conclude that no experimenter in one noncatastrophic
region can send a signal through the throat to an
observer who is in the other noncatastrophic region.
Therefore, in this sense, any violation of causal principle
such as discussed in the beginning can not occur.

It is comforting to have this confirmation of causality
for sources and receptors which can escape running into
regions of infinite curvature. One would still like to
characterize more fully points of emission or reception
which lie in the catastrophic region, the region whose
properties are so foreign to usual ways of thinking.
There is an alternative characterization of these points
which is very simple. Their Schwarzschild coordinate r
is less than 2'*.These points can therefore be pictured
in Figs. 2 and 3 as points which would be cut out of the
rubber sheet were a cookie cutter of this radius punched
through it. Every point outside this cookie cutter on
the lower sheet lies in region III. No signal can ever get
from outside the cookie cutter on this lower sheet to
outside it on the upper sheet. The sources and receptors
with a life record of catastrophe which (region IV) can
send signals both to I and III or receive (region II)
from both I and III lie entirely within the cookie cutter.

VI. UNSOLVED PROBLEMS: THE CHALLENGE
OF THE GENERAL CASE

Interesting as it is to analyze causality in the par-
ticularly simple case of the Schwarzschild throat, one is
unhappy not to have an analysis more far-reaching and
general in its scope. It appears likely that additional
insights couM be gained by analyzing more general
situations. Among these, one of the more interesting,
is that of a Schwarzschild throat through which thread
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FIG. 4. Classification of regions of space-time associated with
the Schwarzschild geometry and of the possibilities for communi-
cating between them, Points in space-time are designated by
Kruskal's coordinates I (space-like) and v (time-like). All that
connected region of space-time within which the intrinsic geometry
is free of singularity is comprised between the two cross-hatched
hyperbolas. Any time-like geodesic is inclined closer to the
vertical than 45'. Any such geodesic in region II is fated to run
into a region of catastrophically high curvature. Similarly, any
time-like geodesic in region IV has been born out of a condition
of infinite curvature. It is postulated (insofar as it makes sense
to use this or any related terminology out of classical physics to
discuss what is really a quantum world) that laboratory physics
is not carried out in such regions. On this basis it is concluded
that no experimenter can send a message, as can a source in region
IV, to both regions I and III. Laboratory observers, confined to
noncatastrophic regions of space-time such as I and III are
deprived of all possibility to send signals through the throat of
the wormhole. The means which they would otherwise have to
bring noncausal phenomena into evidence is thereby taken away
from them (separation of III and I by intersecting light rays,
boundaries which no other light rays can ever cross).

electric lines of force. As the throat starts to pinch off,
the electric pressure rises and the contraction stops
short of pinch off. The radius of the throat oscillates
periodically with time as is shown in most interesting
detail by Graves and Brill. 4 Under these conditions it
might at first sight appear obvious that causality would
be violated. An indefinitely long time appears to be
available for signaling from one quasi-Euclidean space
to the other. However, the topological considerations
which are called for in this problem are even more
subtle than those encountered in the present instance.
Therefore, it would seem rash to conclude without in-

vestigation that any question can remain in the end as
to the validity of the causal principle.

In this connection mention should be made of the
recent work of Smith. ' He notes that the existence of the
light cone in a physical world gives one a means to
characterize a manifold which is additional to the usual
topological indices (number of bundles or wormholes;
degree of multiple connectedness; etc.) and which still
falls short of all the detail which is demanded by a full
knowledge of the metric. As an example of the classi-
ficatory tools provided by the combination of topology
and light cone it is enough to point to the division of
the regular part of the Schwarzschild-Fronsdal-Kruskal
metric into the regions which have been designated

' J. C. Graves and D. R. Brill, Phys. Rev. 120, 1507 (1960).
5 J.Wolfgang Smith, Proc. Natl. Acad. Sci. U. S.46, 111 (1960).

Also, Y. H. Clifton and J. W. Smith, Proc. Natl. Acad. Sci. U. S.
47, )90 (1961).

above as I, II, III, IV. It is conceivable that one has
only to spell out the consequences of the classidcation
scheme of Smith in order to have a complete analysis
of causal relations in the most general manifold allowed

by geometrodynamics.
In the course of investigating motion in the immediate

vicinity of the Schwarzschild throat we found ourselves
asking how the geodesics could be continued across
from one of the four regions (I, II, III, IV) to another.
Darwin' has already made a detailed analysis of motion
in the familiar region I. However, the problem of
matching coordinates between this region and its
neighbors presented certain sophistications. For this
reason we found it interesting to analyze this problem
in a little detail with the results illustrated in Fig. 6.
The details which went into this analysis are reported
in the following Appendix. They add particulars to the
foregoing general conclusions about causality without
in any way modifying them.
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APPENDIX

I. Radial Geodesics Through the
Schwarzschild Throat

Fronsdal2 and Kruskal, ' following earlier work of
I.emaitre, ' Einstein and Rosen, ' Synge, ' and Finkel-
stein, "have shown that Schwarzschild's unique" solu-
tion of Einstein's field equations for curved empty space,

ds' = —(1 2m*/r) dT'+ (1—2nz*—/r) 'dr'

+r'(de'+ sin'Hdqrs), (I)
is expressed in a defective coordinate system and have

C. G. Darwin, Proc. Roy. Soc. (London) A249, 180 (1958);
A263, 39 (1961).See pp. 49—50 for discussion of r & 2'*.' G. Lemaitre, Ann. soc. sci. Bruxelles SSA, 51 (1933).

A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).
s J. L. Synge, Proc. Roy. Irish Acad. ASS, 85 (1950).' D. Findelstein, Phys. Rev. 110, 965 (1958).
"That this is the only spherically symmetric solution up to a

coordinate transformation, of the equations for empty space was
proven by G. D. BirkhoR, Relativity aed 3fodern I'hyszcs (Harvard
University Press, Cambridge, Massachusetts, 1923), p. 253.
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We have looked into the nature of radial geodesics
in this space because we wanted to know the answer
to the following question: Can every point 2 in the
continuum be connected with every other point 8,
endowed with the same polar coordinates, 0 and @, by
a geodesic? This question arose because the intrinsic
geometrical singularity in the metric at r=0 in the
Schwarzschild coordinates, or on the hyperbola

'v —s =1
FIG. 5. Corresponding regions of the (r, T) and (u, v) planes. In

the (u, s) plane curves oi constant r are hyperbolas asymptotic
to the lines r=2m*. Curves of constant T are straight lines
through the origin. Older treatments of the Schwarzschild metric
limited attention to the shaded areas, defined by r)2m* (or

~
s

~

(u
in Kruskal coordinates). This region (middle diagram) lies be-
tween the lines T= —~ and T=+~. Isn't this time interval
enough for anyone' Not T is only a coordinate, not any direct
measure of proper time. It is ill suited to cover the whole of that
region of 4-space where the geometry is free of singularity and
where geodesics can run freely. That the coordinate r is also
defective is seen even more easily. Example: Consider the hyper-
surface T=O (or v=0 in Kruskal coordinates). The 3-geometry
of this hypersurface is that of the Einstein-Rosen bridge depicted
in Fig. 2. To trace out this surface it is not sufficient merely to
let the coordinate u decrease from ~ down to 0 (r from ~ down
to 2'*); it is necessary that u continue on to —~ (r going back
on the second sheet from 2m* to +~). The circumference of the
throat at the time in question is evidently 2vrr; =Arm . At a
later time (a greater v, for example; not a greater T, because T
is a defective coordinate) the 3-geometry has changed and the
throat has shrunk. This is seen by running across the central
diagram at constant v with u decreasing from +~ to —~. The
coordinate r drops from +~ to a value less than 2m* and rises
again to +~. Therefore, the circumference of the throat is less
than arm*. As time proceeds, the size of the throat —measured by
its circumference —shrinks further and ultimately goes to zero.
This pinch oG shows itself also in this, that the intrinsic curvature
invariants of the geometry (the quantities whose values are in-
dependent of the coordinates in terms of which they are calculated)
go to infinity along the two hyperbolas r=0 in the central dia-
gram. In the regions marked I, II, III, IV in the insert the equa-
tions for geodesics are solved in terms of distinct parameters. (See
Table II for the parameters and Fig. 6 for the geodesics. )

supplied new coordinates to take their place. The
coordinates r and T cover only a part of the space-time
geometry defined by the field equations. New coordi-
nates can be given which cover in a regular way the
entirety of that region of spacetime where the intrinsic
geometry —as distinct from any particular sets of coordi-
nates —is regular. Figure 5 illustrates the character of
the coordinates (u, s) of Kruskal. In terms of these
coordinates the metric takes the form

ds'= f'(—ds'+du')+r'(d8'+sin'edqP). (2)

Here, f and r are transcendental functions of the
quantity I'—e'. Their dependence on I'—e' is defined
by the equations

L(r/2m*) —1)exp(r/2m*) =u' —s' (with r &~0), (3)

f'= (32m*'/r) exp( —r/2ma). (4)

Kruskal's coordinates are well adopted to discuss the
geodesics of the space because they make all radial
lightlike geodesics appear as straight lines in the (u, e)
plane with slope ~45'.

in the Kruskal coordinates, might under certain cir-
cumstances be conceived to interpose an obstacle to
making a geodesic connection between A and B.It is not
clear that the question has any deeper significance than
this, that it aims at understanding better some of the
new features of the geometry in the Schwarzschild space-
time manifold. It has recently been conjectured that
all closed space solutions of Einstein's equations with
the topology 5' of the 3-sphere will develop an intrinsic
geometrical singularity after the lapse of a finite proper
time just as does the open universe of Schwarzschild. "
Therefore some insight into the consequences of "curva-
ture barriers" in the one case may some day be of use
in understanding a little better what can happen in
the other case.

G. Calculation of the Radial Geodesics

For simplicity, we use hereafter the reduced variables

r*=r/m*,
T*=T/m*,
ds*= ds/m* (proper distance),
dr*= (—ds')'l'/m* (proper time),

a=A/m* (initial value of r* in certain formulas);

and for further simplicity we omit the stars in all that
follows. It would be reasonable to carry out the analysis
of geodesics entirely in terms of the variables u and v.
However, this course presents difhculties because the
metric coefficients are defined in terms of I and v only
through implicit transcendental relations. Therefore,
another plan is followed: (1) We write the equations
for geodesics in the variables r and T. (2) We note that
any direct integral of these equations is unobtainable
because it would itself involve implicit transcendental
relations between r and T. (3) Therefore, we introduce
a well-known supplementary parametric angle m such
that r and T become simple trigonometric or hyperbolic
functions of u. (4) Finally, we translate the resulting
information about r and T as functions of m into infor-
mation about I and v as functions of m.

The equations for spacelike radial geodesics" have
the form

(d'r/ds')+ (1 2/r) (1/r'—) (dT/ds)'
—(1/r') (1—2/r) '(dr/ds)'= 0, (7)

"See, for example, R. C. Tolman, Relativity, Thermodynamics
and Cosmology (Clarendon Press, Oxford, 1934).
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TABLE I.The three kinds of radial geodesics. For time-like geodesics with energy less than mc, u represents the maximum value of r
reached by the object before it starts falling back towards the center of attraction. When u takes on any one of the limiting values
indicated in the table by inequalities, then the geodesic in question becomes light-like.

Kind of geodesic Space-like Energy &mc'
Time-like

Energy) mc'

Value of a in Eq. (11)

(kinetic energy) d T) '

mc' dT

(kinetic momentum) dr
grr

ssc dr

(Esi~/mcs)s —(Ps;~/mc)s for all r

(dT/d7) ~„„"= (total energy)/mc'

Course of geodesic

for r&2

for r&2

0&8&2

Imaginary

Imaginary

Imaginary

Starts at in6nite distance,
goes through throat of worm-
hole and goes off again to
in6nite distance. Asymp-
totic behavior:
(d T/ds) „=W(2/a —1)-'".
(dr/ds) „=+(2/a)'"-

2&a&

2/r —2/a

1—2/r

(1—2/a)'"(1

Starts at r =0 at point
(u, v) on curve v' —I'=1;
v increases steadily; r rises
to a and falls back again
to r =0; geodesic ends on
curve to n' —n'=1.

— &u&0

((1—2/a)/(1 —2/r) jiu

&1—2/r )

(1—2/n)'") 1

Starts at r =0 at point
(u, p) on curve p' —go=1.
v increases steadily; so does
r; r goes to ~; all this for
an outgoing geodesic; there
also exist incoming geo-
desics of the converse char-
acter.

Expression for u used in further analytic
treatment of motion

a =2/cosh'wp a =2/cos'wp a = —2/sinh'w,

Expression for (total energy/mc')'= (1—2/a) —sinh'wp (0
in terms of wf)

„

sin'w0&1 cosh m.i0&1

—(1 2/r)dT'+(1 —2/r) 'dr'=ds'—= dr'—
Another first integral is the relation

(9)

—(dT/ds)'= (dT/dr)'= (1—2/n) (1—2/r)
—' (10)

or, better, a combination of (9) and (10):

(1—2/a)dr'
8T"=

(1—2/r)'(2/r —2/a)

The quantity a determines the character of the geodesic
(Table I).

To proceed further it is convenient to divide up the
situations under analysis in Table I and introduce the
angular parameters of Tables II and III.

The constants of integration are determined in such
a way that the geodesic shall go through a prescribed
point, such as the point A in Fig. 6. The calculation
proceeds as follows:

(1) From the prescribed values of I and u at the
point A, values are calculated for r and T. (2) An arbi-
trary choice is made for the parameter wp (which in the

(d'T/ds')+ (2/r') (1 2/r) '(dr/ds) (dT—/ds) =0. (g)

For time-like geodesics ds' is replaced everywhere by
dr'. One firs—t integral of (7) and (g) is the equation

normally used to define proper distance or proper time:

v=8=0,
(12)

case of timelike geodesic determines the energy). (3)
Then, w (which determines the phase of the motion) is
selected to make r equal to the prescribed r. (4) Finally,
the value of T is calculated for this z and for the pre-
scribed wp, in a form such as T= Tp+"1.913";and then
the value of the constant To is so selected as to make
the time take on the assigned value.

The geodesic is then computed for a succession of
reasonably spaced values of m extending throughout the
zone in which the chosen formulas for r(w, wp) and
T(w, wp, Tp) apply. AVhen the geodesic reaches infinity
or impinges on the surface of true geometrical singu-
larity, v' —n'=1, the problem at that end of the geodesic
is ended. When the other end comes to the boundary
of two zones, the time variable T(w, wp, Tp) becomes
infinite, though I and e individually remain finite.
Then it becomes necessary to join on to the appropriate
expression valid in the next zone, by suitable matching
of the two constants of integration, in such a way as to
preserve continuity of function and derivative in the
I, n plane. In this way, the curves were constructed
which are presented in Fig. 6.

The courses of rays 2, 3, 4, and their mirror images
8, 7, 6 of Fig. 6 were evaluated by hand computer using
the formulas in Tables II and III.

The space-like geodesic 3, for example, starts at
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TABLE II. Qlassi6cation of regimes in analysis of geodesics in Schwarzschild metric in accordance with the numbering of the zones
in the insert in Fig. 5. Light-like goedesics are not included because they are represented in Kruskal s coordinates as simple straight
lines inclined at 45' to the I and v axes.

Zone in
Fig. 5 Value of r

r &2m*

2m*&r &0

r &2m*

Sheet in Fig. 2 Sign of Sign of Sign of
(at T=Oor p=O) up —p' m p

upper sheet

not in sheet

lower sheet

Goedesics

Space-like Time-like
Formula for I

(r/2 1)1/pcr/4 cosh(T/4)
sinh(T/4)

i4 slnh( T/4).
cosh(T/4)

(/2 1),12 „14cosh(T/4)
sinh(T/4)

IV 2m*&r &0 not in sheet IV, IVt (1 /2)1/2 r/4 sinh(T/4)
cosh(T/4)

and crosses from zone I into zone IV, as m reaches ma, coordinates on the geodesic are
at the point I=—p=—sinhwp exp(s+s Tp —D).1 1

where

e= —p=sinhwp exp(sr —stTp —D), The slope at this crossover point is

D= (sinhwp/2 cosh'wp)

Xfsinhwp coshwp+(1+2 cosh'wp)wp], (14)

with the slope

dp/de= tanh(-,'Tp+D).

The formulas for u and v valid in the next zone, IV,
yield the same formulas for the value and slope so there
is no problem of matching constants of integration at
the boundary; they match automatically. This geodesic
then continues through zone IV until it reaches the
boundary to zone III. Here, z reaches —wo and the

dp/du= tanh(-,'Tp —D). (17)

and follows the straight line equation,

Once in zone III this geodesic goes off to infinity.
For example, Table IV lists a few points on geodesic 3.
The limiting space-like geodesics were even easier

to work out. One limit is formed by light-like geodesics
1 and 9. The light-like geodesic 1 starts at

ALE III. Integration of equations of geodesic in appropriate parameters.

Substitution A (Time-like geodesics)

r =2 cos'w/cos'wp

T=Tp+2(w+sinw cosw)/cos'wp

T=Tp+2 sinwp sinw cosw/cos'wp+2 sinwp(1+2 cos'wp)w/cospwp

+2 in~sin(wp+w)/sin(wp —w)
~

Substitution 8 (Time-like geodesics)

r =2 sinh'w/sinh'wp

s=sp+2(w+sinhw coshw)/sinhpwp

T= Tp+2 coshwp sinhw coshw/sinh'u p+2 coshwp(2 sinh'wp —1)w/sinh'wp
—2 1n~sinh(wp+w)/sinh(wp —w)

~

Substitution C (Space-like geodesics)

r=2 cosh'w/cosh'w,

s=sp+2(w+sinhw coshw)/cosh'wp

T=Tp+2 sinhwp sinhw coshw/cosh'wp+2 sinhwp(1+2 cosh wp)w/coshpwp—2 In~ sinh(wp+w)/sinh(wp —w) ~

Total energy/mc'= (dT/dr) «„„=sinwp&1
dr = —4 sinw coswdw/cos'wp

dr=4 cop wdw/cospwp

4 simp cos'md+
dT=

cos'wp(cos'w —cos'wp)

Total energy/mc'= (dT/dr)„„=coshwp)1
dr =4 coshw sinhwdw/sinh'wp

ds=4 cosh'wdw/sinh'w,

4 coshmp sinh4mdm
dT= ——

sinh'wp(sinh'w —sinh'wp)

(Total energy/mcp)2=(dT/dr)p„r = —sinh'wp&O

dr =4 cosh' sinhmdm/cosh2z p

ds=4 cosh'wdw/cosh'wp
4 sinhmp cosh'mdm

cosh'mrp (cosh'm —cosh'm p)
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Fio. 6. Shadow zone (cross-hatched) unreachable by any radial geodesic that issues from A. Radial
geodesics are plotted here in terms af Kruskal s space-like and time-like coordinates u and v, such that
the Schwarzschild metric is ds'= f'(dzz' —dv') with P= (32m"%) exp( —r/2m*) and P(r/2ns~) —1$
Xexp(r/2m') =zP —s'. Space-like geodesics: 2, 3, 4, 5, 6, 7, 8. Limiting cases of space-like geodesics
give light-like geodesics 1 and 9. There exists no radial geodesic that connects A and a typical point
8 in the shadow zone. Space-like geodesics from A never strike the region r =0 (shaded hyperbolas
v —u'=1) where the intrinsic curvature becomes in6nite. A time-like geodesic through A, on the
other hand (path of ideal test particle) always runs into this barrier on at least one end, and runs
inta this barrier at both ends when the energy of the test particle is insuScient for escape from the
center of attraction. Geodesic 10 corresponds to the special case where the test particle reaches its
maximum Schwarzschild coordinate r just at A itself. This geodesic ends at point 6 not tangent
to the hyperbola in the (N, s) plane. An observer far away in the region to the right will never receive
light signals from P1, P2, P3, P4 no matter how long he waits. The interval of proper time from J to
IC is however perfectly finite (2irni*).

down to its intersection with the hyperbola

8 —I =1.
The intersection occurs at

(20)

The other limit is associated with geodesics which
deviate only very little from the horizontal line v=O.
These geodesics are described by values of the parame-
ter zvo in Table III Sec. C which are very close to zero:

zz= —,'(u —u—'),
z=-,'(—u —u-').

zoo= e«1.
(21)

In this limit the equations for a geodesic become

(24)

The new light-like geodesic issuing from this point with
slope —1 in the (u, tt) plane has the equation

u= (sinhw) exp( —,
' cosh'w),

( )
e= e(sinhw) exp(-,' cosh'w)

X L(,s) sinhw coshw+ (3w/2) —cothw

+ (rs) sinhw coshw+ (3w/2) —cothwj. (26)and crosses the horizontal line v=0 at the "focus"

zz= —1/u. (23) Here w is defined by the starting point A of the geodesic:

TABLE IV. A few points on geodesic 3 (zoo=0,6). u = sinhw exp(-', cosh'zfi),

8=0,

r/za*
2'/ra*

V

3.39—2.50—2.34
1.30

2.24
1.18—0.64—0.18

2.00
+ 00
—0.38—0.38

m —1.00 —0.70 —0.60
Special Above Below Cross
feature "focus" "focus" r=2m* ~min

1.42—1.71
0.34—0.84

2.00

0.90—0.90

4.00 7.87
0.00 3.76
2.72 18.08
0.00 13.30

+0.60 1.106 1.50
Cross Above

~=2m* A e axis

or
r= 2 cosh'w,

T=0.
(28)

The focus of these nearly horizontal geodesics is de6ned
by that value of the parameter zo which annuls the
quantity in square brackets in Eq. (26). In the special
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case where the source A lies at In other words, a particle at the throat of the wormhole
can live only for a proper time equal to 2'*.

or at
=0

u=e=2. 718 . .

8=0,
(30)

For values of the "source" coordinate r greater than
zero and less than ~ there is also always exactly one
focus, but only when the "source" coordinate is equal to
4m* is the proper distance from the origin to the
"image" equal to the proper distance from the origin
to the "source. "

Also shown in Fig. 6 is a time-like geodesic, the track
of an infinitesimal test particle, for the special case
where the test particle reaches its maximum Schwarzs-
child coordinate r just at A itself (parameter To in
Table III Sec. A equal to 0):

the focus Ii is symmetrically located to the left of the
origin:

Zlp = —8,

up=0.

III. Envelope of the Family of Geodesics

From Fig. 6, it is apparent that the family of all space-
like geodesics which pass through a given point (r,T)
or (u, v) have an envelope. This envelope starts on the
hyperbola ~'—u'= 1 at the point of intersection with the
extreme or light-like geodesic through (u, 8). A typical
point on this envelope is common to two neighboring
geodesics, characterized by the fact that both go through

(u,8), one with the constant of integration wo, the other
with the constant of integration wo+dwo. I et the ex-

pressions for r(wo, w) and T(wo, w) in Table III be
written in the form

and
r(wo, w) =2f(w)/f(wo),

T(wo, w) = To+ Tl(wo w) ~ (36)

Then the requirement that a geodesic with energy
parameter wo shall pass through (i,r) determines a,

value of the position parameter m =to, via the equation

r =2/cos'wo,

T=O,
7-=0,

'R = tailwo exp (—cos wo),

v=0.

This geodesic crosses the 45' line n= v at

whence
r=2f(w)/ j(wo),

f(w) =f(wo)r/2,

(3&)

(38)

T(wo, w) = T—Ti(wp, w)+T, (wp, w). (39)

(31) an implicit equation for w. At the point w on the geodesic
zap the time coordinate must have the value T. This
requirement fixes To (Eq. 36). One finds

r=2

u= v = sinwo exp(-,'+~i Tp+D).
dv/du= coth(-„'Tp)+D),

(32)

ar(wo, w) ar(wo, w)
0= dr = dw+ dwo, (40)

Consider the geodesic mp at the point m where it is
tangent to the envelope. Tangency means that on
another geodesic wo+dwo there is another point w+dw
which has the same r, T coordinates:

D= Lsinwo/2 cos~woj

XPsinwo coswo+ (1+2 cos'wo)wo] (33)

It continues on into the region r&'2 and arrives at
r=0, at a point in the (N, v) plane on the hyperbola,
v' —I'=1, but not tangent to this hyperbola. Simplest
of all time-like geodesics is the one that runs from
(u, i&) = (0, —1) to (N, v) = (0,1).This geodesic is described
parametrically by the equations

r=2 cos'w, (w from —7r/2 to +7r/2)
r=2(w+sinw cosw), (goes from —~ to +m)
T=O,

N=O,

i&= sinw exp( —', cos'w), (goes from —1 to +1).

dT, (wo,w(wo))
dwp. (41)

dK'p

.'ifultiply the first equation by BTi/Bw, the second by
—gr/gw, and add. We obtain the result

BTi Br Br ~Ti(wo&w) ~Ti(wo&w)

Bw Bwo Bw Bw &.'two

aw aTi(wo&e)
=0. (42)

878p
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This is an equation for m; for that point on the geodesic
mp which touches the envelope. The coordinates of this
point are found from (35) and (36) after w itself is
found. This equation is written out below for the case
of space-like geodesics, in the notation

s = sinhm,

so= sinhmp,

8= sinhC,

Equation (42) for w becomes

c= cosh@&,

cp = coshzvpy

0= cosh@.

(43)

—SpC CpZU C —3C Cp80
+ sSp 'W+Cp W Sp Cp W+— — +sSp SC—

8 (c'—cp') 2 2s 2

8ccpCp CO

+sSp 'W Cp W+Sp Cp 'W+
2 g2 cd

=0 (44)

No method other than trial and error is evident for solving this equation for m. The envelope of geodesics
shown in Fig. 6 was determined, not by solving this equation, but by inspection of the geodesics themselves.
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Nonideal Bose Gas at Nonzero Temperatures
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An extension to nonzero temperatures of the Hugenholtz-Pines procedure for the degenerate Bose gas is
provided. It is shown that under certain conditions the elementary excitation spectrum must approach zero
for zero momentum, at nonzero, as well as at zero temperatures. The apparent discrepancy of this result with
the particular case of a charged boson gas with a uniform positive background is discussed. Finally, a sug-
gestion is made for modifying the Bogoliubov approximation, which is particularly relevant at nonzero
temperatures.

1. GRAND PARTITION FUNCTION

' 'T was pointed out by Hugenholtz and Pines' that
~ one cannot apply, straightforwardly, field-theoretic

techniques to the degenerate gas of interacting Bose
particles. Because of the high probability of occupation
of the zero-momentum single free-particle state, the
cancellation which usually occurs up to terms of order
(volume)

—' between disconnected diagrams and re-
normalization terms in the perturbation series for, say,
the ground-state energy per particle no longer takes
place. They have also provided a procedure for deter-
mining the ground state which is an extension of the
Bogoliubov' method for low-density systems. If a&t

and ak are the creation and annihilation operators of
particles with momentum t'tk, we replace apt and ap by
a parameter gap, and thus obtain a Hamiltonian
H(Xp) which is a function of Xp. One then determines
the eigensta, te of HPVp) with the lowest eigenvalue
Ep subject to the subsidiary condition

X'= iV—~Vp,

where iV'=P~' its aq, the prime on the summation
symbol indicating the value k=o is to be omitted; the
bar indicates a quantum-mechanical average; and E
is the total number of particles in the original system.

* Pressed Steel Research Fellow.
1 N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).' N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947).

(d/dip) (Ep) =0. (1.3)

Although it has not been proved rigorously that this
whole procedure leads to correct results, Misawa' has
shown that to third order in the interaction potential
it gives correct results for Ep, and one of us (W.E.P.)
has extended this calculation to fourth order, with the
same conclusion. We also note that by this method one
obtains the same results as Beliaev, 4 who used a different
procedure.

One would next like to extend this idea to the
determination of thermodynamic functions at nonzero

' S. Misawa, Prog. Theoret. Phys. (Kyoto) 24, 1224 (1960}.
S. T. Beliaev, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 417

(1958}Ltranslation: Soviet Phys. —JETP 7, 289 (1958)j.

The parameter lVp must then be determined in such a
way that Ep is minimal.

Since H(1Vp) does not commute with 1V, it is in-
suKcient to impose this condition on the unperturbed
wave functions. The simplest way of including it is to
introduce an undetermined multiplier pIi. p, to find
the ground state of the Hamiltonian

II'=H(itrp) tJH p tV', — .(1.2)

without any subsidiary condition, and to determine
pH. p. from

E'=Ã—Ãp.

Ep is then again determined by the condition


