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The P-limiting process discussed in the preceding paper is used to study the electromagnetic properties
of the intermediate boson O' . Assuming that the limit P

—& 0 exists, it is found that, by a rearrangement of
the perturbation series, the radiative correction to the quadrupole moment of lV+ can be calculated and is
proportional to a lnu. Similar radiative corrections to the leptonic decay modes of 8"+, p, decay, and the

P decay of a "bare" nucleon are also discussed.

1. INTRODUCTION

'N the preceding paper' a theory of charged vector
~ - meson, called $-limiting process, is discussed. For
$)0, the theory is covariant and renormalizable; but
the S matrix is not unitary. However, assuming that
the limit $ ~0 exists, the limiting S matrix is shown
to be unitary; therefore, it can be applied to physical
problems.

In this paper, we apply this $-limiting process to the
(as yet, hypothetical) intermediate bosons W+ of the
weak interactions. ' Because of the absence of any
direct strong interactions the S'+, if it exists, could
serve as a test case for such a calculation.

For a nonzero value of $, the electromagnetic inter-
actions of 8'+ are renormalizable. Unlike a spin —',

particle, both its charge and its magnetic moment
require a renormalization. In terms of these renormal-
ized quantities the quadrupole moment of TV+ can be
calculated. The resulting power series expansion in the
fine structure constant n for the quadrupole moment
is finite if ()0, but becomes divergent as $ —+ 0. How-
ever, assuming that the limit $ —+ 0 exists for the entire
sum of the power series, the summation over the most
divergent terms (as $ —+0) in the series leads to a
result for the quadrupole moment of 8"+:

Q= —rrtn 'ebs —(4s) '(s+3) (s—1)'n

Xln(n. ss)+O(n) ], (1)

where (1+s)=renormalized gyromagnetic ratio of W
and m~ is the mass of O'. The existence of terms like
Ln in(crt)'7 "explains" why the original power series
expansion in n should be singular at )=0.

Similar considerations can be extended to the weak
interactions of S'+. Radiative corrections to leptonic
decay modes of S"+, p,-decay and the decay of a "bare"
nucleon are also discussed.

It must be emphasized that, throughout this paper,
the existence of a complete theory of 8'+ in the limit

f —+ 0 is a ptere assttrrtptt'ore

2. REVIEW OF THE FEYNMAN RULES

XVe review the Feynman rules for the electromagnetic
interactions of a charged vector meson in the (-limiting
formalism (with a negative metric).

(i) It is convenient to represent the propagator of
the W+ in the interaction representation by a (4X4)
matrix

s(p) = (—)(p'+
XL1+ (&p'+rrtw') '(1—$)pp7, (2)

where m ~ is the mass of 8'+ plus a negative in6nitesimal
quantity. p is a (4X1) column matrix whose matrix
elements are pi, , p4 and p'=pp. Throughout this
paper, indicates the transpose of a matrix. The rows
and the columns of the matrix determine, respectively,
the Anal and the initial polarization states of g .

(ii) The three-point vertex for a W+ with initial
(incoming) momentum p and final (outgoing) momen-
tum p' interacting with a photon is given by the (4X4)
matrix

V~(p', p) =t'eI (p+ p') g+ (&+lc) (e~p+ p'ei)
—(1+s)(e~p'+ pei) 7 (3)

where P denotes the polarization of the photon, e), is a
(4X1) column matrix whose )ith matrix element is 1
and other elements zero; e.g. ,

0

0, etc.

.0.
(iii) The four-point vertex is given by the (4X4)

matrix

Ug„(p', p; k) = —iesL28i —(1—
&) (e),e„+e„ei)7, (5)

where p, p' are the initial (incoming) and final (out-
going) momenta of W+, respectively, X and p, are the
polarizations of the two photons, k is the incoming
momentum of one of the photons (for definiteness, say,
the one with polarization )i), and (p —p —k) is the in-
coming momentum of the other photon.

* Research supported in part by the Alfred P. Sloan Foundation.
' T. D. Lee and C. N. Yang, preceding paper /Phys. Rev. 128

885 (1962)j. Vv'e list Iirst some simple identities satisIied by these
2 See, for example, T. D. Lee and C. N. Yang, Phys. Rev. 119, matrices

1410 (1960).Throughout this paper, all unexplained notations are
the same as those in references 1 and 2. (i) ~ (p ) ~ (p) =e (p p)&l & (p ~p)~
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pS '@=0 at P'+ms" ——0.

On the other hand, if rp is proportional to p then

(8)

where the inverse of S(P) is

S-'(P) ='[(P'+ ~)-(1-~)PH (7)

I'or a [(4X1) c-number column matrix) wave function

q J P (i.e., (pp =0),

gator, photon propagator, three-point vertex function,
and meson-meson scattering are primitively divergent.
The detailed program of renormalization for the present
case ($)0) is similar to that of a charged scalar meson

except for the difference in the spin variables. For
example, the three-point vertex function V&,'(p', P) is

now characterized by seven scalar functions F&, . , F&

as follows:

&pS 'p=0 at P'+$ 'ms'=0.

Equations (8) and (9) give, respectively, the appro-
priate poles of S(P) for its spin 1 and spin 0 parts.

(ii) Vi (P' P) = Vi ( —P P—') =—V~(P P')

(9) V~'(P', P) =P&Fr+P~'Fi'+ (si P)Fs+ (P"))Fs'

+ (~~P')F~+ (Ps~)Fs'+ (PP') [Pd'4+P~'J 4']

+ (P'P)LPi J'"a+Pi,'J's']+P) '(PP)F.s
+P&(P'P')Fs'+Pi(PP)F-+P~'(P'P')~'-', (17)

(iii) Vq'(P'+k, P+k) Vq'(P', P)—
= —e 'k„U„y'(P'+k, P; k),

( ) U..'(P', P;k)=U. '( P, P';k)--
=U~. (P,P; -k)=U: (P,P'; P P'+k)-

(14)

In Appendix A we give a proof of these identities
together with a discussion of some other well-known

properties of charged vector mesons.

which expresses the consequences of charge conjugation
invariance and the space-time reversal invariance.

(iii) Vq(P'+k, P+k) —Vq(P', P)
= —e 'k„U„g(p'+k, p; k)

and

».(P'P k)=U"( P P' —k)—
= U~. (P,P', —k) = U"(P,P'; P P'+k) —(11)

Next, we consider S'(p), Vi, '(p, p') and Ui,„'(P,p')
which are defined to be, respectively, the sin of all
diagrams that contribute to the propagation function
of S"+, the three-point vertex function and the four-
point vertex functions. Similar to the Ward's identity'
(and related properties) for a spin —,'field, there is the
following generalization of (6)—(11):

(i) S' '(P') S' '(P)=e —'(P' P)~V'(P', P—), (12)

(ii) V~'(P', P) = V~'( P, —P—') = V~—'(P,P'), (13)

where I'q, F2, ~, P7 are scalar funct;ions; i.e. ,

F =F'(O'P'P P")

a,ndi = 1, 2, , 7. The F functions are related to F, by

(18)

Next, we represent the vertex functions, the meson-

meson scattering function, and the derivative of photon
propagator as sums over irreducible graphs. The ex-

istence of overlapping diagrams in such sums may
generate complications. In this paper we do not enter

any discussions on the overlapping problem but assume
that such difhculties can be resolved (as would be the
case if the electromagnetic interaction of a charged
scalar meson is renormalizable). By a direct counting of
momentum powers it can be seen that in the sum over
irreducible graphs for the three point vertex function

only Fi, Fs, Fs [defined by (17)j are logarithmically
divergent.

To remove these divergences it is necessary to add in

the original Lagrangian a 8$ and a 5» term,

MfiirFsu pil*pv bt(r)g *A*)(r)~v'1) i

where F„,and q„are, respectively, the electromagnetic
field tensor and the meson wave function. This gives
rise to an additional three-point vertex

gV„{P',P) =icy((s~P+P's~)+ Ss(ks, s,k)], —(20)

4. RENORMALIZATION (()o)

Following the general method and notations de-
veloped by Dyson, 4 we find. that the condition for
primitive divergence (for $)0) is

where k=P' —P. The values of' $ and. a in (2)—(5) are to
be regarded as the renormalized constants. The diver-

gences in FJ„F2, and F3 can then be removed by the use
of 8P, Ss, and the usual Zr factor. The renormalized
three-point vertex function Vz, is defined by

g~+g (4
where Ey and E„are the number of external S' lines
and external photon lines, respectively. Because of
gauge invariance and Furry's theorem, among graphs
that satisfy (16) only those representing meson propa-

' J. C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951).
4 F. J. Dyson, Phys. Rev. 75, 1736 (1949); A. Salam, iNd. 79,

910 (1950);J. C. Ward, ibid 84, 897 (1951)..

Vi,.(P',P) =~iV~'(P' P)

and the boundary condition

jVg, (P,P) q = (2ie)Pi,
vrhere

qp=0.

(21)

(22)

(23)
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The renormalized meson propagator 5, can be ob-
tained by using the generalized Ward s identity (12),
which gives, after eliminating the Z~ factor,

S; (p') S-(p) =e- (p' p), V,.(p', p) . (24)

To carry out these two steps, we observe that A„ is
a, well-defined function of x and $. As $-+ 0 (proved in
Appendix 8),

Ai~apln)

Similar to (8) and (9), S, satisfies

o S. '(P) v =0

p'+m i'v=0 if rpp=0

A —+ a (x'/P)" ' for N&2 (32)

(25) where ap and a„ i are irrdepersdent of either & or n. Using
(30), the quadrupole moment can be written as

Q= —(ex/m w') t 1+saon ln(nxs)+nf(x) j, (33)

where

p'+( 'mir' ——0 if p= p. S= O.'K (34)

The remaining divergences in the photon propagator
D' and the meson-meson scattering can be removed by
introducing in the original Lagrangian a (8e) term for
the charge renormalization and two meson-meson scat-
tering terms

() i+8~i) (o.*p.*)(o.o.)
+() s+»s)(v.*o.)(o.*v.), (26)

where X; and (X;+Q..;) are, respectively, the renormal-
ized and the unrenormalized coupling constants. The
renormalized charge e is related to the unrenormalized
charge (e+8e) by

(27)e =Zs'i'(e+ be),

where Z3 is the usual ratio between the unrenormalized
photon propagator D' and the renormalized one D,.

To summarize, the renormalization of the present
vector charged meson (for $&0) can be carried out by
introducing renormalizations in e, mw, f, x and Xi, Xs.
The magnetic moment of such a meson is

(2nzg) 'e(1+x),

where e, m~, ~ are all renormalized quantities.

5. QUADRUPOLE MOMENT AND THE LIMIT f.-~O

Let Q be the quadrupole moment which is defined to
be the average value of e(2z' —x' —y') for a W+ at rest
with (spin), =+1. The radiative corrections of Q can
be expressed as a power series in n,

Q= — -[x+P A„n"j,
SS )g

(29)

where n = fine structure constant —(137) ' and
(n=1, 2, ) are independent of n. If $&0, the A„'s
are finite; but, as $ —&0, A„—+ po. The limit $~0
will be calculated by the following steps"":

(i) In (29), for each A „we retain only the
most singular part as $ —+ 0. (30)

(ii) Assume that the entire sum (29) does lead
to a finite result in the limit $

—+ 0. (31)
' Similar considerations have been used in many-body problems.

See, for example, Eq. (55) of T. D. Lee, K. Huang, C. ¹ Yang,
Phys. Rev. 106, 1135 (1957).

and f(x) does not explicitly depend on either rr or $. For
small values of x,

f(x) = —-', ap lnx+ Q a x .
m 1

(35)

When $ —&0, x becomes infinity. Applying (31), we
demand that Q is finite as ( —+ 0. This is possible only if

Therefore,

lim f(x) =finite. (36)

Q = —(e/ns s")Ex+ s«o ln (rrx') 10(o)j, (37)

where O(n)=nf(c&). Explicit evaluation of ap gives
Lcf. Appendix 8]

uo = —(2w)
—' (x+3) (x—1)'. (38)

Similar considerations can be extended to other
radiative corrections.

6. RADIATIVE CORRECTIONS TO LEPTONIC
DECAYS OF W~

The weak interactions between W and the other
particles are described by'

+w l++w—J++ Iv——s

where Z~ g and Z~ q describe, respectively, the inter-
actions between 8' and the strongly interacting particles
that conserve the strangeness S and violate S conserva-
tion. The term 2 ~ ~ describes the interaction between
8' and the leptons

&n i= —igoyi*LP. tvn~(1+vs)f.
+P„ty4yz(1+ps)ib. 1+conjugate rtme, s(39)

where gp is the unrenormalized coupling constant and t'

indicates Hermitian conjugation. Throughout this paper
we assume'

PWp-

If v=v', then arguments similar to that used in Sec. 5
would lead to a ratio of rates: Prate(p-+ e+y)/rate(p -+ e+v+v)g= (87r) '3nf(e 1) ln(nc')]'—+O(n), which does not agree with the
experimental results. LSee, for example, D. Bartlett, S. Devons,
and A. M. Sachs. Phys. Rev. Letters 8, 120 (1962); S. Frankel, J.
Halpern, L. Holloway, W. Wales, M. Yearian, 0. Chamberlain,
A. Lemonick, and F. M. Pipkin, ibid 8, 23 (1962).g.
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o.. The diagram in Fig. 1 gives rise to a vertex function

(2~) '("go) &4Q (Q'+~z) '[4"'v4v-(1+hz)]radiative correction to
W+ —& @++I'.

x[—v. (Q —p).—,]-'&~a.

X&'(&'+&'-) '[5(&)&zi(E,p)].i, (43)

For $&0, the vertices for W+~ e++z and W+ —&

zz++z' both require renormalizations. [In this paper,
we consider only renormalization due to electromag-
netic intera, ctions. ] For convenience, the rezzormalised
8'—l coupling constant g may be defined in terms of the
rate X for lV+-decay into e+ and &

X(W+ —+ e++ z )—= (6zr)
—

'ming'.

Sy using arguments similar to those in Sec. 4, it can
be shown that in terms of g, all other physical quantities
are finite if $)0. The limit $ —& 0 can then be carried
out by applying (30) and (31) of the preceding section.
Let Fi(q, p) denote the vertex function for

W+ ~ zz++ p~

where p and q are the (outgoing) 4-momenta of zz+ and
z ', respectively. The result (after taking the limit $

—+ 0)
for Fz is given by the following theorem:

Theorem I: If in (41) both p+ and z' are physical
(hence, p'= —m„' and q'=0), then

g 'I'. (q,p)
= [u"t747i, (1+hz)u~]zi1+ (16mms ') 'n

Xln( .z)[(kzym~') (Iy-',.)+m„z(1y.)]}
+z(16zrm zz') 'm, n ln—(nx') [u, tizzy), (1—yz) u„]

X[ki(2+ z~)+2p&, (—1+~)]+O(~), (42)

where n„, I„,are the free c-number spinors for p and p',

m„ is the mass of p, , k~ is the incoming four-momentum
of 8'+, i.e.,

4= p&,+q~.

In (42), the constant gi is related to g by

where d'Q is real, E=k —Q, 5 (IC) and V!z(E,p) are given

by (2) and (3), respectively. The factor 6'(E'+6') '
a,nd the modified photon propagator (Q'+P) ' are in-
troduced to give the integral (45) a definite value. A
direct computation shows that as $ ~ 0

(45) =Zg [~, t~ v.(1+& )~.]+(8- ')-'-
X»k[gog"'74'&, (1+vzN"][k'(1+ 6x)

+m„'(1+x)]+z(8zrmzr') 'm„a

Xln~[g, a;t~,~ (1-~ )~.][k.(2+l )
+2pi( —1+x)]+0(n), (46)

where 0(n) is proportional to n and remains finite as
$~ 0, Z is a constant independent of ki„pi, and m„.
In deriving (40), we use the properties that p'+m„'=0
and (p —k)'=0. It is easy to see that Fig. 1 is the only
diagram which gives a radiative correction to the mo-
mentum dependent part of the vertex function that is
proportional to nln). Using the results obtained in
Appendix 8, it can be shown that the higher order
radiative corrections are of the same form as (32). (For
example, we may express in (.33), instea, d of Q, the co-
efficients of [P;ty4yi(1+hz)f„, ]k' or that of [P, ty4y&,

X (1+yzg„]p, etc.) Similar to (36) and (37) the limit

(~ 0 can be taken which yields the final result for I'i
given by (42). The ratio (g/gi)' [Eq. (43)] can then be
established by applying (42) (but changing p, , z

' to e, z)
to evaluate the rate W+ ~ e++ z .

We list in the following some consequences of
Theorem 1:

(1) In the decay of W+ ~ p++ z ', let lVI, and Ezz be
the number of left-handed zz+ (i.e., helicity= ——',) and
that. of right-handed zz+ (i.e. , helicity=+-', ), respec-

where g is defined by (40), m, is the mass of the electron,
a,nd v, is the velocity of e+ in the decay W+ —+ e++ v ob-
served in the rest system of 8', where v„ is the velocity of p+ in the rest system of W,

v„=[1+(m„'/m zz ')]—'[1—(m„'/m s ')]. (48)..=[Iy(m;/m~z)]-'[1 —(m.z/m~z)]. (44)

(g/g )'=(1+') '»'((3+~.)+( /mm)'s(8~) '~ tively. The ratio (!Vr,/!Viz) is given by

Xln(a~')[3(1+~,)+K(3—~,)]}, (43)
(!V,/iV, ) =-', (m z/m ~z) {1—[4~(1+~„)]-'v„(~—1)~

Xln(a~')+O(a) }, (47)

If one neglects (m,z/mzvz) as comPared to 1, then (2) The branching ratio (summing over the helicities
of e+ a,nd zz+)

Proof To prove (42), w. e begin with $&0 and calculate [rate(W ~ ~ +~+ ' ')]
t,he renormalized vertex function F~ as a power series in X [ra,te (W+ —& zz++ v'+ . .)] (49)
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is given by

L(1+v.)"'(3+')] 'L(1+')'"'(3+")]
X{1+(Sums') 'm 'n ln(n«') (3+v )

—'

XL3+3v„+«(3—v„)]—(Sv riser') 'mPn

Xin(n«s) (3+ v ) 'L3+ 3vgy«(3 —v.)]}
+0(n)+OL(rN„'/ms ')n]. (50)

(aj (b)

In (49) the" . "indicates possible presence of photons.
In (50) the correction 0(n) depends on ln(ns„/tis, ) and
is, therefore, important. However, it can be shown that
the result of the infinite sum Lsimilar to the 0(a) term
in (37)] leads only to a correction OL(m„s/mq')n] in

(50). Therefore, the important term 0(a) can be
calculated without summing over any infinite power
series in a.

7. RADIATIVE CORRECTIONS TO p DECAY

Similar considerations can be applied to p decay. It
turns out that the final result for the electron spectrum
in p, decay including radiative corrections is quite simple.
It essentially consists of only two parts which are (i)
corrections' due to the nonlocal eBects in p, decay in-
duced by the presence of intermediate boson (without
radiative corrections) and (ii) radiative correc-
tions' " but regarding the p, decay as due to a Fermi-
type point interaction. Both effects (i) and (ii) have
been calculated in the literature. For clarity, we state
the 6nal result of the electron spectrum in the form of
a theorem:

Theorem Z. The electron spectrum in the decay of a
completely polarized p, meson is given by

diV=x'dxd(cose)L3X2'Xv'] 'm„sG '
X$1+—,

'
(m„/rN s )']{(3—2x) —-', (m„'/m s ')

XL9—16x+5x']+ (2v) 'n f(x)+cos8E(1—2x)
——,

' (ns„'/ms ') (3—6x+5x')+ (2v.) 'ng (x)]
+OL(m„s/ms ')n 1n(n«')]}, (51)

where 6„is related to the renormalized constant g by

G„=res '2"'g'{1+OLo.1n(o.«')]} (52)

x= (electron momentum)/(maximum electron momen-
tum), g=angle between the momentum of electron
and the spin of p . The functions f(x), g(x) are given
explicitly by Eqs. (2.4), (2.5), and (2.6) of reference S.

It is important to notice that (51) is simply the sum
of the above two effects (i) and (ii). In the spectrum
(apart from the correction in G„) deviation from these
two effects is only of the order of (m„'/toss")n 1n(n«')
which is smaller than either (i) or (ii). The radiative
correction to the coupling constant G„ is, however, of
the order of n ln(n«').

7 T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957).
s T. Kinoshita and A. Sirlin, Phys. Rev. 115, 1652 (1959).
9 S. M. Bernran, Phys. Rev. 112, 267 (1958).
» R. Sehrends, R. J. Finkelstein, and A. Sirlin, Phys. Rev. 101,

868 (1956).

„/'yl&,
' / „P,

FIG. 2. Diagrams for p decay.

I'roof. To calculate radiative corrections we consider
the skeleton graphs (a), (b), and (c) in Fig. 2.

In graph (a) we use the retsorrttaLised propagator
and the renormaHsed vertex function I'q. By using
(42) it is seen that at zero momentum transfer and
zero incoming momentum of the external line the
radiative correction to I'i, is proportional to n in(n«')
which contributes to OLn 1n(n«')] in (52). However,
it is easy to see that the change of radiative corrections
in I'z at the physical momentum range of p decay
from that at zero momentum transfer and zero ex-
ternal momentum is of the order of (rN '/tgs ')n ln(n«')
Identical conclusions also hold for the radiative correc-
tions due to the renormalized propagator of 8".There-
fore, neglecting terms OI n 1n(o.«')] in the coupling
constant G„and OL(tis„'/ms")n ln(n«')] in the relative
magnitudes of the electron spectrum, the contribution
of graph (a) to p, decay becomes identical with that
given by the intermediate boson theory of p decay in
the absence of electromagnetic interactions. v

For P&0, graph (b) is completely 6nite. At $ —&0,
graph (b) can be separated into a sum of three terms

0(n 1n))+Or (m„'/ass')n ln)]+0(n), (53)

where the singular term OLo. 1nQ is independent of
either the momentum transfer or the external momenta.
By using the same arguments as that used in the
previous section we find in the limit $ —+ 0 the first and
second terms in (53) together with their corresponding
infinite sums contribute, respectively, to the terms
OLnin(a«')] and OL(m„s/ms')nln(n«')] in (52) and
(51). The remaining term 0(a) in (53) is completely
finite (except for infrared divergence) and is identical
with the result of radiative corrections in the Fermi
theory with a point interaction for the p decay. To be
more specific, this term 0(u) in (53) is identical with
Eq. (7) of reference 10 except for the replacement of the
ultraviolet cutofI' in reference 10 by m~. Theorem 2 is
then proved by adding the e6ects of these graphs
(a)-(c) and by using the results given in references 7
and 8.

A simple consequence of (51) is that the lifetime r„
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of the p, meson is given by

~„'=(3X2'Xzs) 'm„'G„'

X{1+(3/5) (m„/m w)' —(2z )-'4r (z' —25/4)

+OL(m„/m )'n ln(oz')]}. (54)

8. RADIATIVE CORRECTION TO THE g DECAY
OF A "BARE" NUCLEON

By a "bare" nucleon we refer to a hypothetical
particle without any strong interactions but with the
same mass and electric charge as that of the physical
nucleon. The weak-interaction I.agrangian Z~ g is
assumed to be

g w, = ig—,q g*r y Jy4y~(1+vs)P, j+H c, (55)

where go is the same unrenormalized constant as that
in (39).

Similar to Sec. 6, the renormalization of the vertex
functions for 4s p+W and p 4s+W+ can be ob-
tained. . The anal result is given by the following
theorem:

Theorem 3. Let p, and n, be, respectively, the out-
going momentum of p and the incoming momentum of
n in the vertex

For nucleon states with zero momentum transfer
pi.e., p'=n'= —(nucleon mass)' and p, =l,] the re-
normalized. vertex function for (56) is given by

go{1+(167r) 'P1+ (5/6)&jn ln(«') }{uvty4'Y&(1+vs)

Xu L1+ (8z.) '(ma/mw)'(13/24)z4r 1n(nzs)]
—uvty4y), (1—ps) u„(8z-) ' (ma /m w)'(11/24) 14n ln (aa')

+i pquvty4u„(8z) '( m~ /mw)'(1 /1 2) z4rln(na')}, (57)

where m~ is the nucleon Ina, ss, the subscript 'A indicates
the polarization state of H/' and u„, N„are the free

(c number) spinor solutions for p and u, respectively.
In (57), gr is the same renormalized coupling constant
used in (42). In the rest system of the nucleon, if XA4,

(57)=igsuvTozu„L1+(84r) '(mar/mw)'nirln(G'K')]; (58)

if)=4,
(57) =gsu„tu. ,

where o.~, 0~, a~ are the usual spin matrices and

gs ——ggL1+ (16z)-'(1+-',z)n 1n(4rz')].

In a similar way, we ca.n calculate the renormalized
functions for either

1$ p+8 +v
or

p a+e++ v. (60)

Q, is found that on keeping the correction term, which
is OL(m~/mw)'4r ln(4r14')], but neglecting terms that
a,re of the order of either n, or L(m~/mw)'nj, or
L(m„/mw)'a ln (na') j, the renormalized vector and axial-
vector P-decay coupling constants (for the decay of a

"bare" nucleon) are given, respectively, by

Gv' ——G„'{1+0(n)+0)(m„/mw)'n]
+Of(m„/mw)'4r ln(4ra')]} (61)

and

G~'=G„'{1+(4z-) '(m—a/mw)'nz ln(ns')

+ 0 (tr)+ OL (m~/m w)'n]

+0[( m/ mw)'n ln(nK')]}, (62)

where G„ is given by (54) for (52)].
It is important to notice that both (61) and (62) are

accurate to the order ( mv/ mw)' rr]n(ops) and o in(4r~&)
but due to apparently accidental cancellations such
terms are absent in (61). Among the terms that are
neglected, the 0$(m~/mw)'o. ] term is the most dificult
one to be evalua, ted. Simila, r to the 0(a) term in (37),
it can only be calculated by summing up an in6nite
series. The OL(m„/mw)'n ln(nK')] term can be obtained
relatively easily; but is found to be unimportant. The
remaining 0(n) term is identical with the radiative
corrections already obtained in the literature " by
assuming the usual Fermi theory of P decay provided
that the ultraviolet cutoG is replaced by m~. Con-
sequently, the result is now completely Gnite. This is
similar to the effect (ii) discussed in the preceding
section. To be speci6c, the effect of the 0(o.) term in the
electron spectrum of P decay is given explicitly by
Eq. (4.1) of reference 8, except that the cutoif parame-
ter X is not replaced by m~.

The comparison between the observed P-decay con-
stant Gy and the p,-decay coupling has been discussed
extensively in the literature. "'"According to Hendrie
and Gerhart, " by using their recently observed value
of Gy together with the radiative corrections calculated
by Kinoshita and Sirlin Li.e., without the assumption
of an intermediate boson, choosing the ultraviolet cutoR
~=m~, and neglecting further unknown structure
efkcts of strong interactions], the calculated lifetime
of the p, meson is found to be about 2.282&&10 sec. The
presence of an intermediate boson now changesthis
value to

I &v]4 =P 282X10 ' sec]{1—s(m„/mw)'
+ (3n/z') I (nm/wmx)+ $0( ~m/ m )w' ]o} (63).

If we ignore the Of(ma/mw)'4r] term"' and take e g
~g =5m„, then

(r„)u,=2.218X10—4 sec (64)
"See, for example, R. P. Feynman, Proceedings of the 1960

Annual International Conference on High-Energy Physics at
Rochester (Interscience Publishers, Inc. , New York, 1960), p. 499.'2 The effects of intermediate boson on the ration between the
coupling constant in p decay and that in 0' decay have been
discussed in the literature. See footnote 22 of reference 8; R.
Behrends and A. Sirlin, Phys. Rev. 121, 324 (1961);S. Oneda andJ. C. Pati, Phys. Rev. Letters 2, 125 (1.959).

~~ D. L. Hendrie and J.B.Gerhart, Phys. Rev. 121, 846 (1961)." 37ote added in proof. It seems quite likely that the absence
of OP(m~/mw)sac ln(os )g in Gv fcf. (61)j implies that the
OL(a4&/raw)'aj term in (63) is actually zero.
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which is to be compared with the observed value'

(r„) o= (2.211+0.003)&(10—' sec. (65)

Because of the neglect of the 0$(m~/mn)'aj term"'
and the unknown effects due to strong interactions,
such a comparison is certainly not to be taken seriously.
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p
4

Gp(N-"4) ~
2

p&q

lk

Fo in=a)=

p+q

p'+ q

GnL(4) (3») (1)j, (A1)

APPENDIX A

Let G„(1V) denote any graph or part of a graph which
connects a single W+ line of incoming momentum p and
final outgoing momentum p' with ts photon lines of in-
coming momenta k~, k2, - k~ and polarizations 1 ~, I'2,
~ FN. In order to describe more explicitly the topo-
logical connection between the Ã photon lines and the
W line we may also represent, e.g. , a typical G~(1V=4)
graph in Fig. 3 by

q

+

P+0
tL

4
5

ep' (N=~l= .

4

P

p+q

qy
s + F '"(N=Q)

P

where each number i stands for the ith photon which
has momentum k, and polarization F;. The order and
the grouping of these numbers indicate, respectively,
the consecutive order and the manner of the interaction
between the photons and the W+. For example, in (A1)
the first set of parentheses (1) means that the W+ first
interacts with the photon k~ through a three-point
vertex; the next set of parentheses (3,2) indicates that
the next interaction of the 8'+ is with photons k~ and
k3 through a four-point vertex, etc.

Each such graph (or part of a graph) G„(1V) con-
tributes a factor according to the Feynman rule. For
example,

G.L(4) (3») (1)3
=U„(p', p' k,)S(p' k4)U—r, ,r (p' k—4, p+ki k3)—

XS(p+ki) Ur, (p+ki, p), (A2)

FIG. 3. An example of G„(tv=4) and its associated graphs p„e i
and G„e ". /See (Al), (A15), and (A4) for their definitions. j

where each G„(1V+1) in the sum satisfies the property
that if the photon line q is simply erased then the re-
maining graph is topologically identical with the original
graph Go(1V). The sum (A4) extends over all such
different G„(1V+1).

An example of such sum is given in Fig. 3.
Theorem AI. For any given G„(1V), the corresponding

sum G„' "(1V) satisfies

g q G, "(N) =eS '(p'+q)S(p')G—„(Ã)
X=1

—eGo+e(&')S(p+q)S '(p) (As)
where

where p'= p+Z k*. (A6)

p'=p+Q k, (A.3)

Throughout this discussion, both the graph and its
corresponding factor are represented by G„(1V).

Deftrtitiort. For every given Go (iV) we define G„'"(iV)
to be a sum over certain graphs Go(1V+1), each of
which consists of the same E photons as in the given
Go(1V) plus another photon line of incoming momentum

q and polarization )

t~l

Proof. Assume that

(AS) holds for all G„(1V), where IV& (n: 1). (A7)—

G„' "(1V)=—Q G„(1V+1), (A4)
'~ See, for example, Proceedhngs of the f960 Annna/ International

Conference on High-Energy Physics (Interscience Publishers, Inc. ,
New York, 1960), p. 878.

Any graph G„(ts) must belong to either of the following
two classes Lcf. the notations used in (A1) and (A2)) ..

(i) G (n) =G„L(n)
= Ur. (P' P")S(P")G.(n-1), (Ag)

where

p"=p+p k =p' —k

and Go(rt —1) represents the remaining part of G„(tt)



p"=p+Q k;=p' —k —k (A11)

As in the case of the G„(n—1) in (AS), the G~(n —2) in

(A10) represents the remaining graph (excluding the
last two photons, k„and k„ i). For case (i),

G„&"(n) = Vr„(p'+q, p"+q)S(p"+q)G, &'(n —1)
+U ., (P'+q, P"; k-)S(P")G.( )—

+Vi(p'+q, P')S(P') Vr„(p',P")S(p")Gn(n 1) (A—12)

excluding the eth photon; or,

(ii) G, (n)=G, [(n, n —1) . ]
= Ur„,r,. , (p', p"; k.)S(p")G„(n—2), (A. 10)

energy diagrams of 8':
S'-'(P) =S-'(p)-A(p)

Corollary. By regarding A (p) =p G„(N) and applying
Theorem A2, the generalized Ward's identity (12)
follows. Similarly, by applying Theorem A2 to the
proper diagrams for Vi' we establish (14).

Remarks. The identities (13) and (15) can be directly
verified by using (10), (11), and

S(P)=S(P)=S(—P)

By using (13) and (15) the well-known Furry theorem
can be easily proved.

AI'PENIHX 3
To calculate the radiative correction for the quad-

rupole moment Q, we notice that Q+ (eK/m s") is
given by

For case (ii),

(A17)
G„(n)= lI, .„,(P'+q, P"+q; k-)S(P"+q)

XG,' ( -2)+V.(p'+q, p')S(p') the coefficient of (iPiEE)

in U, '(P', P) for a physical W a,t the limit E—+ 0, where

(A5) can then be verified directly for either (A12) or
(A13) by using the assumption (A7) together with the
identities (6) and (11). We observe further that (A5)
is true for either case (i) and N= 1, or case (ii) and N =2.
Theorem A is then proved by induction.

Corollary. If in G„' "(N) the external W lines are
physical, then for the initial W' state S '(p)=0 and
for the final W state S '(p'+q) =0. Therefore,

Q qiG & "(N)=0
X=1

(A14)

which can be used to establish that the probability
amplitude for emitting a longitudinal photon by a
physical 8' is zero.

Degni&ion. For every G~(N), we define

Fp"(I') =Gn' "(») Gu+—Q(»)S(p+—q) V.(p+q, p)
—V (p'+q, p')S(p')G (N), (A15)

E=I"—I'.

Therefore, by using (17) we find

Q+ (ex/m s ') =2iF, (A18)

evaluated at P'=P and P'+ m's=0. By a straight-
forward countiag of the degree of divergence of the
relevant integrals at )=0, it can be easily established
that as $ —+0 (32) describes the correct asymptotic
power dependence on $ for A„. To prove that (32) is
indeed correct, mitholt any further factors such as
(1n)), needs a much more detailed examination of the
asymptotic behavior of the integrals.

Among the various groups for the three-point func-
tion Vi'(P"', P) let us fi.rst consider a graph gn which
consists of I~ internal 8' lines, I~ internal y lines, E
three-point vertices, and eo four-point vertex. Therefore,

Irr 2I,= (N —1). ——
where

p'=p+Q k;.

The contribution of bn to (A17) can be written as an
integral over its

(Iw+ I„—»+1)=—,
' (N —1) (A20)

An example of F„'"(N) is given in Fig. 3. In general,
I'~'"(N) can be obtained. from G„'"(N) by deleting
the graphs G„L(q) .) and G„f (q)). By using
Theorem A1 and (6), it is easy to establish the following
theorem:

Theorem AZ. For any G„(N), the corresponding
F~'"(N) satisfies

2 q&F„' "(N) =eEG (N) —G~ (i'iT)] (A16).
X=1

Depgj]jon. Let A(p) be the sum over all proper seif-

independent internal momenta. From the de6nition
(29), one sees that this integral forms a part of the
coeKcient A„, where

n= 2(-i —1) (A21)

The limit of this integral at $ ~ 0 depends on the corre-
sponding asymptotic behavior pf its integrand at large
momenta g"'m rr.

The following properties are of importance:

(a) So far as the asymptotic behavior is concerned,
the propagator S(p) of every internal. W line (with one
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possible single exception) can be replaced by

So(p) —=mw-'(pp) n,
where

(A22)

e'a'[k'(—p q) (k p)(k—q)] (A26)

in which the factor (k') ' is completely canceled.
(c) The single possible exception mentioned in (a)

refers to one of the two W lines that are connected to
the external photon. Let p, p', and E be, respectively,
the momenta of these two W lines and the external
photon. By using (A22) and (A24), it is seen that

lim So (p') Vg(p', p)SO(p)

is proportional to LE'pq —Eq(E p)]. If we replace both
propagators by So, the graph b& can contribute to
(A17) only through the second term on the right-hand
side of (A24) which carries an extra factor P.

We, therefore, differentiate two cases:

Case I. All propagators of the internal W lines in g~
are replaced by S0.

Case II. The propagator of one of the two 8' lines
which are connected to the external photon is re-
placed by

X)= —iL(p +my') '—(p +$ 'mw') ']. (A23)

(b) With this replacement, the propagator —i(k') ' of
an internal photon line can be eliminated. Let V&, (p', p)
and V„(q',q) be the two vertices connected by this
photon line Lk = (p' —p) = (q' —q)].By using the identity

P'V, (p', p) p=ie.pk p, k—,(k p)]
+iegpp'pg'+ (p')'p), ], (A24)

we find that the product

D 'V~(p', P)p]Lq'Vp(q', q)q](k') '». (A25)

becomes at /=0, simply

exceptional vertex gives a factor (ea) to the integral.
Since the total number of exceptional vertices is limited
by an upper limit indeperideet of N and since the intro-
duction of a small $ gives a cutoff for the internal
momentum at g"'m~ we find, as $ —+ 0

~ (~i/P) n (A29)

pg, pg, p) and kg, , k,
where for Case I

/=I@ =2s,
m&2,

and for Case II
1=2m—1,

m&4.

(A30)

(A31)

(A32)

The modified Feynman rules for b~' are given in the
following.

The vertex function for the env meson-meson scatter-
ing vertex is given by (A26).

The propagator for the jth nonexceptional 8' line is
$(p;) /given by (A23)] which can also be represented
by the following parametric representation:

apart from possible further multiplicative factors such
as (lng). To establish the absence of such factors we
have to exhibit more explicitly these integrals for g~.

Defiriiti ori. It is convenient to define a reduced graph,
called g&, which is obtained by shrinking all the non-
exceptional y lines in g~ to zero length. The reduced
graph gN' contains only W lines (among these, at most
one is exceptional), exceptional y lines, exceptional
three-point vertices, and mm meson-meson scattering
vertices.

For definiteness, we label the momenta carried by
the / nonexceptional lines and m exceptional (W or y)
lines in b~' by, respectively,

D (P)=(—i)(P'+m ') ', (A27) $(p;)=mg
—'p {exp) —iver;] —exp L

—ir,])

but all other 8' propagators are replaced by S0. In this
case this particular W line is called an exce ptiomat W line.

It is also useful to define the exceptioriat y lines as
those photon lines that are connected to either the
external or the exceptional W. lines and the exceptioiial
vertices as those vertices that are in contact with
either the exceptional y line or the exceptiona. l S' line.

Let (I) and (II) represent, respectively the integrals
for (A16) in Case I and Case II. Since S(P)=Sp(P)
+Ds (p), the sum (I)+(II) gives the complete con-
tribution of the graph g~ as $ ~ 0.

(d) By using (A17), (A20) (A21) and (A27) it can
be verified by a direct counting that, at )=0 the
integral (II) diverges like (momentum)', where

s=4g. (X—1)]+X 2I~ 3 2=4—(ri 1—), —(A28)—
and the integral Pf '(I)] diverges like (momentum)'+'.
Furthermore, it follows from (A26) that each non-

P'&
Xexp~ iver,

—~dr; (A33)
m~'j

where j=i, 2, ~ ~, l.
The propagator for the exception W line is

Dg (k)) = i(k,'+m—wi)

ao

=ms $ exp —i$ +1 r~+y &~+x. (A34)
0 Sly 2

The propagator for the internal y line (which is
always exceptional)

D, (k,) = —i(k ')-'

k,i
=ms'g exp i& r(~—, ~dr(+, (A35).

0 m~'
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In Case I the three-point vertex interacting with the matrix U
external y line is given by Lcf. (A24)j

&9'p.'+(P') P j. (A40)

Otherwise, all three-point vertices in b& are given by
LV), (p', p)])=0 multiplied by the appropriate P' or p or
both, depending on the number and the propagation
directions of its neighboring nonexceptional 5' lines.

These modified Feynman rules for b&' clearly gives
the same result as the original Feynman rules for g&.

The graph g~ (or its reduced graph gii') consists of
n loops. Let q&, q2,

~ ~ q„be the n independent internal
momenta carried by these loops. By using the above
modified Feynman rules we And that, for the two cases
(I) and (II), the graph gz is given by

9'j II &(P') ll D.(») II&'q- (A36)

where X (n=1, 2, , e) are the eigenvalues of R In
terms of A the power (A39) becomes

where
XAI+Q,

I= U(q+R 'S)

Q=T SR 'S.—

(A41)

(A42)

In the absence of any internal power supply, the current
distribution of the circuit is given by I=0 and its power
supply=Q. By using (A33)—(A35) the integrals (A36)
and (A37) can be written in the form

and
n l+m

g d'I. g dr; f; (r;) X (6'. or (P )

8'~7 II &(P') D~(ki) II D.(kj) II~'q- (A37)

respectively. In the above integrals P;, k; are linear
functions of the external 5' momenta I', I" and the
independent internal momenta q&,

~ ~ ~, q„; (P„(P& are
both homogeneous polynomials of these momenta of
degree

f;= exp( —
iver;) —exp( —ir, ) .

if r, =resistance of the exceptional y line,

(A44)

Xexp[ —its '$(XAI+Q)] (A43)

multiplied by )ms '&'+ i or ms 2™,respectively,
where if r;= resistance of the nonexceptional line
(i.e.,j&l),

1+4l 4'+ 2m— (A38)
(A45)

/so that (the integrandXgd4q ) (momentum)' in both
(A36) and (A37)j. The coefiicient (A17) of these two
integrals (A37) and (A38) gives the desired A„. It is
important to notice that (P, (P~, D~, and D~ do not
depend on $.

To evaluate (A36) and (A37) we take advantage of
the analogy between an electric circuit and the Feyn-
man graph. Consider a circuit which has the same
topological structure as g~'. Let P, P', K be the corre-
sponding external currents of the circuit, q&, q2, , q„
be the internal circulating currents of its n loops, and
ri, r2, , ri+ be the resistances of the l+m branches
of the circuit. In order to maintain such a current dis-
tribution, the total electric power supplied by internal
and external sources is a quadratic polynomial in q;,
which can be written as

qRq+Sq+qS+ T, (A39)

where q is an (tiX 1) column matrix whose elements are
qi, q2, , the matrix R is an (+X') symmetric matrix
whose matrix elements are linear functions in rj, r2,
with coeflicients &1 or 0, and S is an (eX1) matrix
whose elements depend linearly on both r', and the
external currents. The remaining function T depends
linearly on r; but quadratically on the external currents.
The matrix R can be diagonalized by a real orthogonal

and if r;= resistance of the exceptional 5' line,

f,= exp( —iver;). (A46)

To evaluate the coeKcient of (PiKK) for (A36) and
(A37) we use (A43) and the integral

8 lx'
(k')" exp( —iXk')d4k= (i)" . (A47)

N, "

The coeKcient 3„, is, then found to be of the form
t valid for both (A36) and (A37)$

'I
' ('+"

II ~-~
I

Pl II fJ«J Iexp( ikg. ) —(A48)
n=1 I

i/i &constant. (A49)

where the integrations are from r, =0 to ~ and F, g, X

are independent of $. To establish (32) we need to prove
that the integral in (A48) exists in the limit $-+0 for
e) 2. (For clarity, we regard the external currents, the
mass of lV and ~ as pure numerical constants in the
subsequent discussion. )

We list the following simple properties:
(i) F is a homogeneous function of r; of degree 0 and

F is bounded,



I NTE RME D I ATE BOSONS

(ii) X is a homogeneous function of r; of degree 1.
It is clear that for any electric circuit

Let Qo be a subdomain of Q, in which all 7l, are
uniformly large; say

n l+m

Z~.&Z r.
X &eR,

(A50) where e is independent of R. By using (A49)—(A52), we
6nd

(iii) Q is a homogeneous function of r; of degree 1.
If pl" ) is bounded then g is also bounded.

Z+m

P II dr; R '+'

oo

(A59)

(iv)

(v)

E &2.

Q X =2l+m —1,
1

(A51) which -+ 0 as R -+ oo provided e& 2 [cf. (A31) and
(A32)j. Next, we consider another subdomain Ql of Q.
In Ql all X, except one, are uniformly large. Without loss
of generality we may choose

II),."- P II f,odr;
a 1

(A53)

also exists, where the integration is from r, =o to ~.
The function f,' is given by

fP =1—exp( —ir, ) (A54)

which is a consequence of (A38) and (A47).
(vi) For $)0, the integrand, in (A48) multiplied by

IIl'+ r;, is 0(r,) as r, ~0. Therefore, the integral
(A48) exists if gN is a skeleton graph. Otherwise, the
convergence of the integration is insured for $)0 only
if we add to gN other graphs that are necessary for the
renormalization purpose. In the following we assume
that this is done and that the integral (A48) does exist
provided $)0. The following theorem establishes the
existence of (A48) in the limit $ ~ 0.

Theorem B. If the integral (A48) exists for any ]&0,
then for e&2 the integral

) gl&e'R, (A60)

where e' and e are both independent of R. By using
properties of electric circuits it can be readily shown
that the extreme case

can happen only if one of the loops in the circuit bN' is
developing a short circuit. Furthermore,

P, r,=XlXconstant. (A61)

In (A61), as well as in the following, we use s (or r,) to
represent the various branches (or their corresponding
resistances) in that short circuit. [The constant in (A61)
is 1 if the short circuit coincides with one of the original
loops chosen for the assignment of q in (A39).j

%e fix all r, in the short circuit and integrate over
the remaining r;+,

for a nonexceptional line (i.e., j&l) and by [II y N(gj l II f—.
Odr

. (A62)

(A55)
apl )+8

for an exceptional (W or p) line (i.e. , j)l).
Proof. De6ne

(P)= ' [IIX j 'F II f; dr;. (A63)
)+8

and

(A56)

For large R,
constant XR~,

p= (l—ll)+(m —ml) —Q E,

(A64)

(A65)

(A57)
and

a~2

where 0 is the region in which

r, &0,
but

R& Q X &2R.
a~1

(A58) P)0. (A67)

To show that the remaining integration in the integral

(P)-o[(r /R)'j, (A66)

where ll and rnl are the number of exceptional lines and
that of nonexceptional lines in the short circuit, re-
spectively, and [in order that (A49) holds)

The existence of (A48) for any p)0 implies that g(R)
exists for all finite R. To prove Theorem B it is only
necessary to prove that limll „8(R)=0. (g,)

—Nlr(F)II f odr, (A68)
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where

does become zero as E approaches inanity we first and
establish the following lemma.

I.emma.
r, =X,) 1, (A76)

(P—p) &1. (A69) Q, x.= constant (A77)

proof. For any lmge but finite R (A68) exists which is the same constant in (A61). We keeP )i fixed

C q tlyConsequent y
and integrate first over all the r, in (A68). By using
(A52) and the inequality

~
fz'~ (2, we find

p+2li+zzzi —iVi& 1 (A70)

in order to have the convergence at small r,. Combining
(A70) with (A65) and (A52), we obtain the inequality

Z+m

E g dr, (constant&(R '+'&&

b
1 A/8)

8'dk, (A78)

(P p) & (l li) (A71) where the power .T is given by

l—l1=0

(m —zzzz) = 1.

which proves the lemma if. (l—li)WO.
The special case

(A'l2)

means that excluding the short-circuit loop the re-
maining graph consists of only exceptional lines. Since
the number of exceptional lines is limited by (A31) and
(A32), it can be shown that (A72) is possible only if the
remaining graph consists of one single (exceptional)
photon line; i.e.,

I.= lV i+P+—1i+ nzi 1—(A79)

which is also equal to Lby using (A52) and (A65)j
(P p l). —— (A80)

lim
gazoo

Z+m

dr, =O.
1

(A81)

Therefore,
~ J~, Fg, '+" dr;~ is less than R z+', or

R '+'(1nR), or R &+z' depending on whether (I.+1) is
&0, or =0, or (0. In either one of these cases,

Therefore, p=1—g gz iV~. The lemma follows by
using (A51) and (A67).

To perform the integration (A68) we separate Oz

into two regions, Qt

Z+m

O' g dr, ~ 0 as, R ~ ~.
1

0: 0&X1&A

QZ, . c4 (X1(618, (A73)

In a similar way we can prove

Z+m

where A is a constant independent. of R
Integration over 0, in (A68) gives

l+m

P g dr; R ~z'(R ' (A74)

For the region Qz„we change the variables to 8 and x,

(A75)

lim S g dr, =0,

where 02 is another subregion of 0 in which, instead of
(A60), two of the X are small, etc. Theorem B is then
proved. Similar proof can be constructed for g~ which
contains also four-point vertices. Therefore, (32) is
established. The coefTicient a„ in (32) can be obtained
by explicitly calculating integrals such as (A53). The
result for ao is given by (38).


