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The ¢-limiting process discussed in the preceding paper is used to study the electromagnetic properties
of the intermediate boson W#%. Assuming that the limit £ — 0 exists, it is found that, by a rearrangement of
the perturbation series, the radiative correction to the quadrupole moment of W= can be calculated and is
proportional to « Ine. Similar radiative corrections to the leptonic decay modes of W#, u decay, and the

B decay of a “bare” nucleon are also discussed.

1. INTRODUCTION

N the preceding paper' a theory of charged vector

meson, called &limiting process, is discussed. For
£>0, the theory is covariant and renormalizable; but
the S matrix is not unitary. However, assuming that
the limit £ — 0 exists, the limiting .S matrix is shown
to be unitary; therefore, it can be applied to physical
problems.

In this paper, we apply this &-limiting process to the
(as yet, hypothetical) intermediate bosons W= of the
weak interactions.? Because of the absence of any
direct strong interactions the W= if it exists, could
serve as a test case for such a calculation.

For a nonzero value of £, the electromagnetic inter-
actions of W#* are renormalizable. Unlike a spin %
particle, both its charge and its magnetic moment
require a renormalization. In terms of these renormal-
ized quantities the quadrupole moment of W= can be
calculated. The resulting power series expansion in the
fine structure constant a for the quadrupole moment
is finite if £>0, but becomes divergent as £ — 0. How-
ever, assuming that the limit £ — 0 exists for the entire
sum of the power series, the summation over the most
divergent terms (as £—0) in the series leads to a
result for the quadrupole moment of W=:

Q= —mw 2e[k— (4dm) " (x+3) (xk— 1)’
Xn(ex?)+0@)], (1)

where (14-«)=renormalized gyromagnetic ratio of W
and mw is the mass of W. The existence of terms like
[eIn(ax)?] “explains” why the original power series
expansion in « should be singular at £=0.

Similar considerations can be extended to the weak
interactions of W#. Radiative corrections to leptonic
decay modes of W=, u-decay and the decay of a “bare”
nucleon are also discussed.

It must be emphasized that, throughout this paper,
the existence of a complete theory of W= in the limit
£ —0is a pure assumption.

* Research supported in part by the Alfred P. Sloan Foundation.

1T, D. Lee and C. N. Yang, preceding paper [Phys. Rev. 128
885 (1962)7].

2 See, for example, T. D. Lee and C. N. Yang, Phys. Rev. 119,
1410 (1960). Throughout this paper, all unexplained notations are
the same as those in references 1 and 2.

2. REVIEW OF THE FEYNMAN RULES

We review the Feynman rules for the electromagnetic
interactions! of a charged vector meson in the £-limiting
formalism (with a negative metric).

(1) It is convenient to represent the propagator of
the W= in the interaction representation by a (4X4)
matrix
S@)= (=) (p*+mw’)™

X[+ Epr+mw) (1=5pp, (2)
where mw is the mass of W# plus a negative infinitesimal
quantity. p is a (4X1) column matrix whose matrix
elements are p;, - -+, ps and p*=pHp. Throughout this
paper, ~ indicates the transpose of a matrix. The rows
and the columns of the matrix determine, respectively,
the final and the initial polarization states of W.

(ii) The three-point vertex for a W#* with initial
(incoming) momentum p and final (outgoing) momen-
tum p’ interacting with a photon is given by the (4X4)
matrix

VAP ,p) =iel (p+p" )+ (E+0) (ep+2'6)
— [+ (ep"+pea)], (3)

where \ denotes the polarization of the photon, €, is a
(4X1) column matrix whose Ath matrix element is 1
and other elements zero; e.g.,

1
10
61—-0,

0
€= 1 etc 4)
op
0 0

(i) The four-point vertex is given by the (4X4)
matrix
U (Pl7?§ k)=—ie[ 26— (1—&) (eréut a@d)l), ()
where p, p’ are the initial (incoming) and final (out-
going) momenta of W=, respectively, N and u are the
polarizations of the two photons, & is the incoming
momentum of one of the photons (for definiteness, say,
the one with polarization \), and (p'—p—£k) is the in-
coming momentum of the other photon.

3. SOME IDENTITIES

We list first some simple identities satisfied by these
matrices

@ ST ) =S p) = (p' = PV (P',p), (6)
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where the inverse of S(p) is

S-(p)=i[ (p*+mw?)— (1~ §)pP]. ™
For a [(4X1) c-number column matrix | wave function
eLp (e, §p=0),

#5p=0 at p+mp?=0. (8)

On the other hand, if ¢ is proportional to p then

3S1p=0 at pHElmp?=0. (9)

Equations (8) and (9) give, respectively, the appro-
priate poles of S(p) for its spin 1 and spin O parts.

(i) @ p)=—Va(=p, —=p)=Va(p,p)),  (10)

which expresses the consequences of charge conjugation
invariance and the space-time reversal invariance.

(iil) Va(p'+k, p+R)—Va(p',p)

= _e—lkuUu)\(p,+k: b; k)
and

Ot s0; D) =Unu(—p, — '3 %)
=Un(p,p"; —R)=Un(p,p"; p—p'+k). (11)

Next, we consider S'(p), V' (p,p") and Uy/(p,p")
which are defined to be, respectively, the sum of all
diagrams that contribute to the propagation function
of W=, the three-point vertex function and the four-
point vertex functions. Similar to the Ward’s identity?
(and related properties) for a spin % field, there is the
following generalization of (6)-(11):

@) SP)=STp)=e ' —phVN (p),  (12)
@ WN@p)=—VN(—p, —p)=VN(pp'), (13)
(i) V' (p'+k, p+E) =V (P',p)
=—e kU (p'+k, p; k), (14)
(v) O @p;R)=Un/(—p, —p'; k)
=Un(p,p"; —B)=Uun'(p,p"; p—p'+k). (15)

In Appendix A we give a proof of these identities
together with a discussion of some other well-known
properties of charged vector mesons.

4. RENORMALIZATION (£>0)

Following the general method and notations de-
veloped by Dyson,* we find that the condition for
primitive divergence (for £>0) is

Ew+E,<4, (16)

where Ew and E, are the number of external W lines
and external photon lines, respectively. Because of
gauge invariance and Furry’s theorem, among graphs
that satisfy (16) only those representing meson propa-

3 J. C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951).
4F. J. Dyson, Phys. Rev. 75, 1736 (1949); A. Salam, zbid. 79,
910 (1950); J. C. Ward, bid. 84, 897 (1951).
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gator, photon propagator, three-point vertex function,
and meson-meson scattering are primitively divergent.
The detailed program of renormalization for the present
case (£>0) is similar to that of a charged scalar meson
except for the difference in the spin variables. For
example, the three-point vertex function V)'(p',p) is
now characterized by seven scalar functions Fy, -« -, F;
as follows:

V' (P, 0) = paF 1+ pa'Fat4- () Fot- (p'6\) Fo!
+ (ep)Fst (pen) Fst~+ (pP ) [paF at-pa'Fa']
+ (' P)rFs+pNFst I+ by (pP)Fs
+ o0 (B ) Fsi+ pr (D) Fot-p\ (p'P)Ft, (17)

where Fy, Fy, - -+, Fy are scalar functions; i.e.,

F.=F:t*p'p,p")
and =1, 2, - -+, 7. The F,t functions are related to F; by
Fi=F:(p"pp’,p)- (18)

Next, we represent the vertex functions, the meson-
meson scattering function, and the derivative of photon
propagator as sums over irreducible graphs. The ex-
istence of overlapping diagrams in such sums may
generate complications. In this paper we do not enter
any discussions on the overlapping problem but assume
that such difficulties can be resolved (as would be the
case if the electromagnetic interaction of a charged
scalar meson is renormalizable). By a direct counting of
momentum powers it can be seen that in the sum over
irreducible graphs for the three point vertex function
only Fi, Fa, F; [defined by (17)] are logarithmically
divergent.

To remove these divergences it is necessary to add in
the original Lagrangian a 6¢ and a dx term,

_ieaxFF”¢F*§0V_ ok (a#*‘Pn*) (aM"V);

where F,, and ¢, are, respectively, the electromagnetic
field tensor and the meson wave function. This gives
rise to an additional three-point vertex

SVA(p,p)=ie[st(ep+p'e)+ok(ka—ak)], (20)

where k= p'—p. The values of £ and « in (2)~(5) are to
be regarded as the renormalized constants. The diver-
gences in Fy, Fa, and F; can then be removed by the use
of 8%, &, and the usual Z; factor. The renormalized
three-point vertex function V. is defined by

(19)

Vae(p',0)=Z1VN (#,0) (21)
and the boundary condition
@V)\G(P>?) P= (Zie)PM (22)
where
pp=1
and
ap=0. (23)
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The renormalized meson propagator S. can be ob-
tained by using the generalized Ward’s identity (12),
which gives, after eliminating the Z, factor,

S P) =S (p)=e (P —ph Ve (p',0).  (24)
Similar to (8) and (9), S, satisfies
#5715 0=0 (25)
at
@) PHmp?=0 if @p=0
and
(ii) PHEmy?=0 if  o=p.

The remaining divergences in the photon propagator
D’ and the meson-meson scattering can be removed by
introducing in the original Lagrangian a (8¢) term for
the charge renormalization and two meson-meson scat-
tering terms

(’\1+ 6)\1) (‘PM* <P,4*) (90» ‘PV)
+ Mo t0N) (0* o) (2% 00),

where \; and (\,4-0\;) are, respectively, the renormal-
ized and the unrenormalized coupling constants. The
renormalized charge e is related to the unrenormalized
charge (e-+de) by

(26)

e=273"%(e+de), 27

where Z3 is the usual ratio between the unrenormalized
photon propagator D’ and the renormalized one D.,.

To summarize, the renormalization of the present
vector charged meson (for £>0) can be carried out by
introducing renormalizations in e, mw, £ k and A\q, A
The magnetic moment of such a meson is

@mw)~'e(1+x),

where e, mw, k are all renormalized quantities.

- (28)

5. QUADRUPOLE MOMENT AND THE LIMIT & —0

Let Q be the quadrupole moment which is defined to
be the average value of e(252—x>—14?) for a W+ at rest
with (spin),=-1. The radiative corrections of Q can
be expressed as a power series in «,

[4

0=- (29)

(k+22 Ayam],
171];/2 1

where a=fine structure constant=2(137)"' and 4,
(=1, 2, --+) are independent of a. If £>0, the 4,’s
are finite; but, as £¢—0, 4,— «. The limit £¢—0
will be calculated by the following steps®:

(1) In (29), for each 4., we retain only the

most singular part as £ — 0. (30)
(il) Assume that the entire sum (29) does lead
to a finite result in the limit £ — 0. (31)

5 Similar considerations have been used in many-body problems.
See, for example, Eq. (55) of T. D. Lee, K. Huang, C. N. Yang,
Phys. Rev. 106, 1135 (1957).
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To carry out these two steps, we observe that 4, is
a well-defined function of « and £ As £ — 0 (proved in
Appendix B),
A1— apIné
and
An— ana(/8)" for n22, (32)

where ao and @, are independent of either £ or a. Using
(30), the quadrupole moment can be written as

Q=—(ex/mw")[1+3a0a In(ex®)+af(x)],  (33)

where
w= (ax®/£) (34)

and f(x) does not explicitly depend on either « or & For
small values of x,

f(®)=—%ay Inx+ i AmX™. (35)

m=1

When £—0, x becomes infinity. Applying (31), we
demand that Q is finite as # — 0. This is possible only if

lim f(x)=finite. (36)
Therefore,
Q=—(¢/mw")[k+3aa In(@?)+0(@)],  (37)

where O(a)=af(«). Explicit evaluation of ao gives
[cf. Appendix B]

ao=—(2m)7 (k+3) (k—1)% (38)

Similar considerations can be extended to other
radiative corrections.

6. RADIATIVE CORRECTIONS TO LEPTONIC
DECAYS OF W=

The weak interactions between W and the other
particles are described by?

L=LwatLw_st+Lw_s,

where £w_s and £w_g describe, respectively, the inter-
actions between W and the strongly interacting particles
that conserve the strangeness .S and violate S conserva-
tion. The term £w_; describes the interaction between
W and the leptons

L= —igop* [ty (1475
+ytyveya (1475 J+conjugate terms, (39)

where go is the unrenormalized coupling constant and
indicates Hermitian conjugation. Throughout this paper

we assume®
&Y.

6If p=y', then arguments similar to that used in Sec. 5
would lead to a ratio of rates: [rate(u — e-+v) /rate(u — e+v+7)]
= (87)13a[ (k—1) In(ex?) 1*4+0(a), which does not agree with the
experimental results. [See, for example, D. Bartlett, S. Devons,
and A. M. Sachs. Phys. Rev. Letters 8, 120 (1962); S. Frankel, J.
Halpern, L. Holloway, W. Wales, M. Yearian, O. Chamberlain,
A. Lemonick, and F. M. Pipkin, ¢bid. 8, 23 (1962).]
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Fre. 1. A diagram for
radiative  correction to
W+ —ut4y.

For £>0, the vertices for W+ — e¢t+vy and W+—
ut+»" both require renormalizations. [In this paper,
we consider only renormalization due to electromag-
netic interactions.] For convenience, the renormalized
W —1 coupling constant g may be defined in terms of the
rate \ for W+-decay into et and »

AW+t — et4-v)= (67) 'mwg> (40)

By using arguments similar to those in Sec. 4, it can
be shown that in terms of g, all other physical quantities
are finite if £>0. The limit £ — 0 can then be carried
out by applying (30) and (31) of the preceding section.
Let I'x(g,p) denote the vertex function for

W*— pt+v/, (41)

where p and ¢ are the (outgoing) 4-momenta of u* and
v, respectively. The result (after taking the limit £ — 0)
for T'y is given by the following theorem:

Theorem 1: If in (41) both u* and »’ are physical
(hence, p*=—m,? and ¢*=0), then

g Ta(g,p)
= [Ty eyn(14vs5)w, ) {14+ (16mmw?) o
XIn(ax?) [ (k*+mw?) (1+§x)+m,* (1+«) 1}
41 (16mmw?) " myue In () [at iy oy (1—y5) 24,
X[ (2430 +2px(— 144 ]+0(w),
where u,, u,, are the free c-number spinors for u and »/,

m, is the mass of u, &) is the incoming four-momentum
of W, ie,

(42)

A=t
In (42), the constant g; is related to g by

(8/807= (1400 "2202{ (34-ve)4- (mo/ maw)? (8m) e
XIn(ax®)[3(14v,)+x(3—v.)]},

where g is defined by (40), m. is the mass of the electron,
and v, is the velocity of et in the decay W+ — et ob-
served in the rest system of IV,

ve=[1+ (me/mw?) ' [1— (m&/mw?)].

If one neglects (m2/mw®) as compared to 1, then

(43)

(44)

81=§-

Proof. To prove (42), we begin with £>0 and calculate
the renormalized vertex function I'y as a power series in

LEE

a. The diagram in Fig. 1 gives rise to a vertex function

(2n) (%) / #Q (48T yara(1-Hv2))

X [ - 'i’Yg (Q - P)v - mujwl’)’ﬂih

XA K+ A)LS(K)Va(K,p) I, (45)
where d4Q is real, K=k—Q, S(K) and V(K,p) are given
by (2) and (3), respectively. The factor A%(K?4-A?)~
and the modified photon propagator (Q*+6?)~* are in-
troduced to give the integral (45) a definite value. A
direct computation shows that as ¢ —0

(45)=Zg[ ty o (1+vs)u 1+ Brmw?) 7
XInéLgaps tyeya (1+va)¥ull4* (14-5x)
L2 (140 i (Brmw?)ma
XIngL g tyaya (1—va)¥u k(24 36)

+2pr (=141 ]+0(e), (46)
where O(a) is proportional to e and remains finite as
£¢—0, Z is a constant independent of &\, pr, and m,.
In deriving (40), we use the properties that p>4m,2=0
and (p—k)?=0. It is easy to see that Fig. 1 is the only
diagram which gives a radiative correction to the mo-
mentum dependent part of the vertex function that is
proportional to aln Using the results obtained in
Appendix B, it can be shown that the higher order
radiative corrections are of the same form as (32). (For
example, we may express in (33), instead of Q, the co-
efficients of [Yulyaya(14vs)¢ k2 or that of [, yeya
X (14ys)¢,. p? etc.) Similar to (36) and (37) the limit
£— 0 can be taken which yields the final result for I'x
given by (42). The ratio (g/g1)? [Eq. (43)] can then be
established by applying (42) (but changing u, »’ toe, »)
to evaluate the rate W+ — et+».

We list in the following some consequences of
Theorem 1:

(1) In the decay of W+— ut+’, let N1 and Ng be
the number of left-handed ut (i.e., helicity=—1) and
that of right-handed ut (i.e., helicity=+3%), respec-
tively. The ratio (Vz/Nz) is given by

(V/N g) =% (m?/mw?) {1 — 47 (1+2,) J7ou (k= 1e

Xn(ax?)+-0(a)},  (47)

where v, is the velocity of ut in the rest system of W,
=14 (m/mw®) [ — (m2/mw?) ] (48)

(2) The branching ratio (summing over the helicities
of et and ut)

[rate(Wt — et4p+- )T
X[rate(W+— pt+»'+-- )] (49)
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is given by

LA4)%02 3+ 1L (14202 3+ ]
X {1+ Brmw?)"'m2a In(ax?) (3+2v,) !
X[34+ 30,4+« (3—1v,) ]— Brmw?)mia
XIn (ax?) (3+2v6) 34+ 30,4+« (3—v,) ]}
+0(@)+O0L (m/mw*)e].

In (49) the “- - -” indicates possible presence of photons.
In (50) the correction O(e) depends on In(m,/m.) and
is, therefore, important. However, it can be shown that
the result of the infinite sum [similar to the O(a) term
in (37)] leads only to a correction O[ (m.2/mw*a] in
(50). Therefore, the important term O(a) can be
calculated without summing over any infinite power
series in a.

(50)

7. RADIATIVE CORRECTIONS TO u DECAY

Similar considerations can be applied to u decay. It
turns out that the final result for the electron spectrum
in u decay including radiative corrections is quite simple.
It essentially consists of only two parts which are (i)
corrections” due to the nonlocal effects in u decay in-
duced by the presence of intermediate boson (without
radiative corrections) and (ii) radiative correc-
tions®1° but regarding the u decay as due to a Fermi-
type point interaction. Both effects (i) and (ii) have
been calculated in the literature. For clarity, we state
the final result of the electron spectrum in the form of
a theorem:

Theorem 2. The electron spectrum in the decay of a
completely polarized u meson is given by

dN = x2dxd (cosf) [ 3X 28X 78 |~ 1m,5G 2
X142 (my/mw)* ] (3—2x) —3 (m,*/mw?)
X [9— 160+ 522+ (2) 1 f (1) +cosb[ (1—2x)
— 1 (m2/mw?) (3—6x+522)+ 2n)lag(x)]
+OL(m2/mw*aIn(e®) 1}, (51)

where G, is related to the renormalized constant g by
G,=mw222¢22{1+4O[e In(ax?) ]}, (52)

x= (electron momentum)/(maximum electron momen-
tum), #=angle between the momentum of electron
and the spin of u~. The functions f(x), g(x) are given
explicitly by Egs. (2.4), (2.5), and (2.6) of reference 8.

Tt is important to notice that (51) is simply the sum
of the above two effects (i) and (ii). In the spectrum
(apart from the correction in G,) deviation from these
two effects is only of the order of (m,2/mw?*)a In(ax?)
which is smaller than either (i) or (ii). The radiative
correction to the coupling constant G, is, however, of
the order of « In(ax?).

7T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957).

8T, Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).

9 S. M. Berman, Phys. Rev. 112, 267 (1958).

10 R. Behrends, R. J. Finkelstein, and A. Sirlin, Phys. Rev. 101,
868 (1956).
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T'16. 2. Diagrams for u decay.

Proof. To calculate radiative corrections we consider
the skeleton graphs (a), (b), and (c) in Fig. 2.

In graph (a) we use the renormalized propagator
and the renormalized vertex function T'y. By using
(42) it is seen that at zero momentum transfer and
zero incoming momentum of the external line the
radiative correction to I'y is proportional to « In(ax?)
which contributes to O[aIn(ax?)] in (52). However,
it is easy to see that the change of radiative corrections
in T\ at the physical momentum range of u decay
from that at zero momentum transfer and zero ex-
ternal momentum is of the order of (m,2/mw?)a In(ax?).
Identical conclusions also hold for the radiative correc-
tions due to the renormalized propagator of W. There-
fore, neglecting terms O[aln(ax?)] in the coupling
constant G, and O[ (m,2/mw?)a In(ax®)] in the relative
magnitudes of the electron spectrum, the contribution
of graph (a) to u decay becomes identical with that
given by the intermediate boson theory of x decay in
the absence of electromagnetic interactions.”

For £>0, graph (b) is completely finite. At £— 0,
graph (b) can be separated into a sum of three terms

O(eIn§)+OL(m2/mw*)a InE]+0(),  (53)
where the singular term O[aIn£] is independent of
either the momentum transfer or the external momenta.
By using the same arguments as that used in the
previous section we find in the limit £ — 0 the first and
second terms in (53) together with their corresponding
infinite sums contribute, respectively, to the terms
O[aIn(ex?)] and O (m2/mw?)aIn(a?)] in (52) and
(51). The remaining term O(e) in (53) is completely
finite (except for infrared divergence) and is identical
with the result of radiative corrections in the Fermi
theory with a point interaction for the u decay. To be
more specific, this term O(a) in (53) is identical with
Eq. (7) of reference 10 except for the replacement of the
ultraviolet cutoff in reference 10 by mp. Theorem 2 is
then proved by adding the effects of these graphs
(a)-(c) and by using the results given in references 7
and 8.

A simple consequence of (51) is that the lifetime 7,
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of the u meson is given by
7= (3X 28X 7%) " Im, 5G,2
X{1+ 3/5) (my/mw)?— (2m) " eu(m?—25/4)
+OL (my/mw)a In(ax®) 1}

8. RADIATIVE CORRECTION TO THE (3 DECAY
OF A “BARE” NUCLEON

(54)

By a “bare” nucleon we refer to a hypothetical
particle without any strong interactions but with the
same mass and electric charge as that of the physical
nucleon. The weak-interaction Lagrangian Lw._; is
assumed to be

Lw_r=—1goa[¥nlvara(1+ve)¢¥r+H.c.,

where go is the same unrenormalized constant as that
in (39).

Similar to Sec. 6, the renormalization of the vertex
functions for = p+W~ and p=n+W+ can be ob-
tained. The final result is given by the following
theorem:

Theorem 3. Let p, and n, be, respectively, the out-
going momentum of p and the incoming momentum of
n in the vertex

(55)

n— p+W-. (56)

For nucleon states with zero momentum transfer
[i.e., p*=n*=— (nucleon mass)?® and p,=n,] the re-
normalized vertex function for (56) is given by

gi{1+ (16m)"[1+ (5/6)x Jor In (o) } {2t Py avr (1+75)
X[ 14 (87) " (mn/mw)?(13/24)ke In (ak?) ]
—upty oy n(L—=5)1n (8m) 7 (my/mw)*(11/24)ke In (a?)
+ipxugtyatn(8m) 7 (my/mw)*(1/12)ke In(ex?)},  (57)

where my is the nucleon mass, the subscript A indicates
the polarization state of W and u,, u, are the' free
(¢ number) spinor solutions for p and 7, respectively.
In (57), g1 is the same renormalized coupling constant
used in (42). In the rest system of the nucleon, if A\>#4,

(57) =igautorua[ 1+ (8m) 7 (mu/mw)ax In(ex?) ];  (58)

if A=4,

(57) = goupltsn, (59)

where a1, 03, 03 are the usual spin matrices and
go=gi[ 1+ (167)7 (14§x)e In () ].

In a similar way, we can calculate the renormalized
functions for either
n=rpte -+
or

p=n+te+u. (60)

It is found that on keeping the correction term, which
is O[(my/mw)% In(ax®)], but neglecting terms that
are of the order of either «, or [(mny/mw)%], or
[ (m,/mw)% In (cx?) ], the renormalized vector and axial-
vector B-decay coupling constants (for the decay of a
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“bare”” nucleon) are given, respectively, by

Gv*=G{1+0()+OL (my/mw)%e]

+OL (my/mw)?e In(a®) ]} (61)
and
G2=G2H{1+ (dm) " (my/mw)?ax In (ak?)
+0(0)+0[ (my/mw)*a]
+OL (m/mw)*e In(a®) ]},  (62)

where G, is given by (54) [or (52)].

It is important to notice that both (61) and (62) are
accurate to the order (my/mw)% In(ax?) and « In(a?);
but due to apparently accidental cancellations such
terms are absent in (61). Among the terms that are
neglected, the O[ (my/mw)%a] term is the most difficult
one to be evaluated. Similar to the O(e) term in (37),
it can only be calculated by summing up an infinite
series. The O[ (m,/mw)* In(ax?)] term can be obtained
relatively easily; but is found to be unimportant. The
remajning O(a) term is identical with the radiative
corrections already obtained in the literature’—° by
assuming the usual Fermi theory of 8 decay provided
that the ultraviolet cutoff is replaced by my. Con-
sequently, the result is now completely finite. This is
similar to the effect (ii) discussed in the preceding
section. To be specific, the effect of the O(a) term in the
electron spectrum of 8 decay is given explicitly by
Eq. (4.1) of reference 8, except that the cutoff parame-
ter A is not replaced by my.

The comparison between the observed -decay con-
stant Gy and the u-decay coupling has been discussed
extensively in the literature.®12 According to Hendrie
and Gerhart,”® by using their recently observed value
of Gy together with the radiative corrections calculated
by Kinoshita and Sirlin® [i.e., without the assumption
of an intermediate boson, choosing the ultraviolet cutoff
A=my, and neglecting further unknown structure
effects of strong interactions], the calculated lifetime
of the u meson is found to be about 2.282% 10~ sec. The
presence of an intermediate boson now changes this
value to

[7uJn=[2.282X10"% sec{1— 2 (m,/mw)?
+ Be/7) In(mw/my) 4O (my/mw)al}. (63)

If we ignore the O (mx/mw)%a] term™ and take, e.g.,
mw=S5m,, then

(r)n=2.218 X 10~ sec, (64)

11 See, for example, R. P. Feynman, Proceedings of the 1960
Annual  International Conference on High-Energy Physics at
Rochester (Interscience Publishers, Inc., New York, 1960), p. 499.

12 The effects of intermediate boson on the ration between the
coupling constant in u decay and that in O decay have been
discussed in the literature. See footnote 22 of reference 8; R.
Behrends and A. Sirlin, Phys. Rev. 121, 324 (1961); S. Oneda and
J. C. Pati, Phys. Rev. Letters 2, 125 (1959).

3 D. L. Hendrie and J. B. Gerhart, Phys. Rev. 121, 846 (1961).

152 Note added in proof. It seems quite likely that the absence
of O[(mn/mw)axIn(e?)] in Gy [cf. (61)] implies that the
O (mu/mw o] term in (63) is actually zero.
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which is to be compared with the observed value
(74) exp= (2.2112:0.003) X 106 sec. (65)

Because of the neglect of the O[ (my/mw)%] terme
and the unknown effects due to strong interactions,
such a comparison is certainly not to be taken seriously.
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APPENDIX A

Let G, (V) denote any graph or part of a graph which
connects a single W+ line of incoming momentum p and
final outgoing momentum p’ with 7 photon lines of in-
coming momenta &y, ke, - -+ kx and polarizations I'y, T,
-+« I'y. In order to describe more explicitly the topo-
logical connection between the N photon lines and the
W line we may also represent, e.g., a typical G,(N=4)
graph in Fig. 3 by

GL#HG3,2)(1)],

where each number ¢ stands for the ¢th photon which
has momentum %; and polarization I';. The order and
the grouping of these numbers indicate, respectively,
the consecutive order and the manner of the interaction
between the photons and the W+. For example, in (A1)
the first set of parentheses (1) means that the W+ first
interacts with the photon #%; through a three-point
vertex; the next set of parentheses (3,2) indicates that
the next interaction of the W+ is with photons 4; and
ks through a four-point vertex, etc.

Each such graph (or part of a graph) G,(¥) con-
tributes a factor according to the Feynman rule. For
example,

GoL (4 3,2)(1)]
= VI‘A(Ply P,'—k‘i)S(?l_k‘i) Ursyl‘z(Pl'_k‘iy P+k1) k3)

(A1)

XS(P'*'kl) Vl‘x(p—,_kl’ P), (AZ)
where
P=p+L k. (A.3)

Throughout this discussion, both the graph and its
corresponding factor are represented by G,(IV).

Definition. For every given G,(N) we define G,2* (V)
to be a sum over certain graphs G,(N-+1), each of
which consists of the same N photons as in the given
G,(N) plus another photon line of incoming momentum
g and polarization A

GpMN)=% Gp(N+1), (A4)

14 See, for example, Proceedings of the 1960 Annual Inlernational
Conference on High-Energy Physics (Interscience Publishers, Inc.,,
New York, 1960), p. 878.

905
U
p
4
3
Gp(N=4)= .
i
P
, / pq
pha pq
4 [ S
4 3
q 3 S~ q
PN - 4 = + S 3
p 2
a q Sl .
P P »
p'+q
4
q
3
+
2
§
P
’ ’
P+q P+q
4 q
3
A . 4
G, (N=4)= 2 + 3+ Fq‘)‘(N=4)
P 1 P
2
q !
4 P

F1c. 3. An example of G,(NV=4) and its associated graphs F, 2>
and G2, [See (A1), (A15), and (A4) for their definitions. ]

where each G,(V+1) in the sum satisfies the property
that if the photon line ¢ is simply erased then the re-
maining graph is topologically identical with the original
graph Gp,(N). The sum (A4) extends over all such
different G,(N—+1).

An example of such sum is given in Fig. 3.

Theorem A1. For any given G, (), the corresponding
sum G,2*(N) satisfies

4

% 0.6y () =eS 1/ +9)S ()G, )

—eGpio(N)S(p+9)S7(p), (AS)
where
N
P=p+3 ke (A6)
Proof. Assume that
(AS) holds for all G,(N), where N< (r—1). (A7)

Any graph G, (%) must belong to either of the following
two classes [cf. the notations used in (A1) and (A2)]:

B Gp(n) =Gp[ (1)~ -]
=V, (' ,p")S(p")Gp(n—1), (A8)
where
P”==1>+ni ki=p'—k,

=1

(A9)

and G,(n—1) represents the remaining part of G,(n)
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excluding the nth photon; or,

(i) Gp(n) =Gp[:(n, n—1)-- :]
=Ur, 1, (00" ; kn)S(p")Gp(n—2), (A.10)
where

n—2
P”‘: P+ Z k';:P,'—' kn—Fn1.

1=l

(A11)

As in the case of the G,(r—1) in (A8), the G,(n—2) in
(A10) represents the remaining graph (excluding the
last two photons, &, and k,_1). For case (i),

G () =Vr,(p'+¢, p"+9)S " +9)Gp %  (n—1)
+Ur, 2 (0'+¢, 5 k)S(p")Gp(n—1)
+Va@'+q, 2)S@)Vr,(2',0")S(0")Go(n—1). (A12)

For case (ii),

Gp?*(n)=Ur, 1, (p'+¢, p""+q; k)S(P"+9)
XGpt(n—2)+Vr(p'+q, p)S(#")
XUr,, v, (p'0" 5 ka)S(P")Gp(n—2).  (A13)

(AS5) can then be verified directly for either (A12) or
(A13) by using the assumption (A7) together with the
identities (6) and (11). We observe further that (AS5)
is true for either case (i) and N =1, or case (ii) and N=2.
Theorem A is then proved by induction.

Corollary. If in Gp2*(N) the external W lines are
physical, then for the initial W state S7'(p)=0 and
for the final W state S~'(p'+¢)=0. Therefore,

4
2 pG**(N)=0, (A14)
=1

which can be used to establish that the probability
amplitude for emitting a longitudinal photon by a
physical W is zero.

Definition. For every G,(IN), we define

FptM(N)=GptA (V) —=Gpso (N)S(p+ ) Va(p+g, p)
—Va(p'+q, p)S(PNG,(N), (Al5)

where

N
p'= p+};l k.

An example of F,2*(IV) is given in Fig. 3. In general,
Fp2*(N) can be obtained from G,%*(V) by deleting
the graphs G,[(¢):--] and G,[---(¢)] By using
Theorem Al and (6), it is easy to establish the following
theorem:

Theorem A2. For any G,(N), the corresponding
F,oM(N) satisfies

4

2 pF M N)=e[Go(N)—=Gpr(N)].

A=]

(A16)

Definition, Let A(p) be the sum over all proper self-

LEE

energy diagrams of IW:
S (p) =S (p)—A(p).

Corollary. By regarding A(p)=3_ G,(IV) and applying
Theorem A2, the generalized Ward’s identity (12)
follows. Similarly, by applying Theorem A2 to the
proper diagrams for V)’ we establish (14).

Remarks. The identities (13) and (15) can be directly
verified by using (10), (11), and

S(p)=Sp)=S(—p).

By using (13) and (15) the well-known Furry theorem
can be easily proved.

APPENDIX B

To calculate the radiative correction for the quad-
rupole moment (), we notice that Q4 (ex/mw?) is
given by

the coefficient of (iPAKK) (A17)

in V' (P’,P) for a physical W at the limit K — 0, where
K=P—P.
Therefore, by using (17) we find
Q4 (ex/mw?)=2iF,

evaluated at P'=P and P>+mp?=0. By a straight-
forward counting of the degree of divergence of the
relevant integrals at £=0, it can be easily established
that as £€—0 (32) describes the correct asymptotic
power dependence on £ for A4,. To prove that (32) is
indeed correct, without any further factors such as
(Inf), needs a much more detailed examination of the
asymptotic behavior of the integrals.

Among the various groups for the three-point func-
tion V)\'(P’,P) let us first consider a graph Gy which
consists of Iw internal W lines, I, internal v lines, V
three-point vertices, and #o four-point vertex. Therefore,

Iw=2I,=(N—1). (A19)

(A18)

The contribution of Gy to (A17) can be written as an
integral over its

Iw+Iy—=N+1)=3({H~-1)

independent internal momenta. From the definition
(29), one sees that this integral forms a part of the
coefficient 4 ,, where

n=%5(N—1).

(A20)

(A21)

The limit of this integral at £ — 0 depends on the corre-
sponding asymptotic behavior of its integrand at large
momenta ~ &2y,

The following properties are of importance:

(a) So far as the asymptotic behavior is concerned,
the propagator S(p) of every internal W line (with one
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possible single exception) can be replaced by

So(p)=mw2(pP)D,

D= —i[(pP+mw’) = (P*+Emw’) ] (A23)

(b) With this replacement, the propagator —i(k?)~! of
an internal photon line can be eliminated. Let V\(p',p)
and V,(¢/,q) be the two vertices connected by this
photonline [k= (p'— p)= (¢'—q)]. By using the identity

PV p)p=iex[ R pr—Tn (k- p) ]

(A22)
where

-Fet[ o+ ('], (A24)

we find that the product
PV, 2)pIT' V(g g ](R) o (A25)

becomes at £=0, simply
—e?[R(p-q)— (k-p)(k-q)] (A26)

in which the factor (£%)~' is completely canceled.

(c) The single possible exception mentioned in (a)
refers to one of the two W lines that are connected to
the external photon. Let p, ’, and K be, respectively,
the momenta of these two W lines and the external
photon. By using (A22) and (A24), it is seen that

133 So(@ VA" ,£)So(p)

is proportional to [ K?px— K (K - p)]. If we replace both
propagators by So, the graph G can contribute to
(A17) only through the second term on the right-hand
side of (A24) which carries an extra factor £.

We, therefore, differentiate two cases:

Case I. All propagators of the internal W lines in Gy
are replaced by So.

Case I1. The propagator of one of the two W lines
which are connected to the external photon is re-
placed by

Dy (p)= (=) (p*+mw?)7, (A27)

but all other W propagators are replaced by So. In this
case this particular I¥ line is called an exceptional W line.

It is also useful to define the exceptional v lines as
those photon lines that are connected to either the
external or the exceptional W lines and the exceptional
vertices as those vertices that are in contact' with
either the exceptional v line or the exceptional W line.

Let (I) and (II) represent, respectively the integrals
for (A16) in Case I and Case II. Since S(p)=So(p)
+Dw(p), the sum (I)4(II) gives the complete con-
tribution of the graph Gy as ¢ — 0.

(d) By using (A17); (A20) (A21) and (A27) it can
be verified by a direct counting that, at £=0 the
integral (IT) diverges like (momentum)?®, where

s=4[3(N—1)]+N—2I,—3—2=4(n—1), (A28)

and the integral [£71(I)] diverges like (momentum)*+2,
Furthermore, it follows from (A26) that each non-
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exceptional vertex gives a factor (ex) to the integral.
Since the total number of exceptional vertices is limited
by an upper limit independent of n and since the intro-
duction of a small £ gives a cutoff for the internal
momentum at ~£&Y2my we find, as £— 0

Ap~ (2/8) (A29)

apart from possible further multiplicative factors such
as (In£). To establish the absence of such factors we
have to exhibit more explicitly these integrals for Gy.

Definition. It is convenient to define a reduced graph,
called Gy', which is obtained by shrinking all the non-
exceptional ¥ lines in Gy to zero length. The reduced
graph Gy’ contains only W lines (among these, at most
one is exceptional), exceptional v lines, exceptional
three-point vertices, and zew meson-meson scattering
vertices.

For definiteness, we label the momenta carried by
the / nonexceptional lines and m exceptional (W or v)
lines in Gy’ by, respectively,

p1, Po, o P and ki, c--) b, (A30)
where for Case I
l=Iw=2n,
m<2, (A31)
and for Case II
I=2n—1,
m<4. (A32)
The modified Feynman rules for Gy’ are given in the
following.

The vertex function for the new meson-meson scatter-
ing vertex is given by (A26).

The propagator for the jth nonexceptional W line is
D(p;) [given by (A23)] which can also be represented
by the following parametric representation:

D(ps) =mu f (expL—itr;]—exp[—ir;]}
R 0 2

2
Xexp(——zgr, )dr,, (A33)
My
where j=1,2, --- L
The propagator for the exception W line is
Dy (k1) = —i(k2+mw?)™
00 k 2
= mw‘2£/ exp[—if(——+1)rl+1:‘drl+1 (A34)
0 My’

The propagator for the internal 4 line (which is
always exceptional)

D ¥ (ks) =—1 (ksz)'.l

'—mw25/ eXP("E—"’lH)d”Hs (A35)
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In Case I the three-point vertex interacting with the
external v line is given by [cf. (A24)]
iei[ PP+ (0",

Otherwise, all three-point vertices in Gy’ are given by
[Va(p',p)Je=o multiplied by the appropriate ' or p or
both, depending on the number and the propagation
directions of its neighboring nonexceptional W lines.

These modified Feynman rules for Gy’ clearly gives
the same result as the original Feynman rules for Gy.

The graph Gx (or its reduced graph Gx’) consists of
n loops. Let g1, g3, * * * ¢ be the # independent internal
momenta carried by these loops. By using the above
modified Feynman rules we find that, for the two cases
(I) and (II), the graph Gy is given by

: f EG’J[I:I zo(pa}[fl D, (kj):I:I dg. (A36)

and
/ o] 11 rs(m)][vﬂm) 1 0,6 [T ', (430

respectively. In the above integrals p;, k; are linear
functions of the external W momenta P, P’ and the
independent internal momenta gy, - -+, ¢n; @4, @ are
both homogeneous polynomials of these momenta of
degree

14-41—4n+-2m (A38)
[so that (the integrand X d*g.) ~ (momentum)! in both
(A36) and (A37)]. The coefficient (A17) of these two
integrals (A37) and (A38) gives the desired 4,. It is
important to notice that ®, ®,, Dw, and D, do not
depend on £.

To evaluate (A36) and (A37) we take advantage of
the analogy between an electric circuit and the Feyn-
man graph. Consider a circuit which has the same
topological structure as Gy'. Let P, P’, K be the corre-
sponding external currents of the circuit, ¢1, g2, **+, ¢n
be the internal circulating currents of its % loops, and
71, 2, ***, T1rm De the resistances of the /4-m branches
of the circuit. In order to maintain such a current dis-
tribution, the total electric power supplied by internal
and external sources is a quadratic polynomial in ¢,
which can be written as

GRg+Sq+aS+T,

where ¢ is an (#X1) column matrix whose elements are
q1, g, - * +, the matrix R is an (nX#) symmetric matrix
whose matrix elements are linear functions in 7y, 79, -+
with coefficients =1 or 0, and S is an (#X1) matrix
whose elements depend linearly on both 7; and the
external currents. The remaining function 7" depends
linearly on 7; but quadratically on the external currents.
The matrix R can be diagonalized by a real orthogonal

(A39)
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matrix U
A
URD=| M |=a, (A40)
s
where A\, (a=1, 2, -+, n) are the eigenvalues of R. In
terms of A the power (A39) becomes
IAT+Q, (A41)
where
I=U(g+RS)
and _
Q=T—SR'S. (A42)

In the absence of any internal power supply, the current
distribution of the circuit is given by /=0 and its power
supply=0Q. By using (A33)-(A35) the integrals (A36)
and (A37) can be written in the form

/IfId“Ia/ lf:indrjfj(rj)x(@a or @)

Xexp[—imw 2 (IAI+Q)] (A43)

multiplied by &mp=20+™ or my—20+m) respectively,
where if r;=resistance of the nonexceptional line
(ie, 7<),

fi=exp(—ikr;)—exp(—ir;); (A44)
if r;=resistance of the exceptional v line,
fi=1; (A45)
and if r,=resistance of the exceptional W line,
Ji=exp(—ikr;). (Ad06)

To evaluate the coefficient of (Py\KK) for (A36) and
(A37) we use (A43) and the integral

n _,i7r2

/ (B?)™ exp (— iNR2)dik= (1)"—
™ A?

(A47)

The coefficient 4,, is, then found to be of the form
[valid for both (A36) and (A37)]

. / (g mafp(’flf‘ f,-drj) exp(—itQ), (A4S)

where the integrations are from 7;=0 to « and F, 9, A,
are independent of £. To establish (32) we need to prove
that the integral in (A48) exists in the limit £ — 0 for
n>2. (For clarity, we regard the external currents, the
mass of W and « as pure numerical constants in the
subsequent discussion.)

We list the following simple properties:

(i) F is a homogeneous function of 7; of degree 0 and
F is bounded,

| F| <constant. (A49)
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(i) A is a homogeneous function of r; of degree 1.
It is clear that for any electric circuit

n H+m
2 N> 2 7 (AS0)
1 1

(ili) 9 is a homogeneous function of 7; of degree 1.
If 31" Ao is bounded then 9 is also bounded.

(iv) N.>2. (A51)

) i N,=2l4+m—1, (AS52)

which is a consequence of (A38) and (A47).

(vi) For £>0, the integrand, in (A48) multiplied by
IL:i#+mrj, is ~O(r;) as r;— 0. Therefore, the integral
(A48) exists if Gy is a skeleton graph. Otherwise, the
convergence of the integration is insured for £>0 only
if we add to Gy other graphs that are necessary for the
renormalization purpose. In the following we assume
that this is done and that the integral (A48) does exist
provided £>0. The following theorem establishes the
existence of (A48) in the limit ¢ — 0.

Theorem B. If the integral (A48) exists for any £>0,
then for #>2 the integral

A 0= f [1:11 )\aN°T1F[lﬁ fj"dr,-] (A53)

also exists, where the integration is from 7;=0 to «.
The function f,° is given by

fj0= 1 —exp(-— ’1:7']') (A54)
for a nonexceptional line (i.e., </) and by
fi=1 (AS5)
for an exceptional (W or ) line (i.e., 1>1).
Proof. Define
n =1 4+m
s=(1) 7 1 12 (as6)
a=1 =1
and l
I+m
I(R)= f 5 11 dr,, (AST7)
Q 1
where Q is the region in which
[#] 2 01
but
R< 3 NX2R (A58)
a=1

The existence of (A48) for any £>0 implies that 9(R)
exists for all finite R. To prove Theorem B it is only
necessary to prove that limg.,,9(R)=0.
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Let @ be a subdomain of @, in which all \; are
uniformly large; say
A2 €RR,

where ¢, is independent of R. By using (A49)-(A52), we
find
Hm

/ F 1 dri~R-4 (A59)
Qo 1

which — 0 as R— provided #>2 [cf. (A31) and
(A32)]. Next, we consider another subdomain ; of Q.
In @ all A, except one, are uniformly large. Without loss
of generality we may choose

MZeR,
Aest> €R, (A60)
and

¢,

where ¢ and e are both independent of R. By using
properties of electric circuits it can be readily shown
that the extreme case

AL g1

can happen only if one of the loops in the circuit Gy’ is
developing a short circuit. Furthermore,

> s 7s=A1Xconstant. (A61)

In (A61), as well as in the following, we use s (or 7,) to
represent the various branches (or their corresponding
resistances) in that short circuit. [ The constant in (A61)
is 1 if the short circuit coincides with one of the original
loops chosen for the assignment of ¢ in (A39).]

We fix all 7; in the short circuit and integrate over
the remaining 7.

r= [ [ILANTII fdrj, (A62)
Q, a#l s
Fy=r- / CIIANTF I fodrs.  (A63)
Q, a*l Fiall
For large R,
r~constant X R?, (A64)
p=(=I)+m—m)— L Noy  (A65)
a=2
and
{F)~OL(r./R)?], (A66)

where /; and m, are the number of exceptional lines and
that of nonexceptional lines in the short circuit, re-
spectively, and [in order that (A49) holds]

82>0. (A67)
To show that the remaining integration in the integral

Hm

/ g 11 dri= f AN (BT fodr,  (A68)
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does become zero as R approaches infinity we first
establish the following lemma.
Lemma.

B—p)>1. (A69)

Proof. For any large but finite R (A68) exists.
Consequently

B+2h+mi—N1>1 (A70)

in order to have the convergence at small 7, Combining
(A70) with (A65) and (AS52), we obtain the inequality

B—p)= (1), (AT71)
which proves the lemma if (¢—/;)70.
. The special case
I—0;=0 (A72)

means that excluding the short-circuit loop the re-
maining graph consists of only exceptional lines. Since
the number of exceptional lines is limited by (A31) and
(A32), it can be shown that (A72) is possible only if the
remaining graph consists of one single (exceptional)
photon line; i.e.,

(m——ml) =1.

Therefore, p=1—3 o2 N.. The lemma follows by
using (A51) and (A67).

To perform the integration (A68) we separate
into two regions,

Qai OS )\1SA
and
Q: ALSMZLeR, (A73)
where 4 is a constant independent of R.
Integration over Q, in (A68) gives
H-m
/ § II drj~R#+»< R, (A74)
Q =1

For the region Q,, we change the variables to 8 and «,

AM=0R (A75)

T. D.
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and
7’s=xs)\1, (A76)
where
s %s=constant (ATT)

which is the same constant in (A61). We keep A; fixed
and integrate first over all the x; in (A68). By using
(A52) and the inequality | 79| <2, we find

+m €
‘/ g II dr]-1 <constant><R_l+1></ 6%de, (A78)
Q 1 I (A/R)
where the power L is given by
L=—N+8+l+m—1 (A79)

which is also equél to [by using (AS52) and (A65)]
B=p—D). (A80)

Therefore, | /o, & [ dr;| is less than R—*1 or
R-"1(InR), or R~#*7 depending on whether (L+1) is
>0, or =0, or <0. In either one of these cases,

IHm
lim F 11 dr;=0.
R—0 1

(A81)

Therefore, we establish

4+m

/ § ][] drj—0as, R— .
(' 1

In a similar way we can prove

Hm

lim/ F 1 dr;=0,
R—0o0 2 1

where Qs is another subregion of @ in which, instead of
(A60), two of the A\, are small, etc. Theorem B is then
proved. Similar proof can be constructed for Gy which
contains also four-point vertices. Therefore, (32) is
established. The coefficient a, in (32) can be obtained
by explicitly calculating integrals such as (A53). The
result for ao is given by (38).



