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It is shown that starting from the usual canonical formalism for the electromagnetic interaction of a
charged vector meson with arbitrary magnetic moment one is led to a set of rules for Feynman diagrams,
which appears to contain terms that are both infinite and noncovariant. These difficulties, however, can be
circumvented by introducing a £-limiting process which depends on a dimensionless positive parameter
£— 0. Furthermore, by using the mathematical artifice of a negative metric the theory becomes renor-

malizable (for £>0).

1. INTRODUCTION

HE problem of a charged vector meson interacting
with the electromagnetic field and other fermion
fields has been discussed rather extensively in the past.!:2
However, in the literature, there does not seem to exist
any systematic study of the general case in which the
charged vector meson could have an arbitrary magnetic
moment. Furthermore, the question of the renor-
malizability of a theory of charged vector meson has not
been studied in detail. The recent speculations in weak
interactions® and the possibility that, perhaps, a vector
meson W+ could be produced by high-energy neutrinos*
through its electromagnetic and weak interactions give
new interest to these problems.

In this paper, an attempt is made to study these
problems. We begin with a discussion of the derivation
of Feynman rules for the general case of the interactions
between the electromagnetic field and charged vector
mesons with arbitrary magnetic moment. It turns out
that by starting from the conventional canonical for-
malism! and using the Dyson-Wick procedure,® one
obtains a set of rules for the Feynman graphs which
contains terms that appear to be both infinite and non-
covariant. It is then shown that this formal difficulty
can be resolved by introducing a limiting process (called
£-limiting process) which depends on a positive parame-
ter £ — 0. The resulting rules for Feynman graphs in the
&-limiting process become completely covariant. How-
ever, the theory continues to be divergent in a non-
renormalizable way. To remedy this, the artifice of a
negative metric is introduced which makes the parame-
ter £ take on the role of a regulator. The final theory for

1 See, for example, G. Wentzel, Quantum Theory of Fields
(Interscience Publishers, Inc., New York, 1949). In this paper we
start with the formulation of vector meson field given in Wentzel’s
book.

2 Feynman rules for charged vector mesons have been given by
R. P. Feynman, Phys. Rev. 76, 769 (1949) using his method of
space-time approach of field theory. More detailed discussions on
Feynman rules for charged vector mesons in the g formalism were
given by C. N. Yang and G. Feldman, Phys. Rev. 79, 972 (1950).
See also T. Kinoshita and Y. Nambu, Progr. Theoret. Phys. 5,473,
749 (1950); P. T. Matthews, Phys. Rev. 76, 1657 (1949).

3T, D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960).

4T. D. Lee and C. N. Yang, Phys: Rev. Letters 4, 307 (1960).
See also B. Pontecorvo and R. M. Ryndin, Dubna Report D-577
(unpublished).

s F. J. Dyson, Phys. Rev. 75, 486 (1949); G. C. Wick, 4bid. 80,
268 (1950),

£>0 is both covariant and renormalizable. It is further
shown that while the introduction of a negative metric
destroys unitarity, the S matrix remains unitary as long
as the total energy of the system is less than &% times
the mass of the meson.

The derivations of Feynman rules are sometimes
rather complicated, because of the presence of time
derivatives of field variables in the interaction La-
grangian. These detailed derivations are all given in the
Appendices. As an illustration, the derivation of Feyn-
man rules for the simple and well-known case of a
charged vector meson field interacting with Fermion
fields is included in Appendix A.

Strictly speaking, because of divergences there does
not exist a ‘“‘true” charged vector meson theory. Any
theory of the charged vector meson is in this sense a
separate proposal not derivable from a “true” theory.
What gives the confidence that the renormalization
procedure of the photon-electron interaction enjoys is,
besides the impressive and accurate experimental veri-
fications, the belief that any covariant proposal would
lead essentially to the results of the usual renormaliza-
tion procedure. For the charged vector meson, it is our
present belief that, with the £-limiting process and the
indefinite metric, one has a covariant theory that in
some measure gives that part of the properties of the
charged vector meson which is independent of specific
details at very small distances.

2. CANONICAL FORMALISM
2.1 Lagrangian

We discuss a charged vector meson field ¢, in
interaction with the electromagnetic field A4,. The
charged vector mesons is assumed to possess an arbi-
trary magnetic moment, and is called W=. The La-
grangian density of the system is® (A=c=1)

1/704,\ /04,
=G G )0
2\ 9x, ax,

—m2¢p*¢u_ieKFuV‘P#*WV) (1)

¢ Throughout this paper we use the following notations: All
boldface letters such as k, r, A, ¢, etc., denote three-vectors. The
fourth component ¢k, of the four-momentum £k, is pure imaginary.
All Greek subscripts g, », + -+ vary from 1 to 4 and all Roman
subscripts Z, 7, - -+ vary from 1 to 3. Repeated indices are to he
summed over. .
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etc. +higher order in (ex/m)z}

Additional vertices

Fic. 1. Feynman diagram in momentum representation for
Lagrangian (1). Each closed internal loop consisting of meson and
photon lines gives rise to one integration (2r)™4/°[- - - Jdkod%k. A
diagram includes specific assignments of momenta and polarization
to all external lines, but not internal lines. The weight of each
different diagram is s™! where s is the symmetry number defined as
follows: Label each internal line with a different integer: 1, 2,
---N. There are N! different ways of labeling. Some of these
labelings may lead to labeled diagrams with identical topological
structure. s is simply the number of such different labelings that
lead to the same labeled diagram.

where *=Hermitian conjugate times (—1)”, #=number
of “4” subscripts,
Fu=(8/0x,)A,— (8/9x,) A,
G“,,Z a,ﬁpy— 6"‘9#:
Gl“'*: a#*<pv*_ av*ﬂpﬂ*; (2)
9,=9/0x,—ied,,
0,*=0/0x,+1ed,,

and « is a constant. The magnetic moment N and the
quadrupole moment Q of W+ is given by

M= (1+«) (e/2m)S 3)

and

0= f (35— 1) = — (ex/m?), @

where S is the spin of W and p is the static charge
density for the state S,=-1.
The equation of motion for W= is

aﬂG#V—m2ﬁav+ieK<P#Fﬂu=o- (5)

2.2 Feynman Diagram

In Appendix B we carry out in detail the canonical
formalism starting from the Lagrangian above: The
fields® ¢, ¢*, A, and 44 will be treated as independent
canonical “coordinates.” ¢4 and ¢4* will be treated as
dependent coordinates with the aid of (5). One then
obtains a Hamiltonian for the system. By a unitary
transformation one goes over into the interaction repre-

LEE AND C. N. YANG

sentation. Feynman diagrams will then be obtained
through the Dyson-Wick® procedure.

The result of these considerations is as follows. A
Feynman diagram in the present case is very much like
that for the electron-photon interaction, except that
there are now three kinds of vertices. The values of
these vertices and the propagators, in momentum repre-
sentation, are listed in Fig. 1 (proved in Appendix C).

For the purpose of easy memory we remark that the
three-vertex and four-vertex functions are the matrix
elements of

—i[£(e=0)—2£(¢)]

= EKFw(Pv*‘PM_I"%e[: (Ao —Au0,®)

a3 9
X (——«J,‘———wpy) —Herm. conj.:'

ax, ox,
—3ie (40— A,u0,) (A vout—Aue,*),  (6)

where all operators are regarded as free fields. However,
this very simple rule does not give the whole story, as
the presence of the additional vertices in Fig. 1 explicitly
shows.

The additional vertices are all divergent and are ex-
plicitly noncovariant. For a given process, to the lowest
order in e the Feynman diagram does not contain
closed loops, nor does it contain any of the additional
vertices. For a higher order diagram, because of the
divergent nature of the integral, the integration dk,
gives, in addition to the usual pole contributions,
contributions due to the closing of the integration con-
tour at c in the complex ko plane. As is discussed in
Appendix E, the divergent and noncovariant vertices of
Fig. 1 are the results of such extra integration contribu-
tions at infinity. Moreover, they are present only if
k0. [This is because in the usual canonical formalism
the components of ¢, ¢* are treated as coordinates, but
¢sand ¢,* are regarded as functions of ¢, ¢* and their
conjugate momenta. Therefore, the interaction term
—1exF ., 0,% ¢, in the Lagrangian (1) appears to contain
more than one time derivative of the field variables
which gives rise to these additional vertices. In this
paper, Lagrangians which contain terms with more than
two time derivatives of the field variables are not
considered. ]

3. £&-LIMITING FORMALISM

The origin of these complications, therefore, lies in
the fact that ¢, is not treated on equal footing as the
components of ¢. To circumvent this difficulty we add
a term to the Lagrangian proportional to a dimension-
less parameter £ and then take the limit £ - 0.
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3.1 Lagrangian

Instead of (1) we thus have a Lagrangian density
with an additional term:

1/04,7\ /04,
L= —E(a,‘*go,,*) (av</’v)__< )( )
2\ 9x, /' \ ox,

—1GL*Gu—m o,  ou—iekF 0%, (7)
The equation of motion for W+ becomes
apru_’m2§0y+an(a#(p”)—i—iel(go“["“y:0.

The Lagrangian density (7) can now be treated by the
canonical formalism in a straightforward way. We state
the result as follows.

3.2 Free Meson Field

By using (7) and setting e=0 one obtains the follow-
ing free Hamiltonian Hy:

887

Hoy=mzm*+Elrad*+mP o, 0,4+ (VX @) - (VX ¢¥)
+i(m Vot n* Ve —mV- o—m¥V- 0¥), (8)
where 7, and 7,* are, respectively, the conjugate mo-

menta of ¢, and ¢,*. The commutation relations at
equal time are given by

[mu(1,0), 00 (Y1) 1= —10,,8° (r—1'),

[ma*(1,0), 5% (1 1) ]= —16,,8° (r— '),
and all other commutators between ¢, ¢,*, m, 7,* are
zero. The free field corresponds to a system of uncoupled

mesons which can be described by the annihilation
operators

9)

ay’, by! for + and — fransverse (spin 1) mesons, (=1, 2
ail, by! for + and — longitudinal (spin 1) mesons,

ax®, by® for + and — scalar (spin 0) mesons,

and their Hermitian conjugates, the creation operators,

ax®t, by*t, ai't, etc. In terms of these operators one has
the following representation:

=2 (2Quw) [ ax’ exp (k- r—iwt)+b_x !t exp(ik- r+iwt) Jext
k,¢
+X (29w) M ax! exp (ik- r—iwt)+b_ 't exp(ik- r+iwt) ] (wh/m)
"
— > (2Qv)~i[ay® exp (k- r+ivt) +b_i*t exp (k- r—ivt) J(k/m),
K

04=2_ (2Qw)  ax! exp (k- r—iwt) — b_x't exp (k- r+iwt) (4| k| /m)

+3 (29») " ax® exp (ik- r+ivt) —b_x*t exp (ik- r—ivt) | (iv/m),
k

(10)

m=> 1(2Qw) [ ax't exp(—ik- r+iwt) — b_x! exp(— k- r—iwt) Jwey?
k.t
+3 i (20) " ax!t exp(—ik- r+iwt) —b_i* exp(—ik- r—iwt)] (mk),
k

ma=2 (2Qv) I ax°t exp(—ik-r—ivt)+b_y° exp(—ik-r+int) ],

k

and ¢,* m,* are related to the Hermitian conjugates
eul, mut of ¢y, m, by

n=m=l,

. (1)

= —-7r4f_

5’*: (’T)

pif=— o, w4

In these formulas, e.l, ex2, and k= |k|~'k form a right-
handed orthonormal set of unit vectors,

w=K4+m)>0, r=K+Em)I>0, (12)

and @ is the normalization volume. In terms of these
annihilation and creation operators H, becomes

Hy=% w(ax'ax'+3)+2 w(axtox’+3)
x

k,t

—>" v(ax*tar*+3%)+same terms withe — 6. (13)
k

These formulas show that the additional é-dependent

term in the Lagrangian introduces scalar mesons with a
negative energy

—y=— (k2+ E-lmz)},
which approaches — o as £ — 0.

3.3 Hamiltonian in Interaction Representation

The indefiniteness of the Hamiltonian makes it very
doubtful that after the introduction of the coupling e
when different meson states are coupled, the theory can
still make physical sense. We try to remedy this by
introducing a negative metric in Sec. 4. For clarity of
presentation, we ignore this difficulty for the time being
and proceed with the canonical formalism. All the four
components of ¢, are now regarded as canonical
coordinates. In the interaction representation, the space-
time dependences of the operators ¢, and 4, are the
same as that of the free ones. In terms of these operators
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the interaction Hamiltonian becomes®

d
Hiny=~—1cd u[gw*‘Pv—‘ 8uv ‘Pv*]‘_ iekA M[ ‘Pu(a‘ ‘Pv*> - <Pn*(

Xy

+iexF o * 0yt 36 (0a*) 00t (00 0 0% —2(0s* 00 (0% 05) ],

where

(15)

a d
Ew= <_“¢v>— <—Sﬂu>
9%, ox,
9 i}
gw™= (—'— 901'*) - <_ ‘Pu*>-
0x, ox,

3.4 Feynman Diagram

and

Using the Dyson-Wick® procedure one obtains the
Feynman diagrams for the Lagrangian (7). The values
of the propagators and vertices are listed in Fig. 2
(proved in Appendix D).

3.5 Divergenceless Current Density

The Lagrangian (7) is? gauge invariant. Therefore the
current density is divergenceless. An explicit proof of
this fact can be obtained from an examination of the
vertices and propagators of Fig. 2, in the same spirit as
the corresponding proof® for the electromagnetic field-
electron interaction. In the present case, the proof is
slightly more complicated because of the momentum
dependence of the vertices V which generates terms
canceled by the vertices U.

4. NEGATIVE METRIC

In the £ formalism, the propagator 8 in Fig. 2 con-
sists of two parts: a spin-one part —i(p*+m2—ie)™!
X (8uy+m~2p,p,) and a spin-zero part i (p2+ & 1m2+ie) !
X (m~%pup,). At first sight, it might appear that the
presence of the spin-zero part acts like a regulator;
therefore, we might have a renormalizable theory for

Element Graph Value
Internal photon line Pt D= .isw(kz)‘1
. I 2, 2. .-l -2
1 —_— =i -4
Internal meson line m 2 m o i{p " +m" -ie) (5»”'+m pppp)
5 o
+i(pTHE lmzﬁs) Ym Zpupu)
P
3-vertex e oo i V= e [6a6(P1p')H- 6au(~ﬁ«'p'4p+l(p-§p‘)p
v
a
-8, (-Kk4p'+kp'~
pulKHP'HRP'-Ep) ]
/’v
-7 2
4-vertex < U = -ie [zspuanp-u-g)sausw
N
« o

- 08,501

F16. 2. Feynman diagram in momentum representation for the
Lagrangian (7) (see also caption of Fig. 1).

7Dr. T. T. Wu first pointed out the advantage of using a gauge-
invariant £ formalism.
8 R. P. Feynman, Phys. Rev. 76, 769 (1949).
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.
a—*soy)J‘f-e?[(AjAj)(m*m)—(Ajw) (4ror®)]

Xy

(14)

£#0. That this is not the case can easily be seen by
noticing the different signs #=7¢ in these two parts of the
propagator. More explicitly, § can be written as

8=S—2mi(m2p,p,)s (p>+Em?), (16)
where
S=—i(p+m—ie) ™ Gutmpup,)
+i(p+E i) (m 2 pup,).  (17)

The second term on the right-hand side of (16) makes
the theory discussed in the above section divergent in
an unrenormalizable way. In the £-limiting formalism,
in order to give a meaningful discussion of the limit
£ — 0, finite physical results must be first obtained be-
fore taking the limit. To achieve this we introduce a
negative metric in the Hilbert space.

4.1 #-Limiting Formalism with Negative Metric

We start with the identical Lagrangian given by (7),
except that ¢,* and G,,* are replaced by

e =n"e,,

e (19)
(I;w =1 Guv 1,

respectively. Following the notation of Pauli,’ we use 7
to represent the metric of the Hilbert space. It becomes
clear that in order to change the sign of (7€) in the spin-
zero part of the propagator § the metric % in the
inleraction representation is chosen to be

n= (— 1)N87

where N is the total number of scalar mesons.

For clarity, we discuss first the free-field case (e=0)
and then the general case in the interaction repre-
sentation.

(19)

4.2 Free Meson Fields

Identical with (8) and (9) except for the replacement
(18), the free Hamiltonian H, for the present case is

Hy=m=- ‘Jt*+ S_1T47r4*+m2‘Pu‘Pu*+ (V X ¢) : (V X q’*)

+i(m Vosta* Vo X—miV- o—m* V- o*), (20)
and the commutation relations are
t,1),0,(t' 1) ]=—18,,08(r—1),
[7"#( ) (4 ( )] u ( ) (21)

[ma* (1,0), 0% (¢,0) ]= —16,,8° (r—1').

All other equal-time commutators between ¢,, ¢,*, 7.,
m,* are zero. We list the explicit representation of these

9 W. Pauli, Revs. Modern Phys. 15, 175 (1945).
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operators in terms of the annihilation operators ax”, by
and their Hermitian conjugates, the creation operators,

889

ax"tand byt (where r=1, I, s represent, respectively, the
uncoupled transverse, longitudinal, and scalar mesons):

=2 (2Qw) [ axt exp (k- r—iwt)+b_x 't exp (tk- r+iwt) Jex?
k,t
+3° (2w) Y ax! exp (k- r—iwt) +by 't exp (ik- r+iwt) | (wk/m)
k
+3 (2Qv) " ay* exp (k- r—ivt)+b_i*t exp (tk- r4-ivt) J(k/m),
k

es=2. (2Qw) M ax’ exp (k- r—iwt) —b_i 't exp (k- r+iwt) (1| k| /m)
k

+3 (2Q0)H ax* exp (k- r—ivt) —b_i*! exp (k- r4-ivt) ] (iv/m),
K

(22)

m=3 i(2Q0)  ai' exp(—ik- r+iwt) —b_i* exp(—ik- r—iwt) jwey*
k,t

+3 (2Q0) M ax!t exp(—ik- r4iwt) —b_i! exp(—ik- r—iwt) Jmk,
k

mi= Y (2Q) im[ar*t exp(—ik- r4ivt) +b_y* exp(—ik- r—ivt)].
k

¢,* and 7, * are related to the Hermitian conjugates
euly mul, of ¢, T4 by

p*=n"oM, m*=y"lnly, (23)
¥ =—n"lodn, wr=—qlmy,
where
n=exp[ >k i (e’ Tax’+bi1bx®) ], (24)

and w, », ey, k are given by (12).
Upon substituting (22) and (23) to (20), the Hamil-
tonian Ho becomes

Ho=3% w(axta'+3)+2 wlatlax’+3)
K

k,t

+> v(ax*taxs+3)+same terms witha — b, (25)
k

It is important to notice that the scalar mesons now
have positive energy. The introduction of a negative

metric is, of course, a rather drastic measure. However,
we regard this only as an artifice to make possible a
meaningful discussion of the limit £—0--. A conse-
quence of the positive definite H, is that the vacu-
um expectation value of the time ordered product

T ¢u(x)¢,(0)] is given by

(2m) / S exp(ipuey)dpod®s, (26)

where S is given by (17).

4.3 Hamiltonian in Interaction Representation

In the interaction representation, the field operators
¢u, ¢u* have the same space-time dependence as the
free case. The metric # remains to be given by (24). In a
similar manner to (14) the interaction Hamiltonian
H;, is given by

Hin=—1ed u[guv*‘Pv_gM‘Pv*]—ieEA “[@,‘(6<pp*/axy)—- ‘Pu*(a <py/3x,)]+e2[(x4 4 j) (‘Plc*<Pk)_‘ (A j‘PJ') (A /c‘Pk*)]

+iexF w0 * 0036 (04*) 00+ (04) 0 0% —2(0* 01) (0* ¢5) ],

where
Euv= (aﬂol/axu)_ ((") ‘{’n/axv)
gu*=(0¢s*/91,)— (9 u*/0,). (28)

The interaction Hamiltonian is not a Hermitian matrix
but one that satisfies

Hin*=n""Hnsty= Hine.

and

(29)

4.4 Feynman Diagram

In the interaction representation the .S matrix for
such a theory can be analyzed into sums of Feynman
diagrams in exactly the same way as an ordinary theory
with positive metric. The values of the propagators and
vertices are listed in Fig. 3.

27

From the rules for Feynman diagram it is clear that
the theory satisfies relativistic invariance.

4.5 Unitarity

Because of (29), the S matrix is not unitary but
satisfies

Sk=y15n=5"1, (30)

If we restrict ourselves to a system of particles with a
total energy
(31)

then by using (25) it is seen that there can be %o scalar
meson in either the initial state or the final state. Thus,
for the initial and final states n=-1 and the S matrix
is truly unitary provided (31) holds. Consequently, if

E<&im,



Element. Graph Value
Internal photon line .kl peus wh)t
B v By
P 2. 2 -1 -2
i —— = -i
Internal meson line " > S i(p +m" -ie) (SW}m pppv)
2.1 2 1 -2
+ilp T+ m"-ie) (m pppv)
B,
\\p,
- - - k! Ept
3-vertex V= e laap(wp )” Bap( kp'+ptkp-£p! );3

« - 85, (-xptptekp!-tp) ]

/’/ 2
X>:\\ U = -ie [zawsnﬂ-(x-g)awsw
.

- 0-8)5,,,8,,)

4-vertex

Fic. 3. Feynman diagram in momentum space for Lagrangian (7)
with a negative metric (see also the caption of Fig. 1).

the limit £ — O exists, the limiting .S matrix does become
completely unitary.

4.6 Renormalization

For £>0, the propagator of W varies asymptotically
like =2 at large momentum. The presence of the &-
dependent term in the propagator acts like a regulator.
Therefore, the divergencies that occur in the higher
order Feynman diagrams can be eliminated by a re-
normalization process which is quite similar to that in
the case of a charged scalar meson (except for the
differences in the spin dependences).

APPENDICES

In the following appendices we give the detailed
derivation of the rules for Feynman graphs for the
charged vector mesons following closely the Dyson-
Wick procedure.’ These derivations are at times rather
complicated. For clarity we begin with the well-known
and almost trivial case of charged vector mesons
interacting with the lepton fields.

APPENDIX A. CHARGED VECTOR MESON
AND FERMION CURRENTS

We discuss first the derivation of Feynman graph for
the simple case of charged vector mesons interacting
with electrons and neutrinos.

Al. Lagrangian and Hamiltonian

The Lagrangian density for this case is given by

£= £W+£free leptons+£1y (Al)
where
Lw=—31Gn\*Gu—m*®, 5D, (A2)
and
£1=7,8,*+7 5P, (A3)
in which * has the same meaning as that given in (2),
Gin=(3D2/9x,) — (9,/ 0n), (A4)

Ju=ig\IIGT'Y4'Y)\(1+75)\I,w (AS)
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and ¥,, ¥,, ¥, are, respectively, the field operators for
e, v, and W+, The dynamic equation for & is given by

(0G 1/ 3x,) —m2®\+ T, =0. (A6)

By using £ one obtains the following Hamiltonian:

H=HW+Hfree lepton+H1, (A7)
where
Hy==*n+m2(V-=*) (V- =)
+(VX®¥) - (VX ®)+m*®* @, (AS8)
H=—J®,*%—J &, +m2J J i*. (A9)

The 3-vectors = and =* are, respectively, the conjugate
momenta of ® and ®*

T =1G4*
and
¥ =1Gy (k=1,2,3). (A10)

Because of the absence of d®s/dt and d®,*/dt in £, the
&, and ®,* in (A9) are not independent variables but are
given by

<1>4=m—2[iv . ﬂ*+]4],
and

b F=m iV - =tJ ¥ (A11)
A2. Interaction Representation and

Feynman Graphs

In the interaction representation it is convenient to
introduce the following notations!:

= Qy
a=1mV - =¥,
and

L= (a‘P)\/axﬂ)_ (aﬁaﬁt/ax)\)- (A12)

Therefore, the ¢ and g, satisfy the free-meson
equation

i]

—ga—mer=0.

X

In terms of ¢y the interaction Hamiltonian is given by
Hi,w=H,= —ju¢u*_ju*¢ﬂ_m—2j4j4*' (A13)

Using the notation of Wick, the propagator of W+ is
given by

eu (@er* (0)=(TLeu(®) 2" (0) Dvac.  (Al4)
Theorem 1.
ou () on* (0) = Dy () +im264,800* (x),  (A15)
where
Dy (0) =[8,0—m7*(9%/ dx,02) J3AF (%), (A16)
10 Throughout all the appendices we use capital letters to denote
operators in the Heisenberg representation and small letters such

as @a, Zury O, fuv, Ju, €tC., to denote operators in the interaction
representation.
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Ap(x)=—i(8x%)!
X / &k [B4 (m—ie? T exp(ikany), (A17)

E=lkyky, dh=dk(—idks), and 8'(x)=8(1)s(1).

891

Proof. To avoid possible mathematical ambiguity we
shall put the whole system in a finite three-dimensional
volume Q. (The limit @ — will be carried out only at
the end.) The field operators ¢, are then expanded into
the following Fourier series:

e(®)=> > (2Qw) M ax’ exp(ik- r—iwt)+b_i't exp (k- r+iwt) Jex!
+ 3 (2Q0) M ax! exp (k- r—iwt) +b_y 't exp (ik- r+iwt) ] (wh/m)
k

k t=1,2

and

0s(2) =3 (20Q)H ax! exp (ik- r—iwt) —b_i't exp (k- r+iwt) 1 (i | k| /m),

where ey!, e, and k= |k|~'k form a right-handed
orthogonal set of three unit vectors, w= (k*+m?)*¥>0
and ay", bx" are the annihilation operators for the trans-
verse (r={=1,2) and the longitudinal (r=I) mesons.
For definiteness, let us define

TLou(@) 0, *(0)]= 0u(x) 0, *(0) if

=0,*(0)pu(x) if

120,
and

1<0. (A19)
Therefore, the vacuum expectation value of the T
product (A14) is given by (keeping @ finite)

(TTeu(®) 0" (0)Ja)vae= 21 (202) exp (k- r—iwt)
X[Bw—qugm2] if 120,
and
= (200Q)! exp (tk- r4iwt)
X[bw—q. ¢, *m™2] if ¢<0,
where gs=1w, ¢;=k; (=1, 2, 3), and ¢,* is the complex
conjugate of g,. Upon converting the summand on the

right-hand side of the above equation into a Feynman-
type integral, we find

<TI:¢’II (x) Sav* (0)]Q>vac

© Suv—m2kuk,
=—iy, (2rQ)" / dkol:————-—————m‘m,m,,]
x o LEakat (m—ie)
XeXp (ikgxﬁ), (AZO)

where ks=1ko. In (A20) we neglect functions that are
zero if $7%0 and remain finite at ¢=0. Taking the limit
Q —o, we obtain (A15).

It is important to notice that

(i) An expression identical with (A20) would be ob-
tained if instead of (A19) we define T pu(x)e,*(0)]
= pu(x) ¢,*(0) fort>0and T ¢u(x) ¢,*(0) 1= ¢,*(0) 0. ()
for t=0.

(if) Because of the usual quantization procedures the
limit limo {7 ¢, () ¢,*(0) Jo)vac is not covariant.

(iii) The presence of the term §*(x) in (A15) can also
be easily seen by considering the special case u=A=4.
From (A14) and (A11) it follows that ¢4 (%) @s* (0) is

(A18)

continuous in time at ¢=0. However, dAr(x)/d¢ ap-
proaches —i6%(r) at t=0+ and +148*(r) at {=0—. Thus
?[5Ar(x)]/3# contains a §*(x) singularity which is to
be canceled by the last term on the right-hand side of
(A15). Following Dyson’s method® and by using (A13)
and (A15) the S matrix can be evaluated. It can be
shown quite easily that in the calculation of .S matrix,
after converting the appropriate 7' products into S
products, the effects of the contact term —m—25,*4, in
(A13) exactly cancel that of the term im254,04,6(x) in
the propagator (A1S5). Therefore, one obtains the
following theorem:

Theorem 2. The entire S matrix can be generated by
considering an equivalent problem in which Hiy,y is re-
placed by

Hint’:_juﬂpul*_ju*ﬁoul (A21)
and the propagator (A15) is replaced by
o () on* (0) =[Ba—m2(6°/ 9x,0:2) J3Ar (x).  (A22)

Theorem 2 leads to the well-known results first stated
by Feynman.? The resulting Feynman graphs contain
only one kind of vertices which connects two lepton
lines and one meson line. In such a graph each internal
meson line contributes only the covariant factor

— i@t Rukr) (BP+m?),
where %, is the momentum carried by such a line.

1 The precise meaning of Theorem 2 is as follows: Regard the S
matrix as given by

0 \n n

s=3 &0 f T 1T Hind (eo)dredts].
n=0 n! i=1

In converting these T products to .S products, one uses Theorems 1

and 2 of Wick’s paper? together with the identity

Tle e *]1=1e) @) e,/ *(): +Les @) I Le* )T,

where [¢,)/(x)][e,/*(»)] is given by (A22). The resulting S
matrix (expressed as a sum of S products of ¢,’ and ¢,'*) is
identical with the original .S matrix which is obtained by using Hins
given by (A13) and ¢’ (x) ¢,* () given by (A15).

) Exactly the same meaning applies to Theorem 3, and the two
emmas.
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APPENDIX B. ELECTRODYNAMICS OF
CHARGED VECTOR MESONS

B1. Lagrangian and Hamiltonian

We start with the Lagrangian®® given by (1),

L= _%(GA n/axv) (04 u/axl') —3G "Gy
—m*®,* P, —iexF ,,P,*P,,
and regard ®,, ®,* as dependent variables.
Let =, =* P, P, be, respectively, the conjugate mo-
menta of @, ®* A, and 4,(=—1i4,). We have
T =1G™,
¥ =1Guz,

P=(dA/dt)— ex (¥ D — DFPy),
and

Po=—dA/dL, (A23)

where k=1, 2, 3. The Hamiltonian density H is given
by®
H=3(P*—P#)+3(34,/0x:) (0A4,/0%:)+3G1*CG

+ =¥ mt-m? (®F DD FD,)

+i(n- VP4 =¥ VIF)Fe(n* BF—x - P) A,

+e(<I>m——<I>4*ﬂ*) M A+€K (P— ’L'EVA 4) (@4*(])—@4(1)*)

A iekF ;1B B - L (B B — B ). (A24)

In the Hamiltonian both ®; and ®* are regarded as
functions of @, A, A4, =, P, etc. By using (5) and (A23)
we obtain

D®=[1— (ex/m)*®*- ® N — (ex/m)*®- DN *,

D®*=[1— (ex/m)*®* - ® N *— (ex/m)*®*- ®*N,

where
m2D=[1— (ex/m)*®*- ® P— (ex/m)*(®* - ®*) (D - D),
N=1V -m*+eA-n*—ex®- (P—iVAy),

and

N*=iV -n—eA -ntexd®* (P—ivd,). (A25)

B2. Interaction Representation

In a similar manner to (A12) it is convenient to
introduce the following notations in the interaction

ou’ (%) 0, (¥) = Dy (6 — )+ 11725 4,8 1,0 (x—y),

02 0? 02
®y‘ﬂ - gDua+
65(3,.0.%,3

g’ (X)gap™ ()= — Dup

X,0Xq 0x,0%

-+
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representation’:
=
C4=1m iV - ¥
and

a,=A,. (A26)

These field operators ¢,, a,, therefore, satisfy the free-
meson and the free-photon equations,

(0gus/ 92) —m* 0, =0
and

(aza,,/axxax)\) = 0, (A27)

where
Euv= (aqo,,/ﬁx,‘)— (6%:/635:1)- (A28)

In terms of ¢,, @, the interaction Hamiltonian is
given by
IIint: —ieau[guv*((’v_guv@y*]
+e[(aX ¢*)- (aX o) — (a,84;%) (argar)m™]
e fir e ortien f1;(Ra*oi— ;%P4

+36% (B o— o™ ®)*+mPy*y, (A29)
where
flwz (aai/ax#)" (ad,‘/ax,), (A3O)
y=®i— ps—im ea;g4;,
and
y¥=P*— o im2ea g, (A31)

In the above, ®; and ®,* are regarded as functions of
©u, @y, and their derivatives. The explicit forms of the
functions ®4 and ®,* can be directly obtained by using
(A25), (A26), and the following substitutions:

=845, Wi = 1845,

[P;—1i(das/dx;) ]=1f4;.

B3. Feynman Graphs

and
(A32)

To obtain the appropriate rules for Feynman graphs
we adopt the procedures and the notations used in
Wick’s paper. The contraction of any two operators
A (x) and B(y) is defined to be the vacuum expectation
of their 7" product in the interaction representation:

A" () B (9)=(TLA (*)B(¥) ] vac- (A33)

In a similar manner to (A15), many of the contractions
between the operators ¢, gu, etc. cannot be expressed
in terms of covariant functions. By using (A28), (A30),
and (A32) we obtain the following noncovariant
contractions:

§Dm+7:[54u54a5uﬂ+54v5465ua_ 04u0480ya— 541'54&6#5]34 (x—y)

0x,0xg
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and
9? a? a9? 92
fu". (x>fa5'(y)=[—6vu _5;;& + BB Jl 6ya ]%D[«'(%“'y)
0%,0% 0x,0%8 0%,0%q 0x,0%8
+1:[64n64a6v13+64v64ﬂ5ua"'64;464[35;‘01_641)64&6#5]64 (x—y)7 (A34)
where ©,,(x—y) is given by (A16), Ar by (A17), and etc., and (A36) remains the same as before; i.e.,
@) (x)a,” () =38uDr(x—y), (A40)

Dp(x)=—i(8r%) f k(R explikyry).  (A35)

The other relevant contractions can all be expressed in
covariant forms; for example,

ay (x)a, (y)=%8,,Dr(x—1y),
g’ (W) r* (9) = (9/9%,) D (x—y)
—(8/0%,) Dir (x—7),

(A36)

etc.

It is important to notice that if k320 the expansion of
Hiny (A29) into a power series of e actually contains an
infinite number of terms. In principle, the rules for
Feynman graphs can be obtained by a straight-forward
application of the standard algebraic method® of con-
verting the 7" products in the .S matrix into the appro-
priate S products. In practice, because of the complexity
of Hiyy and the presence of numerous noncovariant
terms in the propagators, it is quite complicated to carry
out the details. This will be done in Appendix C. It is
found that, similar to the simple example of the inter-
action between vector mesons and lepton currents dis-
cussed in Appendix A, much of these two above men-
tioned complexities cancel themselves. We obtain, as a
result, the following theorem (proved in Appendix C).

Theorem 3. The above S matrix can be generated by
considering an equivalent problem in which Hiyy is
replaced by

Hin'=— ieanll:guv,*ﬂ"v,“ g#vl @) *]
+ea)/a)/[duen o\ — o/ ¢, ]

Fiexfu) 0./ ¥ o,/ +6H, (A37)
where
8H = (1/2)8*(0) In{[1— (ex/m)*¢*o;'
— (ex/m)* (o o) (0r' *er'*)}.  (A38)

The contraction of the prime fields ¢,’/; g.)/, etc., are
identical with that of ¢, g.., etc., except that all the
noncovariant terms are now absent. More explicitly,
(A34) is replaced by

ou” (%) 0% () = Dy (=),

92 92
g (X)gap"™ (y)=— Dyp— Dy
0%,0% 9x,0xg
o? 9?
+ Dyust+ D,a, (A39)
0%,0% 0%,0x8

etc.

Theorem 3 states that except for the term 6H in
(A37) the effects of the noncovariant terms in the
original propagators (A34) completely cancel those that
are generated by the difference between Hiny and — Lins.
If k=0, 6H =0; therefore, by using Theorem 3, the rules
of deriving Feynman diagrams becomes almost trivial.
However, if k>0, (6H) gives rise to additional vertices
which are both divergent and noncovariant.

These results are summarized in Fig. 1.

APPENDIX C. PROOF OF THEOREM 3
C1. A Simple System of Harmonic Oscillators

Let us consider a problem of N harmonic oscillators

whose coordinates are Qi, Qa2+, Q. and frequencies
wi=ws=--+-=1. The Lagrangian for this system is
given by
L=Lo+L,, (A41)
where 140 dg
L 0=—"""" _“%QQ;
2dt dt

1dQ dQ 1dQ d
Ly=- ~(—2A£+— —QB+%B—Q+C,

2dt dt 2 dt dt
O1
0=%|, (A42)
On

Q is the transpose of Q, A is a symmetric (NXN)
matrix and B, C are, respectively, matrices of dimension
(NX1) and (1X1). All three matrices 4, B, C are
Sfunctions of Q (but do not explicitly depend on dQ/df).
The conjugate momenta P and the Hamiltonian H are
given by

P=(1+4)dQ/dt)+ B

and
H=3P(1+4)"P+300—3P(14+4)"'B
—31B(14+4)"P—C+3iB(1+4)'B,
where 1 is the (WX N) unit matrix.
In the following we discuss the perturbation series in
which 4, B, C are treated as small but arbitrary func-

tions of Q. It is convenient to use the interaction
representation, regarding

ley_% P—%@Q

(A43)

(A44)
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2

<T[A0 & (1] %ag =% Sz slt-t1-1 81-1)

F1c. 4. Propagator
and vertices for the sim-

L8 A e L ple system discussed in
- 27 - Appendix C2. The dot
over ¢(¢) denotes a time
derivative.
&~ 1 =
-9 1+A 8 -
—-C+ 1 8 o B = .
2 ° A

as the interaction Hamiltonian. For clarity, we intro-
duce in the interaction representation’

4.1
¢=|: =0
an
Therefore,

dq/dt=P. (A45)
The explicit time dependences of ¢ and dg/dt are given
by

gn=(1/V2) (are~ "+ a,'e)

dq./dt=— (i/V2) (ane~"*— ansle™),

and
(A46)

where a, and a,' are, respectively, the annihilation and
creation operators for the #th harmonic oscillator
(n=1,2, ---N). In terms of ¢ and dg/d! the interaction
Hamiltonian H; becomes

1dg dg 1dg
Hy=—-—A(1+A4)"——-—(1+4)"'B
2 dt dt 2dt
- dq -
—.%B(1+A)—7—c+%3(1+A)—IB. (A47)
t

We observe that the vacuum expectation values of
the various 7 products in the interaction representation
are given by

(TTgn()gm(0) vae=28nms (1),

(T g/ g ©) DonemBormds/dty, )

and

<T[%‘<t>%<o>]> ST

vae
d2s

=—30um——10.m0(0), (A49)
at
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where # and m vary from 1 to N and

s@t)=exp(—it) for (=0

=exp (it) for (0. (AS50)

As in the previous case of vector mesons, (A49) states
that the contraction between time derivatives of ¢, and
g differs from the time derivatives of the corresponding
contraction. We now state the following lemma.:

Lemma 1. The S matrix of this problem can be
generated by considering an equivalent interaction
Hamiltonian™

i=—(50)a(5e) (G )p
A A S A A
/d
-1 (54')—c+ay, (AS1)
t

where 6H =3:5(0) trace[In(144)] and 4, B, C are the
same functions as before (but replacing ¢ by ¢’). The
contractions between ¢’ and dq’/dt are given by

[0/ (0T Tgn O T =362ms(0),
dq o . , m i{
[—(—ﬁ—@} Con' O =3o0m,

dqnl . dqm/ . d2S
[Z0][Z0 |-t
dt dt ar
It is important to notice that the term —i8,,0(f) in
(A49) is omitted in (A52) and that H,' is essentially the

same function as —L; except for the extra term
318(0) trace[In(144)7.

(A52)

C2. Proof of Lemma 1

To prove the lemma we consider the usual power
series expansion of the S matrix in the interaction
representation

S= ZS")

n=0

where ]
(=)~

Sn=- (A53)

n!

/ T O AOE)

In converting the above S matrix from I" products into
S products, let us concentrate on the developments due
to the conversion of T[[dg.(t)/dt].[dgn(t)/dt]e]:

dg. dam dgn. dgm
T[i@ <0>]= 202 0):
dt dt di

dt
+<T[d—§f(t>dj_;"<0)]>

vac
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We use the graphical method that only the contrac-
tion between dg./dt and dg,/dt is represented, but
all other contractions such as [¢.(#)][¢»(0)] and
[dgn(2)/dt]¢[gn(0)] are suppressed (i.e., not repre-
sented explicitly in the graphs). In Fig. 4 the propagator
[dg.(t)/dt]e[dgm(t)/dt]s is represented by two terms:
a straight line which stands for —38,.d%/d* and a
“spring” for the second term —8,,0() in (A49). There
are three kinds of vertices which correspond, respec-
tively, to the terms —3(dg/dt)A(1+A4)"(dg/dt),
—(dg/dt)(14+A4)"B, and [—C+3B(1+4)"B]. The
present problem then reduces simply to one of summing
over all diagrams which contain different numbers of
springs but otherwise are of similar topological struc-
tures. These sums are illustrated in Fig. 5.

To understand the sum I in Fig. 5, let us define

1dg dg
Ii=——A(1+4)"—,
2 dt dt

which contributes a term (—1) /' I;d¢ in S;. In S, there
is a corresponding term —i /" I.d¢ that arises from the
following contraction:

[(—i)2/2!]/dtdz’{ ‘%%%A (1+A)—1[§§(l)]']
X{ —%[i—f(t’)}.A (1+A)—1§§}’

in which one substitutes only the —i5(t—¢') part of
(A49) for [dq(s)/dr][dq(t)/dt]e . There are altogether
four such terms due to the four different ways of
selecting (dq./dt) (dq;/dt) out of the product [dg,(t)/dt]:
X[dgn(t)/dt][dgn t)/dt]v[dgm (£)/dt]. Thus we find

1dg; A \*dg
I,= ___(*-_) “
2dt\14+4/ @t

Similarly, it is easy to prove that there is a corre-
sponding term (—1) /'1,d¢ in S,, where

: ld_fj[ A ]"dq
" oall1i+al a4

The total sum of all these diagrams is given by
(AS4)

which contributes a term (—1%)/Id¢ to the entire S
matrix. Identical arguments hold for cases in which I
appears only as a part of a bigger diagram. The result of
eliminating —48() term in the propagators in I-type dia-
grams is simply to replace —%(dg/dt)A (1+A)~(dg/dt)
in the interaction Hamiltonian by —%(dg/dt)A (dq/dt).
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I & —e + o P0\e + =TT\ + o« o
= I, 4+ I, + I + ee e
I = — + = F00Ne 4+ =TT e + oo o
= I, + I, + I, + e e e
W = o +  oTFTe 4 TN TNe + o o«
= I + m, + m, + oo
NE@!» QD + @ b e e
= "M, + Y, + v, e e

" F16. 5. Sums of certain diagrams discussed in Appendix C2.

To understand the sum II in Fig. 5, let us considver the
term (—1) /' II,d¢ in S;, where

aq
II=——(1+A4)"1B.
dt

By using almost identical arguments as that used in the
sum I, it is easy to show that there is also a corre-
sponding term (—z¢) /' II,dt in S,, where

II,=—(dg/dt) 14+ A)[4/(14+A4)]=1B. (A55)
Thus, summing over # we obtain
o aq
II= Y II,=——B. (A56)
n=1 ) dt
In the sum III, the term III; is given by
III,= —C+3B(14-4)"'B, (AST)

which contributes a term (—1) /' III:d! to Sy. In Sy, let
us consider

5 J G orara)

x{ - [fid—f(z')]aw;)—lzs ]dtdt',

and again substitute only the —#5(¢—¢) term for the
contraction. The result gives a term (—:) S/ II1,d? in Ss,
where

II,=—1B(1+4)2B. (A58)

Similarly, the diagram III, contributes to S, a term
(—12)S111,dt, where

IIL,=—3B(1+4)"4"2B (n=2). (A59)
Summing over %, we obtain
III= 3 II1,=—C. (A60)

n=1
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To understand IV, let us consider in .S; the contribu-~
tion of

1rdg 71 dg T
i [—]Z0]aa+ar]{Zo]a
2L dt dt
in which only [—1%8,,8(f)] is used for the contraction.
This results a term (—1%) /' IVydt in Sy, where
IV;=+4%i5(0) trace[4/ (14 A4)].

Similarly, it can be shown that the diagram IV, in
Fig. S contributes a term (—1) /' IV,dt to S, where

IV,=+1i5(0)n " trace[4/(1+4)]*  (A62)

(A61)

The factor #» is due to the cyclic symmetry of the
diagram IV,. Summing over », one obtains

V= 3 IV,=1i5(0) trace[In(14+-4)].  (A63)

n=l

It is easy to see that identical sums can be performed
for any part of an arbitrary diagram in which —%8,,,0 ()
occurs in the contraction [dg,(£)/dt]: [dgn(?)/dt]s. The
result of such sum is Lemma 1. We recall that, since 4
is a function of ¢, IV is not a constant.

Both Theorems 2 and 3 are direct consequences of
this lemma. The last term $76(0) trace[In(1+4+A4)]in the
lemma is the cause of the existence of (8H) in Theorem
3. This is connected with the fact that the dependence of
@4 on 1V-r* makes the extra-magnetic moment term
texF u0,* 0, to behave like —%(dg/dt)A (dg/dt) in the
lemma. The detailed steps leading from Lemma 1 to
Theorem 3 are still somewhat involved and are given in
the subsequent sections.

C3. Generalization of Lemma 1

The case of vector mesons discussed in Theorem 3
differs from the problem of harmonic oscillators treated
in Lemma 1 in several essential aspects. Comparison
between (A26) and (A45) suggests that ¢4 and ¢4* of
the vector mesons fields behave like dg/dt of the har-
monic oscillators. Yet, two main differences exist:

(i) The noncovariant term m204,04,0*(x) in ¢, (x)
X ¢,*(0) [given by (A34)] does not exactly correspond
to the term — 18,0 () in [dg,(£)/dt]; [dgn(8)/dt]e which
is given by (A49).

(ii) In Lemma 1, (H,'—8H) is the same function as
— L, if one replaces dg/dt in (—L,) by d¢’/dt and ¢ by
¢'. The analogy between ¢4, ¢.* and dg/dt might suggest
that in the case of vector mesons one could first regard
—Lins as a function of ¢,, ¢,* through the relations
(I)4=(I)4(§0y,§0”*,' : ') and ¢4*=¢4*(¢u"ﬁu*y' ) ') and then
replace in — £inr all ¢, 0, * by ¢,/ and ¢,’. The resulting
function would, however, be completely different from
(Hins'—8H) given by (A37). Rather, Theorem 3 states
that (Hind —8H) is the same function as — Liy4 only if
in (— L£in¢) the variables &, and $,* are replaced directly
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by ¢.' and ¢,/*. (The same is true also for Theorem 2
for which the term corresponds to 6H=0.)

Because of the above differences between ¢4 and
dq/dt, Lemma 1 has to be generalized.

Consider a problem in which the interaction Hamil-
tonian is given by

Hiny=—3J4(1+A4) Y —30(1+4)7B

—3B(14+A4)W—C+3iB(1+4)B, (A64)

where y consists of V local Hermitian operators:

Y1 (x)
Y= Ve gx) )

ll/N'(x)

A (x) is a symmetric (WX N) matrix, B is a matrix of
dimension (VX 1) and Cis (1X1). The matrix elements
of 4, B, C are local operators. Let M (x—7y) be the
contraction between ¥ (x) and ¢ (y),

Y (@) () =M (x—y).

The following lemma can then be established.!

Lemma 2. The S matrix of the above problem can also
be generated by considering an alternative problem in
which (i) the Hiny in (A64) is replaced by

(A65)

(A66)

Hin'=—30 Ay —L/'B—1By'—C+6H, (A67)
where

0H =316%(0) trace[In(1+4)], (A68)
and (ii) the contraction (A66) is replaced by
V@Y () =M (@x—y)+idt(x—y).  (A69)

All other contractions such as that between y and 4, B,
C remain unchanged, except for the formal replacement
of ¢ by ¢

Proof. The proof of Lemma 1 can be used directly to
prove Lemma 2 by simply changing dg/dt into y.

It is useful to observe that the functions Hi,s(¥) and
Hi,(Y’) are connected by a simple transformation
similar to the usual Legendre transformation relating
Lagrangian to Hamiltonian. Define

CW)=—Hund §)+oH
=3/ AY'+By'+C (A70)
and

oG
Yo=vd+ (¢=1,2, ---N). (A71)
EY

a

In (A70) and (A71) ¢ and ¢’ are considered to be ¢-
number vectors. The function Hi, () is, then, given by

=35 ( il )2—G<¢'>. (A72)

a=1 all/ a’



THEORY OF CHARGED VECTOR MESONS

C4. Proof of Theorem 3
In a similar manner to (A70), let us define
G=—H;,/+6H, (A73)

where H ¢ is given by (A37). Let us formally regard in
(A73) fif, od, ed* gif, g4i* as 11 independent c-
number variables and all others such as ¢’, ¢'*, g./,
g:i' ¥, etc. as constants. In terms of these 11 variables the
function G becomes

G(fof 0 s 04 *,845 ,845'*)
=[—(efa-a) o' * i+ (iea;)gsi od*
— (iea;)gsi* i+ (iexo®) fui o — (iex;) fai 04 *]
+ [ (821143 . ¢*) <p4'+ (62048 . (p) <p4,*

— (ieasp;*)gsi + (ieasp;)gsi*1+C,  (AT4)
where C is a constant given by
C=ieag:i*oi—gijei*1—al e ¢*

—é(aX ¢)- (aX p*)—iefijo*e;.  (ATS)

In both (A74) and (A75) the values of the “constants”
¢, "% 8 8% @', ad, f. areset tobe g, 0%, g4j, gi5%,
a, a4, and f;;, respectively.
Similar to (A71), we define
1= @i —(3G/ded*)(1/m?),
0a*= i *— (0G/d¢d)(1/m?),
g4i=g+/ — (3G/dgsi'®),
g =g — (8G/dg4s"),

and
fa5= foi — (8G/df4f). (AT76)
(000000 O0O0O
000O0O0OO0ODO O
0 00 O0O0O
00 O0O00 0
0000
A= 000
00
0
where
R;j= (ex/m) (1/V2) (¢;*+ ¢)),
and

Li=iee/m) (1) (0" —0))  (j=1,2,3).
Utilizing the identity,
trace[In(14-4)]=In(det|1+4]),

one finds that (A38) is true. Theorem 3 is, therefore,
proved.
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It is straightforward (though somewhat tedious) to
show that the function Hin¢ (A29) is related to G by

1 ( G ) ( G )
m*\d s / \dps'*
G G G G

(oo e 2 ) e e

where the 11 primed field variables are regarded as
functions of the unprimed variables by using (A76).

In order to use Lemma 2, we define 11 Hermitian
variables ¢, - - -¢¥11 by

v =ifsf,
Vo= (1/VD)[ge/ —24/*],
Ve = —1(1/V2)[gs+g4*],
Y10'= (m/VN2)[od — o *],

Yu'= —i(m/ ﬁ)[¢4'+ ¢’4'*J; (A78)

where j=1, 2, 3. Regarding G as a function of ¥/, we
find that equalities identical with (A78) hold between
Y1, *+¥11 [which are defined by (A71)] and fu;, gsj,
24;*, ¢4 and ¢4* [which are defined by (A76)7]. There-
fore, (A77) implies the validity of (A72). Furthermore,
we notice that comparison between (A39) and (A34)
shows that (A69) is satisfied.

Theorem 3, thus, becomes a special case of Lemma 2
provided one can show that the §H given by (A68) is,
indeed, equal to (A38).

By using (A70) and (A74), the symmetric matrix 4
is found to be

int=

and

0 R, I

0 R, I,

0 R3 I3

0 0 — (eay/m)

0 0 — (eaz/m)

0 0 — (eas/m) |, (A79)

0 (eay/m) 0

0 (easy/m) 0

0 (eas/m) 0
(eta-a/m?) 0

(ea-a/m?))

APPENDIX D. DERIVATIONS OF FEYNMAN
RULES IN &LIMITING FORMALISM

Inthe ¢£-limiting formalism the interaction Lagrangian
contains only a single time derivative of the electromag-
netic field. Therefore, the results given in Figs. 2 and 3
can be directly obtained by using Lemma 1 and setting
the matrix 4 =0.

APPENDIX E. REMARKS ON THE ORIGIN OF
8¢(0) TERM IN FIGURE 1

It is clear by comparing Figs. 1 and 2 (or Figs. 1 and
3) that for a given process, to the lowest order in e, the
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(a) (b) (c)

Fi1G. 6. Feynman diagrams for self-energy of mesons
(discussed in Appendix E).

Feynman diagram does not contain any closed loops and
therefore has the same value in the &-limiting process
when £ — 0 as in the usual canonical formalism.

For higher order Feynman diagrams, the additional
vertices of Fig. 1 carrying factors §*(0) which are infinite
must be included. They are explicitly noncovariant
under Lorentz transformations. The origin of these
noncovariant terms is the nonidentical treatment of the
space and time components of the meson field in the
usual canonical formalism, as we now illustrate in the
following example.

Consider the self-energy of a meson to the order €.
There are three Feynman diagrams that contribute, as
illustrated in Fig. 6 where the cross in (b) stands for the
additional vertices of Fig. 1. The most divergent terms
come from (a) and (b). They are, respectively, per unit

volume,
ix2e? koag—koks
= 0¥ Pa / —————d*kdko, (A80)
(27)m? (p+kR)>+m?
and
1x2e%64(0)
Ap=————o* 0. (A81)
mZ

We can make the same calculation using the &-limiting
formalism. Only diagrams (a) and (c) contribute, and

AND C. N. YANG

the most divergent term comes from (a): This most
divergent term can be written as

ke
2m)im?
Edag—kaks BA-m?
QTSR R

which is covariant.
Let us now evaluate the integral in (A82) by first
integrating over ko, then making £ — 0. Now,

A~—K/k¢ as

Ba=Aa'—

05*0a / Adkdko,  (AS82)

where

(A83)

ko— for a=f=4
and

A~1 as ko—w for a=p=1,2,3.

Thus, as £—0

/Adkowfdko for a=p=1,2,3

0 otherwise.

It is clear that if we evaluate the integral in (A82) by
first integrating over ko, then taking &#—0, then
integrating over k, we obtain

(A82)= (A80)+ (A81).

This example illustrates the fact that the &limiting
formalism is an explicitly covariant method which is
more convenient than the canonical formalism.



