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A self-consistent calculation of some features of the low-energy pion resonances is performed by a "boot-
strap" method which preserves unitarity and the analytic properties of scattering amplitudes and satisfies
crossing symmetry approximately. The interaction of two-pion states with pion-omega meson states is
decisive for the properties of the p meson. Values of the p-meson mass and width and the m-meson width
are obtained in terms of the pion and co-meson masses and are in fair agreement with experiment.

I. INTRODUCTION have to be made. One may wish to treat some param-
eters (e.g. , the pion mass in the above example) as tIxed

by experiment and to apply the self-consistency require-
ment only toward the determination of the remaining
parameters. Moreover, one may hope that in treating
phenomena in a certain energy range, the role of
particles with substantially higher rest energies is com-
paratively unimportant. Thus, when analyzing the
contributions to the spectral integrals over energy for a
partial-wave amplitude, one notices that a channel
containing a "high"-mass particle has a threshold "far"
to the right, while the force due to exchange of a "high"-
mass particle contributes "far" to the left. The illus-
tration involving the p meson given above is an extreme
example of this type of limitation.

In addition, it now seems probable that composite
particles are described in terms of the so-called Regge
philosophy, in which each composite particle is assigned
an energy-dependent variable spin and coupling con-
stant, which agree with the actual spin and usual
coupling constant only when the particle is on the mass
shell. ' This means that each composite particle is charac-
terized by energy-dependent functions instead of con-
stants as for an "elementary" particle, and a self-
consistent calculation of the properties of the particle
should yield those functions. As this is harder than
simply 6nding a mass and some coupling constants,
another simplification would be to ignore, insofar as
possible, the Regge behavior. One of the most striking
features of the Regge behavior is that it seems to make
scattering amplitudes less singular at large energies than
would otherwise be the case. A natural cutoff is pro-
vided on quantities that might otherwise be divergent.
One may hope that most of the Regge behavior can be
summarized in a phenomenological cutoff, and that the
rest does not make too much difference to semiquantita-
tive self-consistent calculations.

Finally, even within the above simpli6cations, it is
still necessary to make an approximation in calculating
the position of bound states and resonances from a given

A S more and more of the new unstable particles or
resonances are discovered, it is becoming in-

creasingly clear that at least some of these particles, as
well as some of those previously known, must be con-
sidered to be composite rather than elementary. Chew
and Frautschi' extend this viewpoint to its logical limit
and suggest that al/ the strongly interacting particles
are composite. Every particle is assumed to be a stable
or unstable combination of other particles. The forces
which produce these compound states are themselves
supposed to be caused by the exchange of particles.
Thus, one abandons the notion that a dynamical theory
logically begins with the specification of "elementary"
particles and "fundamental" interactions. One has,
rather, a situation in which the system of particles pro-
duces itself, in that the various particles give rise to
forces among themselves making bound states which are
the particles. We illustrate this concept by the following
simpli6ed example. ' The p meson appears as a resonance
in the xw system in the J=1, T=1 state. It is easy to
see that the exchange of a p meson between two pions
yields an attractive force in the J= 1, T= 1 state. If the
parameters of the p meson are judiciously chosen, the
attraction gives rise to a resonance whose mass and
width are precisely those assigned to the p meson. The
p meson has therefore produced itself, so to speak.

The actual physical situation is, of course, much more
complicated. There are many strongly interacting par-
ticles, and they certainly all inhuence one another to a
greater or lesser degree. For this reason, practical calcu-
lations of the properties of strongly interacting particles
within the framework of this self-generating, self-con-
sistent mechanism are very dificult. In order to reduce
a problem to feasible proportions, many simplifications
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input force. Here the well-known iV/D method' seems
to be the simplest to use, because it is a formalism that
guarantees the correct unitarity and analyticity of
partial-wave scattering amplitudes and yet is amenable
to calculation.

A number of attempts' have been made to calculate
the mass and width of the p meson basically within the
framework of the above approximations. Blankenbecler'
has also tried to estimate very crudely the effect on the

p meson of the next most likely candidate as an in-
Auential particle, the co meson with J=1, T=O and
negative 6 parity. The main thing that has been learned
from these calculations is that a self-generating p meson
is apparently possible; however, quantitative estimates
of its properties are not very good.

In this article we attempt a more systematic inclusion
of a larger class of particles into the self-consistent
framework describing the p meson, still using basically
the approximations outlined above.

Other particles enter into the problem either through
scattering channels that mix with the mw channel or by
directly affecting the force between the pions. The
masses in which we are interested are those near the
experimental' p mass of about 750 MeV, so the most
influential other channels are likely to be those with a
threshold near this mass. The only two-particle states
with threshold less than 1 BeV which can communicate
with two pions are mco and EX with thresholds at 920
and 990 MeV, respectively. ' The process m-~ ~ xor can

go with the exchange of a p and xw —+ EK can go with
the exchange of E*.' This second reactions is somewhat
like the elastic process xm ~7t-~ with a p exchange,
which is assumed to be the basic force in the simpli6ed
self-consistent model, except that the E* is slightly
heavier (884 MeV) than the p and that the E*E7r
coupling constant is presumably much less than the
rrrrp coupling constant (because of the small width for
E*~E+rr compared to that for p —+ z+z.). For this

reason, as well as because the three-channel problem is

very dificult mathematically, we shall ignore the
EX channel.

Multiparticle channels (e.g. , 4z.) with low thresholds
also exist, but they are generally less important than
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FIG. 1. Exchange graphs for the four processes mx ~ mm. ,
71-m. —& +co, 7I-co —+ 71.2I-, ~co —+ 21-~. These are the input.

~o On the basis of the Regge philosophy, it has been predicted
that there may be a J=2, T=O, x7I. resonance at around 1 BeV.
If this actually turns out to exist, it may have a large e&ect on the
p meson. See C. Lovelace (to be published), anrl reference 3.

two-particle ones because of the rapidly rising two-
particle phase space. We shall therefore ignore them
as well.

We are thus led to a two-channel problem involving
the four reactions mx —+ mx, mx —+ vrco, vcr —+ mx, and
~co —+ mes, and we are primarily interested in the effect
of the existence of the xcu channel on the self-consistency
for the p meson.

The forces that produce the various reactions are de-
scribed in terms of exchange graphs in which a particle
is exchanged among the scattering particles. There exist
more complicated exchanges, involving several particles,
which also contribute to the force. However, they have
higher thresholds than one-particle exchanges, so we
shall keep only these. It is easy to see that the only
allowed one-particle exchanges in the four reactions are
those shown in Fig. 1."These graphs then constitute
the input force.

We wish, in accord with the self-consistency idea, to
require that this force give rise to the p meson. This
means the force should produce a resonance or bound
state in the four processes, and, therefore, the four
graphs of Fig. 2. These are the output.

The forces involve four parameters: the effective
coupling constants y, and y, „ for the pzm and puce

vertices and the mass ratios m, /m and m /m . Given
the force specified by these input parameters, we must
calculate the energy and coupling constants of the
resultant bound or resonant state, if it exists; that is, we
calculate output values of y, , y, , and m, /m Hence, .
taking m /m from experiment, we have a three-way
self-consistency problem for the determination of the
other three parameters.
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FIG. 2. The output graphs, describing the appearance of
the p as a resonance in the mm, mes states.

In Sec. II, we shall describe in some detail how the
cV/D method is to be applied to this problem, and what
the self-consistency consists of. Section III contains a
brief discussion of the calculations of the input forces
with some limitations which these forces impose. The
results are given in Sec. IV. Sections V and VI discuss
the related problems of s-wave m~ scattering and the
self-consistency for the cu meson, respectively. Finally,
in Sec. VII, we summarize the conclusions which can
be obtained.

Imt '(s) = —1. (2 1b)

Now these analyticity and unitarity properties are
automatically satisfied if 3 is represented as

t(s) = cV (s)//D(s), (2—.2)

where D(s) has the same right-hand cut as t but no
left-hand cut, while iV(s) has the same left-hand cut as

IL THE N/D METHOD

For the sake of clarity, we shall begin with a brief
review of the "1V/D" method. ' The purpose of this
formalism is to have a framework within which unitarity
and analyticity of the scattering amplitude are guaran-
teed whatever approximations are used in computing it.
For a one-channel problem, the scattering amplitude
t(s) for a particular partial wave is a function of s, the
total c.m. energy squared. It has a right-hand cut in the
s plane coming from unitarity and from "direct" graphs
(for example, Fig. 2) and a left-hand cut due to "ex-
change graphs" (as in Fig. 1). If there are any stable
one-particle states in this channel, t(s) will have poles
at the masses squared of such states. For s above thresh-
old, the unitarity condition for t(s) states that

L&()—t'*()7/2 =l*()&(), (21 )

or, equivalently,

From (2.1), (2.2), and (2.3), it is clear that X and D
may be determined from their respective dispersion
relations and the following expressions for the ab-
sorptive parts:

ImD(s) =E(s),
Imll(s) = —D(s) Im)I, (s),

(2.4)

where Im/z, (s) is the discontinuity of f(s) across its
left-hand cut.

If one now uses an input tr, (s), as determined, say,
by a specified class of exchange diagrams, one has two
coupled integral equations to solve for X and D. One
may think of solving these two integral equations by
iteration. In the lowest order, then, one would use D= 1

obtaining ImÃ= —Imtl, and hence 1V= —tz, . Then D is
obtained as an integral over the input tJ, so that
finally we get

1 tl. (s') ds' —'
((s)= t, (s)(.1—

S —$
(2.5)

"There are cases where the kinematics are such that use of the
simpli6ed method will lead to absurdities. For example, if the cut
due to the exchange graph lies in the region where one is looking
for a bound state, the simplified version would give a complex
coupling constant. The integral-equation method, on the other
hand, as can be seen from Eq. (2.4), will not, since 1m%=0
whenever D=O.

One could continue the iteration of the coupled lV and D
equations, if one so desired. However, it is clear that the
process rapidly becomes more difficult, and, in any case,
it is by no means clear that an exact solution to the N
and D equations is a better approximation to t than just
the first iteration when the input t'1. is just some approxi-
mation to the left-hand cut in 3 anyway. An exact solu-
tion guarantees that the input Impel, remains the
discontinuity across the left-hand cut of t, and if one
uses as one input just a single diagram, say, one knows
that the resulting ImtL, must physically be damped out
as one goes far out on the left-hand cut. Hence, in the
interests of simplicity, one may as well use only the
first iteration. "

For our case, the one-channel problem consists in
forgetting the ~co channel and keeping only the m-x

channel. The input is taken to be the exchange of a p
meson between the two pions, as in Fig. 1(a). One may
then compute the scattering amplitude t(s) in the J=1,
7= 1 channel as outlined above, in the simple approxi-
mation, and ask that the p meson itself appear as a
resonance with the same parameters as those used in
the input diagram. It turns out that there is a self-
consistent solution, and the resulting p meson param-
eters are found to be m, =350 MeV, y, s/4s =0.6.

As we have explained in the introduction, we are
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j—[t,, ($)—t,,*($)]=Q t;k*($)0($ si—)ti, ($), (2.6a)
2s

'

where Si is the threshold for the state k and 0($—Si) is
one or zero, according to whether s is larger or smaller
than Si,. If (2.6a) is multiplied by the inverse of the
matrix j on the right and by (8) ' on the left, we have

Im[1 '(s)];,= —5@0($—s;). (2.6b)

It is quite straightforward to show that the matrix form

t;, ($) = —P~ jV; j,($)Di,; '(s), — (2.7)
where

1 "Nij($')
Dkj($) 5ij+ dS

7l gl, S S
(2.8)

automatically satisfies (2.6b) for any N."
Now, if the simple approximation were used here,

one would write N, r($)= —(tj, ($));i„where tz is the
input from the exchange diagrams of Fig. 1. This ap-
proximation, while it of course preserves the unitarity
and analyticity of t;, , violates time reversal invariance,
in that the approximate t;, computed in this way is not
symmetric. " We may remark that even in a theory
invariant under time reversal, t;, is symmetric only
when the phases of the initial and final states are ap-
propriately chosen. We suppose, throughout this paper,
that this is done. One may try to guarantee the sym-
metry as well by using a form different from (2.7), but
one that still is unitary. Such a form has been suggested
by various authors, and is

j= 2(N 'D+D'N-')—- (2.9)

where N and D are still related by Eq. (2.8). The diK-
culty with this form is that if the coupling to the addi-
tional channel, containing x and co is made to vanish,
the expression for t does not reduce to the original
expression for t from the ~m channel alone. ' As we shall
see later, our final results are that the coupling constant
linking the two channels is small, so it is certainly de-
sirable to have this limit come out correctly.

"J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
"Again, if the integral equation is solved exactly, this difEculty

does not arise. See J. D. Bjorken and M, Nauenberg, Phys. Rev.
121, 1250 (1961).

'4 The form N ' becomes singular as the coupling to the second
channel vanishes, and this leaves a residue in the expression for
t. The fact that the coupling constant in the 22 element is like the
square of that in the 12 element is the source of the difBculty.

interested in including in this simple self-consistent
calculation the effects of the (probably) next most im-

portant channel, that containing m. and co. We must
modify the N/D formalism to take account of two
channels.

For two channels, the scattering amplitude becomes
a 2X2 matrix 1j($) describing the amplitudes for the
processes m-m. —+ m.x, m-x —+ mar, ~co —+ xx, vrco ~ m-co. The
unitarity condition reads

Another form, which is also symmetric and unitary,
and which does not suffer from this difficulty, is

g 1/2D —1+1/2 (2.10)

However, here one is required to deal with square roots
of matrices, and the square roots apparently introduce
undesirable singularities into the approximate t matrix.

In the absence of any simple form which builds the,
symmetry into the approximation, and which does not
suffer from other ugly diseases, we have elected to use
the simple unsyrnmetrized form (2.7), in the hope that
the final result will be nearly symmetric. Its departure
from symmetry represents a measure of the degree to
which the predictions of the approximate N/D calcu-
lation differ from those of the exact calculation.

There are two more general points which must be
discussed before we go into the details of our specific
problem. The first is that the unitarity condition (2.6)
actually extends below physical threshold for some of the
reactions. Specifically, the reactions 7fw —+ mco, xylo ~ xx,
and s.ro —+ ir~ all have s= (m +nz„)' as physical thres-
hold. Yet, in Eq. (2.6), their imaginary parts all get
contributions from the xw intermediate state, with a
threshold at s=-4m ', and therefore exist down to this
point. This results in the appearance of some kinematical
singularities, which we remove as follows. Define
t,;;= (p,p;)i~'t... where p; and p; are the momenta of
channels i and j.Then, from Eq. (2.6b),

1m[i—'($)],,= 5,,0($ s,)/—p, . —(2.11)

We may now apply the.V/D method to t instead of to j;
then

and
ds'

D' ($) =~*i+ N'i-($') —.
il ~iS S P,

If the input is tl„ then to lowest order we have
N, ,= —( pp, )'"(t )z... and

" Pj)"'[1~.($')]'
D,; (s) =o;; —

i

— —ds'. (2.12)
p;I $' —$

Finally, t=tL,D '.
Secondly, we perform a subtraction in D. This

amounts to factoring a constant out of D by normalizing
D to unity at some point, and absorbing the constant
into E, thus defining a new E.

The choice of subtraction point is connected with the
requirement of crossing symmetry. Only the amplitude
for the single p exchange contributes to the discon-
tinuity across the left-hand cut in the interval of that
cut to the right of the thresholds for the exchange of
higher mass systems. If the D matrix is unity in this
interval, then crossing symmetry tells us that the
coupling constants used to calculate the forces due to
the p exchange are in fact the same as the coupling
constants which determine the width and residues of the
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resonant state, i.e., crossing- symmetry determines this
aspect of the self-consistency problem.

But in our simple calculation, D can be fixed equal
to unity at only one point in the interval of interest,
the subtraction point. One may hope that D approxi-
mates unity in the remainder of the interval. If this is
true, crossing symmetry will be satisfied in an approxi-
mate manner.

Our procedure is, first of all, to find self-consistent
parameters with the subtraction point placed at the
endpoint of the left-hand cut. Secondly, we vary the sub-
traction point to determine the sensitivity of the results
to its choice. If a calculated parameter varies within
certain limits as the subtraction point ranges from the
end point of the cut to, say, the threshold for two-p-
meson exchange, then we say the parameter is predicted
only to within the limits of that variation.

Thus, we will replace Eq. (2.12) by"

Anticipating that the width I' (in energy units) is small

compared to m„we 6nd that

m, r/4m. '= ar(n)/Air'(a) (2.17)

m I/4m rii/p1 ~ (2.19)

Moreover, the r,; may be taken to be real. ' In
particular,

rll p 12(1r) ReD21(&)
+11(&) ReD22(&))/~R (rr) (2 18a)

r22 p 21(&) ReD12(&)
—Xs,(a) ReD„(n))/a p'(n). (2.18b)

Experimentally, m, (m„. If the calculation works
satisfactorily, we expect o. to be below the threshold for
the 1rM state, which we call xs. Then Dsp(rr) and Dsi(rr)
are real, while D»(n) and D12(n) have imaginary parts.
By (2.17) and (2.18) we obtain

D,, (s) =t';, — (2 13)
s —sp

s—se " p; "' [4(s')),; ds'

rl p, Pg S —S

If the p mass is above the m~ threshold, i.e., n&x2,
then

With the subtraction at the beginning of the left-hand
cut obtained from Fig. 1(a), se ———m, '+4m s.

As we shall see later, even with one subtraction the
integral for D2~ does not converge. This rejects the un-
renormalizability of theories with elementary vector
mesons. However, as discussed in the introduction, if
we had treated the p and ~ as Regge particles, there
would be a natural cutoff, We shall therefore imitate
the Regge behavior by the introduction of an arbitrary
cutoff on the D2~. Again, we hope that the result will be
insensitive to this arbitrariness, and we must test this
hope by varying the cutoff.

Let us conclude this section by outlining the steps
in the calculation. This discussion presumes that a reso-
nance with a narrow width will indeed be found. We
first must compute ti, (s) This is do.ne from the diagrams
shown in Fig. 1(a) through 1(d), which contribute to
(t,)„through (t,)„.(We denote the m+ state by index
1 and s.a& by index 2.) Then (tz,);; will depend on
x=s/4m ', n=m, '/4m ', p=m„'/4m ', y..., and y,.„.

Next we compute D(x) from Eq. (2.13); then t(x)
from

t;;(x)= tr, (x);sD (s) s,/detD (x), (2.14)

where D is the cofactor matrix. Decompose det D(x)
into real and imaginary parts: detD(x) =hg(x)
+ihr(x), and write 611'(x) for (d/dx)611 (x) For a reso-.
nance at x=rr, we require hit(n) =0, and for x near n,

detD(x) = (x n)d, rr'(n)+iDz(n). — (2.15)

Then for x near rr, t(x) has the general form

(r11 ris
t()=l [(x—n)+ihr (n)/aii'(n)). (2.16)

~r21 r22

"Incidentally, it is perfectly consistent to have a different
subtraction point in each of the four matrix elements.

m I /4m rll/pl r22/p2 (2.20)

1 (~p-)'pi' v2 pppwvpwra
(P1Ps)'

6 4x

'(v"-)'
p 4~1/2

6 4x

v2 vpwwvpxra

(P1Ps)'.6 4x
re=

[x—n+i(mpl'/4m '))
(2.21)

where the momenta, at x=o., are given by

(p /m-)'=- —1 (p./m. )'=-+(p —:)'/-—2(p+!)
The equations Re detD(n) =0,

ri, ——Tii[x +rir( lm'/4 —m)5,

r„=iss[x —n+i(m, l'/4m. '))

provide three relations among the four parameters n,

p and the coupling constants which, if p is speciled to
have its experimental value of" about 8, may allow the
determination of the other three. If the self-consistent

"We neglect a term j det1V/Aa' which is small if the width
is small.

"The co mass is, of course, not known with complete accuracy.
A further blurring is introduced in that we neglect the difference
between the ~+ and wo mass; this makes determination of the p
mass uncertain by perhaps 4%, i.e., 30 MeV.

which expresses the fact that if both channels are open
to decay of the p, the total width is the sum of the
partial widths for each channel.

Evidently, if o.(x&, the lowest threshold, then

Im[detD(n)) =0 so that I'= 0, as it should be. For self-

consistency t,, must agree, near x=e, with the. matrix

T;, which represents the diagrams of Figs. 2 (a) through

2(d). We find [see Eqs. (3.1) and (3.2) of the next
section) for the matrix T,,= (p,p,)"'T;;,
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pleasant, and we find the following results:

p

(~ 2& (x 1 I/2

& (*) =I —

II (2 + —1)
&4 )&*

2 x+2n —1 x+n —1
&( — + — ln- —;(3.3)

x—1 (x-1)' r2

Fio. 3. The two basic
vertex graphs for the ~~p
and mp~ vertices.

+pm'co+pm x
3L (x)12 fL (x) 21 (qq')'"

Q8 42r

C+1
X 2C+ (1—C') ln (3.4)c—1

where
p„; (t3 4)'-

q
= (x—1)"', q'= x+ —2 (P+-,')

—1I2

Next
C= —(x+2~ P4—)!'(—qq')

mechanism is correct, a solution for o. and the coupling
constants should exist that gives more or less correct
p-meson parameters.

It is clear that the residues should satisfy

1 yp
' q' D+1

&L(x)22——— —',bo» -+l1o—oq"
I

16 4&r x'" D 1 —)
where

(3.5)

det~= ~&1~22 ~»~21 (2.22)

That they do so is easily verified. By definition of o, ,
Re detD(n) =0, and hence Re detD(n) =0. Then, still
assuming the width is small, detr is proportional to
Re detD(n) and also vanishes.

The other condition on the residues, namely, that
r» ——r», is not necessarily guaranteed by our formalism
because we have not used one of the symmetric forms.
The four residues, therefore, have only one relation
between them in this approximation, instead of two.
There are therefore three different quantities to be
computed (in addition to n) instead of two. We may
take these to be yp '/4&r, yp „'/4&r, and r12/(r»r22)'",
say. The first two are the desired coupling constants,
and the last, by its deviation from unity, measures the
amount of deviation from symmetry of the t matrix.

and
22 ' p»»&a&2&(ql+q2) p&

(y„„/m )5, o„1,,„q„P&„

(3 1)

(3.2)

where n, P, i are isotopic indices. These expressions serve
to de6ne y, and y, „.We are interested in the expres-
sion for the J= 1, T= 1 projection of the diagrams of
Fig. 1(a) to (d), using these interactions. The calcula-
tion of these projections is straightforward. though un-

III. THE INPUT FORCES

In this section we shall write down the expressions
for tL which result from the input diagrams of Figs. 1(a)
to (d). The p&ror and porc' vertices shown in Fig. 3 will

be described in terms of the effective interactions

and

and finally

&0=0 —»o,
ho= &1 Dr22+D r22&

ao= q'2+1,

a1=q'2+4x 4(n 1~)2/x,— —
a2 ——3q'2+ 8n+ 1,

03= —
g

2

The threshold for the mw channel is x~=1. The
threshold for the &ro& channel is x2 ——(p'~2+ —,')'.

Experimentally, the p mass is so high that the decay
&u

—+ p+2r cannot occur. In our self-consistent calcula-
tion, however, we must consider the possibility of other
p masses. If a trial p mass is suKciently low, we can
have 1o~ p+&r. The possibility of this decay corre-
sponds to the appearance of a singularity in the Feyn-
man propagator for the exchanged p of Fig. 1(b, c, or d)
in the physical region. This singularity can only be
removed by a proper treatment of the instability of the
~ meson for decay into p and ~, and requires the intro-
duction of the decay channel or+&a —+2r+&r+p. The
same difhculty crops up in the analysis of the m-p scatter-
ing which will be discussed in Sec. VI; we shall therefore
content ourselves here with observing that the intro-
duction of this additional channel is beyond the scope of
our calculation. %e must therefore restrict ourselves to
regions of p mass above the threshoM for this decay.
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IV. RESULTS

In the uncoupled problem, where the +co channel was
neglected, the two conditions,

and
ReD(n) =0 (4 1)

1v ' (~—1)"'

3 4n- n

1V (cr)
(4.2)

(d/Ch) ReD(x) ~, .
gave two relations between p, and m, /m . These two
relations are conveniently represented as two curves
of G=y, '/4~ vs m, in MeV, the intersection of which
gives the self-consistent values. The curves are shown
in Fig. 4.

The coupled problem, involving as it does self-con-
sistency among three numbers, G, m„and H:y, „'/47r, —
is somewhat more difficult to represent. To begin with,
in analogy to the uncoupled case, one may plot for each
fixed input H the relation between the input G and m,
which makes Re detD(rr) =0. These are also shown in
Fig. 4. They may be thought of as showing the self-
consistent value of m„as a function of the input G and
H. We see that the eA ect of the existence of the mm

channel is attractive for masses greater than about
665 MeV, and repulsive for smaller masses. This is clear
because for a given mass the G and, hence, the attraction
due to the p exchange, necessary for self-consistency,
grows with growing H for smaller masses and decreases
with growing H for larger masses.

' H the integral equations for X and D were solved exactly, we
could eliminate the upper restriction here, but not the lower one.

This threshold is
(~'"-l)',

so we must assume rr) (P'"—rs)'. Since experimentally
P = 7.95, this says we can only work for values of n& 5.4.
If e comes out anywhere near its experimental value of
about 7.3, this limitation does not cause any difFiculty.

These exchange graphs all produce "left-hand cuts"
in the partial-wave amplitudes t~. The cut coming from
Fig. 1(a) is —~&x&1—n. From Fig. 1(d) there is a
short. segment for (P—ts)'/n(@&2'+-', —n. We are
interested in evaluating t~ at x= n to obtain the coupling
constants: The cut thus exists if (P—sr)'&n 'and if
2n &2P+-'„ i.e., if P—

4 (n &P+ sr. In this region tr, (n) is
complex and the residues are therefore complex. This
means our approximation predicts complex coupling
constants if n)P —sr. We must therefore restrict our-
selves to n&P —4=7.7.

Altogether, then, we can see that the simple form
of the 1V/D approximation requires that rr is in the
range between 5.4 and 7.7. Otherwise, we get an
inconsistency. "

The calculation from this point on requires the
numerical integration of Eq. (2.13) using the (tL,),, given
in Eqs. (3.3) to (3.5). The computations were carried
out on the IBM 704 at the University of California at
Berkeley. The results are described in the next section.

1.0

0.75—

0.50—
H=O

H=O. ]

0.25— H =0,5

H=].0

I
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0

200

To find the three self-consistent values of G, H, and
m„we draw graphs as follows. For a given input mass
m„ there is one relation between the input G and input
H in order that Re detD=O at this mass. In addition,
there is another relation between the input G and input
H coming from the requirement that the output G, as
computed from r» equal the input G. Finally, we get
a third relation by requiring that the output H, as
computed from r2~ agree with the input H. Then for
each m„we have three G vs H curves which may be
termed the det=0 curve, the G=G curve, and the H=H
curve. The value of m„at which these three curves
coincide at a point is the self-consistent m„and the
coordinates of the intersection point in the GH plane
are the self-consistent G and H. I

Three of these G vs H graphs are shown in Figs. 5, 6,
and 7, for m, =654, 659, and 700 MeV.

0.50—

0.25—

0
0

I I I

0.2 0.4- 0.6
H

I

0.8 1.0

FIG. 5. The three consistency conditions for m, =654 MeV.
They cannot be simultaneously satisned for this mass.

I I l I I

600 800
m&(MeV)

Fro. 4. The relation between G=y, '/4s- and m, such that
m, (input)=ra, (output) is graphed for several H values (solicl
lines). The dashed line represents the condition G (input) =G (out-
put) for H=O. Self-consistency for the single-channel problem
(H=O) is achieved for G=0.6, ra, =350 MeV.
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i I

m&= 659 MeV

0.50— DET= 0

0.25—

0
0

l

0.2 0.4 0.6
H

0.8
I

1.0

Fxo. 6. The three consistency conditions for m, =659 MeV.
Consistency is achieved at G=0.48, II=0.14.

= 700 MeV

0.'50—

0.25—

0
0

t t I

0.2 . 0.4 0.6 0,8
H

G=G

1.0

FIG. 7. The consistency conditions for mp 700 MeV. There
is no H=H curve since the predictions for the output H are all
negative.

To the accuracy of the numerical calculation, self-
consistency occurs at m, =659 MeV. The corresponding
values of G and H are G=0.48, H =0.14.

The remaining number of interest has to do with the
asymmetry. The self-consistent values are computed
from the diagonal elements of t;; and from detD. If we
had been able to use a symmetrized formalism, the
off-diagonal elements would then be determined un-
ambiguously. The lack of symmetry in our approxima-
tion may then be looked on as measured by the deviation
of the off-diagonal residues from (GH)'", which they
should equal. (Of course, the fact that the product of
the o6'-diagonal element equals GH is guaranteed, as
shown in Sec. II.) We find for the self-consistent param-
eters that the ratios of the two off-diagonal elements to
(GH)'~' are 1.7 and 1/1.7 instead of 1 and 1. If we had
been willing to use as an input not (tL) ts and (tr.)st but
had altered these to (tr, )ts X1.3 and (tl, )sr/1. 3, we would
have obtained a self-consistent solution with the same
parameters as above and with the same ratio for the
off-diagonal elements.

These self-consistent numbers were computed with
the subtraction point at x= 1—o,, at the beginning of the

left-hand cut produced by the exchange of a p meson
between two pions. The next cut is due to the exchange-
of z. and co, and it therefore begins at 1—(P+ z)'
In principle, the argument that the subtraction point
should be chosen to give approximate crossing sym-
metry merely says that the subtraction point should be
anywhere between 1—n and —10. We have therefore
also carried out the self-consistent calculations with
variable subtraction points. As the subtraction point is
varied between —3 and —10, the derived mass changes
by only a few percent, and G varies between 0.55 for —3
and 0.31 for —10. H varies between 0.12 and 0.19 over
the same interval. The calculation is suKciently insensi-
tive to where the subtraction point is chosen.

Because of the divergence of the D22 integral, as
remarked earlier, it was necessary to introduce a cutoff.
The cutoff is presumably a crude representation of the
natural cutoff provided by the Regge behavior of com-
posite states. The numbers quoted above are for a cutoff
at @=35,or about two nucleon masses. If this is varied
to @=200, or around 5 nucleon masses, there is very
little (a few percent) change in m„G,and H. The results
are insensitive to the cutoff, so that its use seems
justified.

One may ask how important are the contributions
to the D;, integrals from high energies and how much
channels with high-energy thresholds are likely to affect
the p parameters. To test this, we have repeated the
calculation imposing arbitrarily a cutoff of about two
nucleon masses on all the integrals. We then obtain
m, = 740 Mev, G=0.87, H=0.5. Thus the high energies
are important, and any physical effect that tends to
reduce Ã», E», X» at high energies acts to raise sl'p

toward the correct experimental value.

V. S WAVES

The treatment of the p as a particle whose exchange
defines a force constitutes an approximation to the force
defined by the exchange of a general 2-pion system in
the J= 1, T= 1 state. Since the resonance is strong and
well-defined, the approximation is expected to be a good
one. One may inquire about the effect on our self-
consistency calculation of strong pion-pion interaction
in the T=O and T=2 states. These are associated with
even J because the pions are bosons. The p exchange
produces an attractive force in the T=O states, which
is strongest for J=0, and produces a weaker, repulsive
force in the T=2 states. Furthermore, experimental
evidence for strong interactions in the J=0, T=0 state
of two pions has been obtained by several groups. "

We assume that there is an actual resonance, say 0-,

with J=O, T=O and even G parity. Then this "particle"
contributes to the interaction force between two pions
in a J= 1, T= 1 state, as well as in the J=0, T=0 state.

'~N. E. Booth, A. Abashian, and K. M. Crowe, Phys. Rev.
Letters 7, 35 (1961);B. C. Barish, R. J. Kurz, D. MacManigal,
V. Perez-Mendez, and J. Solomon, ibid 6, 297 (1961.); J. Kirz,
J. Schwartz, and R. Tripp, Phys. Rev. 126, 763 (1962).
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Conversely, the p contributes an attractive force to the
J=O, T=O state as well as to the J=1, T=1 state.
This is illustrated in Fig. 8(a). There is thus a "double
self-consistency" problem for these two "particles. "

This problem is straightforward to set up, if we

neglect the m-co channel. Our primary conclusion will be
that the S-wave considerations do rot affect the calcula-
tion of the p parameters; then this qualitative result
should not be affected by the presence or absence of the
+co channel. There are then two separate one-dimen-
sional problems, one for each state. We can write

to Ep—/—Do—, fg —1V——g/Dg (5 1)

for each of the scattering amplitudes to and tj for the
J=O, T=O and J=1, T=1 channels, with the usual
relation between N and D. As input we choose
go ~1,

00 g& ~I,u~ where ~zoo and 11," are derived
from the diagrams of Fig. 8(a), projected into the 00
and 11 states, respectively.

Both Do and D~, computed from this choice of lV,
will require subtractions, and we follow the philosophy
described in the previous section.

In previous treatments of m.~ interactions, a point
interaction corresponding to Fig. 8(b) has been intro-
duced, with an interaction strength denoted by X. Pre-
sumably this P is really just a phenomenological way
of describing the remaining forces not included in the
simple exchange diagrams. Insofar as the self-consis-
tency scheme is valid, the X should be relatively un-

important and could be ignored.
The input, from the diagrams of Fig. 8(a), is the

following:

v, l t'x 1l 't' — 2x+&—1 x+&—1)—1+
E4 )&x) x—1 n

1 f' px —1~'~'t 1 x+8—1y
ln /; (5.2)

44m. k x i' kx —1 5

FIo. 8. Input graphs for the S-wave problem.

support itself in a self-consistent manner. We shall not
consider the S-wave problem further here.

VI. THE a PROBLEM

If the p is a self-generating particle, as has been
assumed everywhere above, which is strongly influenced

by the presence of the inelastic ~~ channel with a
threshold near the p mass, then in reverse one might
expect the co to be a self-generating particle strongly
inQuenced by the xp channel with threshold near the
co mass.

The low-mass systems in which the co will appear as a
virtual state are 3x and xp. One might try, in accord
with the idea of the importance of two-particle states,
to keep just m p as a beginning. The force between m and p
then would come from the exchange of a x or an ~, as
shown in Fig. 9(a). Here, however, we run into the

difhculty first mentioned in Sec. III. Because the p is
unstable for the decay into m+m. , this graph is singular
in the physical region unless the unstable p is described
more correctly. We must put in the physically possible

2 (x 1 1/2

2x n —1

2 x+2n —1 x+n —1
+ ln

x—1 (x—1)' n

2 x+26—1 x+5—1-
+ ln-

x-1 (x—1)'
(5.3)

Here 8=m, '/4m ', and f is an effective coupling con-
stant for the 0-~x vertex.

The numerical solution of this coupled problem shows
that the inhuence of the hypothetical S-wave resonance
on the P wave is very small and the resonance does not

(b)

FIG. 9. Input graphs for the co self-consistency problem.
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decay, and hence must include the amplitude ir+ p
—~ 3ir,

as shown in Fig. 9(b).
The problem, therefore, is necessarily two channel in

this formulation. It appears to be possible to take into
account the p decay consistently and then to reduce the
problem to an equivalent one-channel formulation.
Calculations along these lines are being carried out.

VII. CONCLUSIONS

In conclusion, the following points may be empha-
sized. First of all, a self-consistent solution does exist.
This result is not trivial. If our model were not a reason-
able approximation to reality, there would be no reason
to anticipate that self-consistency among three separate
quantities would occur at all. No adjustable parameters
were introduced into the theory to facilitate this self-

consistency. Secondly, the elTect of the ~ channel is very
large. The results for the p mass and width are highly
sensitive to yp „. It seems clear, as Blankenbecler
already has suggested, that any calculation of the p
meson that ignores the m.co channel cannot hope for
success. Thirdly, since fairly high energies play a non-

negligible role in the calculation, as noted in Sec. IV, the
inclusion of additional channels may be needed for a
truly close agreement with experiment.

The most recent experimental evidence" indicates

'0 J. Button, G. Kalbfleisch, G. R. Lynch, B. C. Maglic, A. H.
Rosenfeld, and L. M. Stevenson, Phys. Rev. 126, 1858 (1962),

m, = 767 MeV, and a full width I"= 110 ihleV for the
decay p~ 2m. Then

About y, '/4ir, less is known; from the upper limit"
of 24 MeV for the full width of co —+ 3m. , one can con-
clude" y, '/4ir & 1.All these numbers are in acceptable
agreement with the self-consistent values of mp 659
MeV, y, , '/4ir=0. 3 to 0.6, y, '/4ir=0. 1 to 0.2. Thus,
our calculation yields the prediction that the co width
is several MeV.

In appraising the accuracy of our prediction of the
p-meson mass, we must not overlook the approximate
nature of the method, the remark in footnote 17, and
the asymmetry of the t matrix which presumably rejects
in some way the errors of the calculation.

One of us (F. Z.) is indebted to the hospitality of the
Lawrence Radiation Laboratory, Berkeley, where a
major portion of this work was carried out.

These figures are essentially in agreement with m, =750 MeV,
I'= 100 MeV, obtained by A. Anderson, Vo X.Bang, P. G. Burke,
D. D. Carmony, and N. Schwartz, Phys. Rev. Letters 6, 365
(1961);D. Stonehill, C. Baltay, H. Courant, W. Fickinger, E. C.
I'owler, H. Kraybill, J. Sandweiss, J. Sanford, and H. Taft, ibid.
6, 624 (1961);A. R. Erwin, R. March, W. D. Walker, and E.West,
ibid 6, 628 (19.61)."L. M. Stevenson, L. W. Alvarez, B. C. Maglic, and A. H,
Rosenfeld, Phys. Rev. 125, 687 (1962).

"M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev,
Letters 8, 261 (1962).


