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Energy Bands of Alkali Metals. I. Calculated Bands
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The results of energy band calculations for all of the alkali metals Li, Na, K, Rb, and Cs, obtained using
the quantum defect method and the Green’s function method, are reported for points of low symmetry
within the Brillouin zone as well as for the usual points of high symmetry. Definite trends in the band
structure are revealed through the alkali metal series and as a function of lattice constant. The Fermi
surfaces of Li and Cs are the most distorted by bulges in the [110] directions, while those of Na and XK are
nearly spherical; the corresponding gaps (N;—N71) at equilibrium at 0°K are (in rydbergs): Li, +0.209;
Na, 4-0.018; K, —0.037; Rb, —0.063; Cs, —0.088. Except for Na the gaps and distortion increase signifi-
cantly in magnitude with decreasing lattice constant. However the Fermi surface of Li is found not to
contact the zone face even under substantial pressure, while contact occurs for Cs at a slight compres-
sion. Excited bands are also given; there is a pronounced trend for d states to fall increasingly lower relative
to s, p, and f states in the sequence Li to Cs, and for p states to rise in this sequence relative to s and f
states. Detailed comparisons are given with calculations by Callaway, Brooks, Schlosser, Allen, and others.
These comparisons support the view that the significant features of these band structures are not very
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sensitive to uncertainties in the crystal potential.

I. INTRODUCTION

HE energy band structures of the alkali metals
have been the object of many theoretical in-
vestigations! since the pioneering studies of Wigner and
Seitz,? because of the relative simplicity of these mono-
valent metals. Much of this work has been concerned
primarily with cohesive properties and has been based
upon an approximation introduced by Wigner and Seitz
in which the polyhedral atomic cell is replaced in the
calculations by a sphere of equal volume. The bands
calculated in this way are accordingly spherical. In
most other work full account has been taken of the
correct shape of the cell, but calculations were attempted
only for propagation vectors at points of high symmetry
in the Brillouin zone.

The present investigation was undertaken in order to
extend the calculations taking full account of the correct
crystal structure to points of low symmetry within the
Brillouin zone and thereby to determine directly the
shape of the Fermi surface. Using more reliable in-
terpolation schemes than those fitted only to calculated
values at points of high symmetry, we wished to obtain
values for the various effective masses and other
parameters of the bands, which might be compared with
experiment. We desired particularly to make our study
for all of the alkali metals using the same approxima-
tions for each, so that trends in the band structure
through the alkali metal series might be revealed clearly.
While the existence of definite trends has been antici-
pated by Cohen and Heine,® these have not been made
evident by the earlier calculations.

In this paper we present the direct results of these

1 An excellent review of all but very recent work has been given
by J. Callaway, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 99.
(12 %}Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509

934).

3 M. H. Cohen and V. Heine, in Advances in Physics, edited by
N. Fs Mott (Taylor and Francis, Ltd., London, 1958), Vol. 7,
p. 395.
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calculations for the energy bands of the five alkali
metals in the body-centered cubic lattice structure. We
discuss here the trends that are thereby revealed and
compare our results with those of calculations by other
workers. In a second paper* (hereafter referred to as II)
we introduce an interpolation procedure suitable for a
quantitative description of the nonspherical distortion
of the bands near the Fermi surface, and we use this to
calculate the Fermi energy, the various effective masses,
and other parameters of the Fermi surface. A discussion
of the comparison between our results and experiment
is also reserved for II.

The calculations were done for three values of the
lattice constant for each metal, in order to determine
how the bands change as the lattice constant is varied.
So extensive a series of calculations was made feasible by
use of the Green’s function method of Kohn and
Rostoker® and by the prior preparation of tables of the
necessary structure constants. This method, used in the
manner described recently by Ham and Segall,® is a very
convenient one for calculation and provides very rapid
convergence for both energy values and wave functions.”

In order to achieve our goal of a systematic calcula-
tion for all of the alkali metals using the same approxi-

4 F.S. Ham (to be published).

5 W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).

8 F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).

" Most of the calculations were carried out on an IBM 704
digital computer, and tables of the structure constants were ac-
cordingly prepared in punched card form. However, convergence
of the Green’s function method is sufficiently rapid (see Appendix)
that calculation with a desk computer is also quite feasible. An
abbreviated tabulation suitable for such work has been prepared
in printed form for the body- and face-centered cubic lattices and
is available from the authors: B. Segall and F. S. Ham, General
Electric Research Laboratory Report No. 61-RL-2876G (un-
published). A copy of this report has been deposited as Document
No. 7236 with the ADI Auxiliary Publications Project, Photo-
duplication Service, Library of Congress, Washington 25, D. C.
A copy may be secured by citing the Document number and by
remitting $6.25 for photoprints or $2.50 for 35 mm microfilms. Ad-
vance payment is required. Make checks or money orders payable
to: Chief, Photoduplication Service, Library of Congress.
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mations for each, we have used the quantum defect
method®? to avoid having to construct explicit crystal
potentials. This method, which was devised by Brooks,°
starting from a less satisfactory procedure suggested by
Van Vleck,"! enables us to obtain from spectroscopic
data the logarithmic derivatives of radial wave func-
tions in the approximate crystal potential used by
Wigner and Seitz,? at a point outside the ion core. This
procedure is applicable to all of the alkali metals, and
it takes accurate account of exchange, correlation, and
relativistic effects in the interaction of a valence electron
with electrons in the core, as Brooks and Ham have
shown.? The quantum defect method was the basis of
Brooks’ systematic investigation using the Wigner-Seitz
spherical approximation of the cohesive properties of the
alkali metals.’?-1? Use of this method in the present work
thus provides a direct extension of Brooks’ work to a
determination of the Fermi surface shape and of the
energies of excited states. It avoids the uncertainties in
the construction of a suitable potential which Callaway
and his co-workers have faced in their extensive work!
with the orthogonalized plane wave (OPW) method on
the states of the alkali metals at symmetry points.
While the quantum defect method has the disadvantage
that it cannot be modified easily to correspond to a
more nearly self-consistent potential, no calculation for
an alkali metal using an explicit potential has yet im-
proved significantly in this respect on the Wigner-Seitz
potential. Improvements in self-consistency and a better
treatment of many-electron aspects of the mutual
interaction of the valence electrons will make changes in
the parameters calculated for a given metal, but we
believe that these will not change the significant features
of the bands and the trends in the alkali series which the
present calculations reveal.

While this work has been in progress, results have
appeared from calculations by Schlosser' on lithium and
sodium and Callaway™ on lithium which also comprise
low symmetry points within the zone. As these authors
have noted from preliminary reports of our results,'® the
agreement between their results and ours is very close.
Since their work was based on the Seitz potential!® for
lithium and the Prokofjew potential'? for sodium, both
of which reproduce the free atom spectrum quite closely,
this agreement with the quantum defect method is to

8 F. S. Ham, in Solid Stale Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 127.

9 H. Brooks and F. S. Ham, Phys. Rev. 112, 344 (1958).

10 H. Brooks, Phys. Rev. 91, 1027 (1953).

1T, S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950).

12 H. Brooks, Suppl. Nuovo cimento, 7, 165 (1958).

18 H. Schlosser, Ph.D. thesis, Carnegie Institute of Technology,
Pittsburgh, Pennsylvania, 1960 (unpublished).

14 J, Callaway, Phys. Rev. 124, 1824 (1961).

15 F. S. Ham, in The Fermi Surface, edited by W. A. Harrison
and M. B. Webb (John Wiley & Sons, Inc., New York, 1960),

9

p. 9.
18 F, Seitz, Phys. Rev. 47, 400 (1935). This potential was
published incorrectly in Seitz’s paper; the correct potential has
been published by W. Kohn and N. Rostoker in reference 5.
17 W. Prokofjew, Z. Physik 58, 255 (1929).
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be expected if, as seems to be true, the energies of states
in the conduction band are not unduly sensitive to the
particular way in which the ion potential in one cell is
made to join to that in neighboring cells.

This paper is arranged as follows. In Sec. II the choice
of crystal potential is discussed, and a prescription is
given for obtaining the precise form of extrapolation of
the quantum defect parameters used in our calculations.
In Sec. III results of the energy band calculations are
given; however, instead of listing the vast number of
calculated energy values at all the points in k-space we
have considered for all the metals, we have summarized
many of these results in graphical form. Together with
the tables provided, these graphs give as accurate a
summary of these results as is necessary for making
significant comparison either with the results of other
calculations or with experiment. The bands calculated
for each metal at various lattice constants are shown, as
are curves showing the variation as a function of lattice
constant of the energy of the most important states at
symmetry points. A table is given of excited states at
symmetry points for each metal.

In Sec. IV we introduce a spherical interpolation
procedure which provides an excellent fit for the low-
energy region of the conduction band and usually a very
good fit to the [100] and [1117] axes up to somewhat
above the Fermi energy. This procedure is comparable
with the spherical approximation of Wigner and Seitz
and, of course, fails to describe the bending down of the
bands in the [110] direction as the zone face is ap-
proached. An interpolation procedure suitable to de-
scribe this distortion is reserved for II. A table is given
of the parameters needed in this spherical interpolation
for all of the calculated bands.

Section V presents a discussion of our results and
compares them with those of other calculations, the
comparison with experiment being given in II. We first
discuss the trends revealed by our calculations and com-
pare them with Cohen and Heine’s proposals.® In
comparing our results with other calculations we have
included in our tables the results of other authors for
which comparison is most significant. These include the
energies at symmetry points computed by Callaway and
others, and the parameters of the spherical approxima-
tion computed by Brooks' using the quantum defect
method.

In an Appendix, a few examples are given from the
calculations to illustrate the excellent convergence of
the Green’s function method in our use of it for these
metals.

II. CRYSTAL POTENTIAL

The present calculations have been made strictly
within the framework of the independent electron
model. We have followed Wigner and Seitz? in using for
the one-electron crystal potential of a monovalent metal
a potential which in each cell is the same as that of the
ion at the center of the cell.® In the cell corners, however,
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outside the sphere inscribed in the cell, we replace the
ion potential by a constant V, approximately equal to
its average value in this region in order to achieve a
“muffin-tin’’ form of potential suitable for the use of the
Green’s function method.® ¢ Use of the free ion potential
within the inscribed sphere permits us to obtain the
s, p, d, f, . . . radial functions and their derivatives
at the inscribed sphere radius 7; for arbitrary energy,
from the quantum defect method and spectroscopic
data.?? In this manner we avoid explicit construction of
potentials for the ion cores, a particularly difficult and
uncertain task for the heavier metals because of the
importance of exchange.

The Wigner-Seitz potential is, of course, not fully self-
‘consistent and takes only very rough account of effects
of exchange and correlation among the conduction
electrons. We have nevertheless felt it was of interest to
make calculations for all of the alkali metals with this
potential since use of the quantum defect method
permits them all to be treated with the same approxima-
tions and should therefore best show up trends in the
band structure through the alkali series. A serious at-
tempt to improve the self-consistency of these po-
tentials would, of course, be of great interest, but this
would necessitate abandoning the quantum defect
method and would make the calculations for the whole
series of the metals a very much more difficult task. As
for the many-particle aspects of the interaction among
conduction electrons or electron-phonon interactions,
there is still no agreement on their precise effect on the
band structure at densities of actual metals. Since these
affect the experimentally measured band structure
parameters in different ways (as, for example, the
effective mass measured in different types of experi-
ments) it appears best at this stage of our understanding
to make the band calculations for an independent elec-
tron model and subsequently to estimate corrections due
to the many-particle effects. Exchange and correlation
effects in the interaction between the valence and core
electrons are, on the other hand, taken account of
automatically by the quantum defect method.?

Brooks™ has had considerable success accounting for
the cohesive properties of the alkali metals on the basis
of the quantum defect method, although the theoretical
cohesive energies of the heavier metals were sub-
stantially low, and the lattice constants 10 to 159, too
large. These quantities are rather more sensitive to
changes in the potential than are the energies of indi-
vidual states, so that his results lend support to our
belief that an improved potential will not greatly alter
the band structure we have found for each metal and in
particular will not change the trends we have found in
the alkali series.

One weakness of the Wigner-Seitz potential, which
has been noted by Cohen and Heine,? is that the effective
correlation-exchange hole is fixed on the cell instead of
following the electron. As a consequence, the Wigner-
Seitz potential should be too large in the outer part of
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the cell, and it should lead to too high an energy for
states with wave functions concentrated in this region.
Cohen and Heine have estimated that a better potential
might lower a p state relative to an s state by roughly
one electron volt. Such a correction would be of par-
ticular interest, as we shall see, in connection with the
relative position of the p state Vy and the “‘s state’” IV,
at the center of the zone face. However, there may be an
offsetting effect in that Ny has also a component of d
symmetry which is especially important for the heavier
alkali metals.

In using the quantum defect method in our actual
calculations, we have taken the necessary expressions
for the extrapolated parameter # from the tables given
by Brooks and Ham? (Appendix C of their paper). The
polarization correction for L=0 and 1 was evaluated
from Eq. (C1) and Table IIT of their paper for a cutoff
radius 7, equal to the inscribed sphere radius 7; for the
particular lattice constant being used. This expression
was subtracted from that in their Table II, and the
resulting expression was used to evaluate the radial
functions at 7; and their derivatives, according to Eq.
(B3) of their paper, from available tables for the calcula-
tion of the Coulomb functions.!® For L=2, Table VI of
Brooks and Ham lists expressions for the extrapolation
of 5, including a polarization correction, for a single
value of the cutoff radius for each metal. This value of
the cutoff radius is appropriate to that calculation, of
the three or more we have done for each metal at differ-
ent values of the lattice constant, for which the lattice
constant used is closest to the experimental equilibrium
value. Of the several expressions listed in Brooks and
Ham’s Table VI for each metal for the low-energy
extrapolation (1/#*>0.14 for K, for example), we have
used that one they labeled ‘“reasonable.” For other
choices of the lattice constant, we have obtained a
similar extrapolation for L=2 by following the pro-
cedure outlined by Brooks and Ham in obtaining
Table VI from Table V. For L> 3 we have used n=0.

As Brooks and Ham noted,? there is some uncertainty
in the 5 extrapolation, particularly for L=2 of K, Rb,
and Cs. For this reason they gave several possible
extrapolations for the low-energy range of the latter as
bounds on #’s possible behavior. We have tested the
sensitivity of our results to this uncertainty by making
additional calculations for states in the low-energy
range which have a large d component, using the curve
Brooks and Ham labeled “upper bound.” In no case did
this change the energy of the state by more than 0.005
Ry, even for states such as H,, with only d character.
This is an insignificant change when compared with the
interesting features of the calculated curves.

There is considerable uncertainty in all extrapolations
of 7 very far to positive energies.®® We have done
calculations for some excited bands, but because of the

18 F, S. Ham, Technical Report No. 204, Cruft Laboratory,
Harvard University, Cambridge, Massachusetts, 1955 (un-
published).
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uncertainty we attach no great significance to calcula-
tions for energy greater than about +0.3 to +40.5
rydberg. Fortunately, for the heavier metals, for which
the extrapolation is least certain, the large lattice con-
stant causes quite a number of excited states of interest
to lie in the range —0.2 to +0.2 Ry. There is, of course,
least uncertainty in the quantum defect parameters in
the range —0.2 to 0.0, where the spectroscopic levels lie.

As Brooks and Ham have noted,® our expressions
for the quantum defect parameters ignore spin-orbit
splitting and were obtained from a weighted average of
the spectral doublets. Explicit inclusion of the spin-
orbit effects would have a negligible effect on our results
for the conduction band up to the Fermi energy. They
would, however, lead to a splitting of excited states
with orbital degeneracy such as Hy; and Py.

Once values were obtained from the quantum defect
method of the radial functions and their derivatives at
the inscribed sphere radius, evaluation of the energy
eigenvalues for the states of different k was carried out
with the Green’s function method of Kohn and
Rostoker,’ used in the manner described by Ham and
Segall.® Calculations were done for states along the
[1007], [110], and [111] axes within the Brillouin zone
as well as at symmetry points at its center and on its
surface. For the constant value V of the ‘“‘muffin-tin”
form of potential in the cell corners, we used the average
of the Coulomb potential —2/r over the spherical shell
between the inscribed sphere and the equivalent sphere.

The values which we have used for the lattice con-
stant of the metals in making the calculations were
chosen such that the inscribed sphere radius 7; equaled
a value of 22/8 (in atomic units; the unit of length is the
first Bohr radius of hydrogen) for one of the values of 2
at which tables were available for the calculation of the
Coulomb functions used in the quantum defect method.!®
Of the tabulated values, that one was chosen for each
metal which gave the lattice constant @ closest to the
experimental value at equilibrium. At least two other
values were then chosen in addition, one larger and one
smaller. The values which we use for ao, the equilibrium
lattice constants at 0°K, are those given by Barrett!®
for 5°K.

III. RESULTS: CALCULATED ENERGY BANDS

Some of the results of the band energy calculations
are shown graphically in Figs. 1 to 8. In these figures the
calculated points are indicated by triangles, squares,
and circles on the [100], [111], and [110] axes, re-
spectively. The curves shown have been drawn to
interpolate between calculated points on the same axis.

The states at the symmetry points and along the axes
in these figures for the body-centered cubic structure
have been labeled according to the representation of the
group of the k vector to which they belong, the notation

1 C. S. Barrett, Acta Cryst. 9, 671 (1956). For lithium we have

used Barrett’s value of the lattice constant for 78°K, since he gives
no value at 5°K for this one metal.
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being that of Bouckaert, Smoluchowski, and Wigner.?
To conserve space we have plotted all three axes against
the same abscissa (ka/2w), the magnitude of k in the
reduced Brillouin zone in nondimensional units. Thus,
N denotes the points at the center of the 12 equivalent
faces of the zone, at the end of the [110] axis, and P
and H denote the zone corners in the [1117] and [100]
directions, respectively.

In excited bands above the conduction band we have
calculated energies at symmetry points and at selected
points along the axes, as indicated in the figures. In
drawing the figures we have sometimes extended the
curves beyond the calculated points to show schemati-
cally the way in which the states at N, H, and P are
connected to those at I'. When no points were calculated
along the axis in a given band, the corresponding curve

TaBLE I. Spherical harmonic classification of states.

State Spherical harmonic type
Ty, Hy R A
T2, Hig, Tosry, Hos d, g ...
T'is, His 2
Tgs, Hor fs e
Py S 08 .-
P, ?, d’ fa .
Py d, g ...
P f, 8. ..
N1 S, d, & - - .
Ny, Ny, Ny F23
N3, N3, Ny d,g, ...
Ny frow o
Ay Ay, 2y S, P, a f. ..
Agy Agry 2o d; f; I
As, Z3, g, A 0, d, 1 & .-

21, P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys.
Rev. 50, 58 (1936).
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has usually been omitted entirely from the figure. The
states at the symmetry points connected by these
omitted bands can be found readily from the ‘“‘com-
patibility relations” of Bouckaert, Smoluchowski, and
Wigner.?

In Table I are listed, for reference, the types of
spherical harmonics which are allowed by symmetry in
the expansions of the wave functions of these states,
when expanded about the ion at the center of the
cell.
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Fic. 3. Calculated energy bands for potassium for lattice
constant of 10.05 a.u.
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F16. 4. Calculated energy bands for rubidium for lattice
constant of 10.74 a.u.

Figures 1 to 5 give the calculated bands at the near-
equilibrium value of the lattice constant for each metal.
Thus, these curves show very nearly quantitatively
what our calculations lead us to expect for the bands at
equilibrium. Values for the energies and band gaps at
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401~ -
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09 ) o4 %% )
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Fic. 5. Calculated energy bands for cesium for lattice
constant of 11.46 a.u.

10



ENERGY BANDS
tol T T T —
CESIUM Hsd
0=10.05 a.u,
ol lHIZ UP[ |
]
&
w
@
e -0.4 _
x N|’
> -02 /NEZ’—“ Py
e b |
wi
E N\Q HI2 \
-03 N, _
-04 .
.
~0.5! 1 1 | [
0 0.2 04 0.6 08 10

(ko/27)

F1c. 6. Calculated energy bands for cesium for lattice
constant of 10.05 a.u.

equilibrium have been obtained by plotting our results
versus lattice constant and interpolating.

An interesting feature of the conduction bands at
equilibrium, as judged from Figs. 1 to 5, is that the
surfaces of constant energy remain very nearly spherical.
with increasing energy until they almost touch the zone
faces at V. They then bulge out along the [1107] direc-
tions. But even for lithium (Fig. 1), with an energy gap
at NV that is 3/4 of the width of the band from I'; to Ny,
this distortion is small at the Fermi surface, the radius
of the Fermi surface in the [110] direction being in-

+0.4 T T SN

T2 CESIUM
a=9.05 au,

(RYDBERGS)

ENERGY

0% oz as o8
(ka/27)

F16. 7. Calculated energy bands for cesium for lattice
constant of 9.05 a.u.

(X

or

ALKALI METALS 87

02 T T T

F1c. 8. Calculated
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creased by only some 5% over the radius in the [100]
and [1117] directions. That this distortion can, however,
be much greater is illustrated by Figs. 6 and 7 for
cesium at values of the lattice constant less than at
equilibrium. Here the gap at IV is large relative to the
conduction band width, and in addition the twofold
degenerate state Hi is greatly depressed. Indeed in the
situation represented by Fig. 7 there are occupied
pockets in the [100] corners of the zone in addition to
the greatly warped central portion of the Fermi surface.

In Fig. 8 results for lithium are shown at a lattice
constant nearly 209, smaller than the equilibrium value.

The variation of the energies of the lower states at the
symmetry points as the lattice constant varies is sum-
marized in Figs. 9 to 12. The abscissa in these figures is
the ratio of the lattice constant a to its equilibrium value
ag at 0°K. The circles denote the computed values, and

-0.4\. Cs

(RYDBERGS)

ENERGY

e

.o‘{\n\v—«/ 1 1

08 09 10 Li 12
LATTICE CONSTANT /a9

I16. 9. Energy of ground state (T';) for all the alkali metals as
a function of the ratio of the lattice constant e to its 0°K equi-
librium value @o. [The following values for a, for Li and Cs were
used in plotting Figs. 9 to 12: Li 3.429 A; Cs 5.921 A. These are
~29%, smaller than Barrett’s values.]]
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TaBLE II. Energy values (in rydbergs) of lower states at symmetry
points (as interpolated to lattice constant a, for 0°K).

Metal Li Na K Rb Cs
ay (A) 3.491 4.225 5.225 5.585 6.045
ao (a.u.) 6.597 7.984 9.874 10.555 11.424
I —0.683 —0.610 —0.485 —0.458 —0.419
N, —0.203 —0.284 —0.293 —0.295 —0.296
Ny —0.412 —-0302 —-0.256 —0.232 —0.208
N,—Ny +0.209 +0.018 —0.037 —0.063 —0.088
P, +0.129 -0.073 —0.109 —0.124 —0.117
P, —0.188 —0.160 —0.202 —0.205 —0.216
H, ~—40.47 +0.145 +40.062 +40.034 +40.035
His —0.055 —0.014 —0.053 —0.048 —0.045
Hjy +0.153 —0.023 -—-0.192 —-0.216 —0.250

the curves have been drawn to interpolate smoothly. In
interpolating the values for the ground state I'; in
Fig. 9, we have located the minimum point approxi-
mately by using the result of the Wigner-Seitz spherical
approximation that the minimum occurs when the po-
tential at the equivalent sphere radius 7, equals the
ground-state energy. We have used for V (r;) the con-
stant part Vo of the muffin-tin potential.

The variation of the band gap at NV with lattice con-
stant, and its sign, is seen directly from the difference
between the curves for N; and Ny in Fig. 10.

From Figs. 9 to 12 we obtain by interpolation the
energies of the various states at the lattice constant for
equilibrium at 0°K. These values are tabulated in
Table II.

Energies of higher states at the symmetry points are
listed in Table ITI. These are given for the same lattice
constant for each metal as in Figs. 1 to 5 (near the 0°K
value), since we did not calculate many of these states
for other values of a. We have included in Table IIT all
those states at I', H, N, and P which occur in these
metals at energies below roughly 4+0.3 Ry, and a number

'
e

-0.2

(RYDBERGS)

ENERGY

0.8 Ll
LATTICE CONSTANT a/a9

F16. 10. Energy of the states Ny, Ny for all the alkali metals,
and of the state NV, for cesium, as a function of the ratio of the
lattice constant a to its 0°K equilibrium value a,.
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TasBLE III. Energy values (in rydbergs) of states at symmetry
points (as computed). Previous values obtained by other authors
are listed in parentheses (see also Table V).

Li Na K Rb Cs
e (au.) 6.65 8.11 10.05 10.74 11.46
Tt (1st) —0.681 —0.604 —0.481  —0.455 —0.419
1 (2nd) +1.004 +0.660  +0.569  --0.536
(+1.879)n  (+1.101)>  (-0.835)c (+0.602)d
(40.781)¢
I'is +0.506 +0.513 +0.356  +0.336  +0.326
(+0.617)s  (40.632)!  (+0.699) (+0.269)d
(40.529)b  (+0.465)e
I ~+1.1 +0.510 40.060  +0.022  —0.054
(+1.146)=  (+0.32)b (40.264) (+0.042)4
(+0.118)e
T +0.93 +0.424 —0.004 —0.051 —0.124
(+0.854)= (40.220)° (—0.116)d
(40.046)°
T'ss ~41.1 +0.607 40301 40234  40.181
(+1.156)= (40.289)¢ (+0.114)4
(40.309)¢
Hy +0.455 +0.124 +0.042 40016  +0.031
Hi +0.144 —0.031 —0.190  —0.214 —0.249
His —0.061 —0.025 —0.064 —0.060 —0.048
Hayr +0.867 +0.168  40.121  +0.032
(+1.84)a (40.537)° (40.130)4
(+0.222)e
Hyr +1.88 +1.14 40.635 40522  +0.429
(+1.73) (+0.705)¢ (4+0.204)4
Py +0.114 —0.096 —0.125  —0.137  —0.120
Py +0.743 +0.119  40.070  —0.019
(+1.603)a (40.486)° (+0.098)¢
(40.175)e
Py (1st) —0.192 —0.167 —0.206  —0.207 —0.217
P4 (2nd) +40.785 40220 40182  +0.119
(+1.338)» (40.934)0 (0.485)d
(+0.208)e
Ps +1.77 +1.08 40.610  +0.505  +40.418
(+1.86)a (+0.597)° (+0.354)d
N1 (1st) —0.210 —0.291 —0.294  —0.296 —0.296
N1 (2nd) +0.753 +0.338 +0.166  +0.121  +40.059
(40.871)= (+0.268)° (+0.345)d
(40.105)e
N1 (3rd) +0.759 +0.528  -0.481
(40.627)°
(40.254)0
N (1st) —0.412 —0.308 —0.262  —0.239 —0.211
N1- (2nd) +0.865 40494  +0.400  +0.338
(+1.433)8 (+0.556)° (+0.276)4
(+0.526)e
N2 +0.543 +0.210 —0.086  —0.126 —0.183
(4+0.524) (40.055)° (—0.167)4
(—0.046)°
Ns +0.979 +0.195  +0.140  +0.056
(+2.21)a (+0.694)¢ (+0.242)d
(4+0.251)¢
Ny +0.250 +0.250 +0.138  +0.126  40.124
(+0.274)s  (40.301)f  (+0.176)° (—0.009)d
N +0.697 +0.111  +0.062  —0.024
(41.477)» (40.436)° (40.099)d
(+0.167)e
Ny (1st) +0.363 +0.284 +0.130  -+0.099  +0.075
(+0.475)»  (40.310)f  (40.356)c (40.069)4
Ny (2nd) +0.812 +0.538  +0.484  --0.440
(+1.37)a (+1.072)¢ (+0.420)4

a Glasser and Callaway, reference 22. These energies are for ¢ =6.5183 a.u.
b Schlosser, reference 13. @ =8.043 a.u.

¢ Callaway, reference 24. ¢ =9.83 a.u.

d Callaway and Haase, reference 25. ¢ =11.45 a.u.

e Allen, reference 29. ¢ =9.83 a.u.

f Callaway, reference 23. ¢ =8.002 a.u.
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F1c. 11. Energy of the states P; and P4 for all the alkali metals
as a function of the ratio of the lattice constant ¢ to its 0°K
equilibrium value a,.

of states of higher energy. The locations of these and
other low-lying states in the empty lattice are given in
Table IV, where € is the reduced energy such that the
empty lattice energy E is

E=[(2r/a)e+V]. 1)

Comparing Tables IIT and IV, we see not only that
many states are displaced substantially in the metals
from their empty lattice energy, but also that states de-
generate in the empty lattice but of different symmetry
are often found to be widely separated in the metals.

For comparison of our results with those calculated
by other people, we have included in Table III the
energies of these states obtained by others, wherever
available. These are listed in parentheses following our
values, with the source indicated in the footnotes to the
table. For the more important states of lower energy
included in Table II, we have collected the results of
other calculations in Table V. These various results are
compared and discussed in Sec. V.

1IV. INTERPOLATION OF ENERGY BANDS:
SPHERICAL APPROXIMATION

In order to obtain a more useful description of the
energy bands than is afforded by energy values at a few
points, we seek analytical expressions which serve to
interpolate as smoothly as possible between these calcu-
lated values. A particularly convenient description of
the nearly spherical low-energy part of the conduction
band is obtained by expressing E(k) as the sum of a
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TasLE IV, Empty lattice states at symmetry points for bec lattice,
classified by reduced energy e.

€ Degenerate states
0.0 I8
0.5 N,+Ny»
0.75 Py+Py
1.00 Hi+His+H;s
1.50 Ni+No+Ny+Ny
2.00 Ty+T15+Tasr+T1a+125
2.50 Ny+Ny+Ny+No
2.75 Py+P3+2P+Ps
3.00 I+ Hy+His+Hos
3.50 N +Ny+N3+Ny+Ny+No+Ny+ Ny

power series in &*:
E,(k)=EqtEdk®+Eski+- - -, (2)

and an expression representing in powers of k., ky, k.
the cubic distortions of the energy surfaces from
spherical symmetry:

E,(k)=E®Kk)+EPKes(k)+---. 3)

Here Ki(k) and Kg¢(k) are Kubic harmonics,® and
explicitly
Ki(k)= (ks +k, k1= 2.
If we examine Figs. 1 to 7, we see that the conduction
band in each alkali metal is distorted from spherical

40.2

(RYDBERGS)

ENERGY

1.0 Ll
LATTICE CONSTANT a/ag

F1c. 12. Energy of the states Hi, His, Hie for all the alkali
metals as a function of the ratio of the lattice constant a to its 0°K
equilibrium value a,.

2 F, von der Lage and H. Bethe, Phys. Rev. 71, 612 (1947).



90 FRANK
symmetry in having energies along the [110] direction
depressed relative to those for the same |k| along the
[1117 and [1007] directions. This is expected from the
proximity of the zone face to points on the [1107] axis.
But the Kubic harmonic K4(k) represents a distortion
in which the [1107] direction is intermediate between the
[100] and [111] directions. Accordingly Ki(k) alone
can not represent even qualitatively the type of dis-
tortion found for the alkali metals.

Thus, a representation of the form of the sum of (2)
and (3) must include terms through at least the sixth

TasLeE V. Energies (in rydbergs) of lower states at symmetry
points as calculated by various authors.

State Li Na K Cs
Ty —0.6863= —0.597b —0.430¢ —0.4274
—0.615¢ —0.608¢ —0.451¢%

—0.6834" —0.60761
—0.6853i
—0.685k
N, —0.176» —0.263> —0.224¢ —0.2854
—0.114e —0.315¢ —0.251¢=
—0.19h —0.29381
—0.1801 —0.287!
—0.192k
Ny —0.404» —0.316" —0.190¢ —0.3424
—0.304¢ —0.2681 —0.234=
—0.4105 —0.29441
—0.4128i —0.2921
—0.411k
N,—Ny +0.228= +0.053> —0.034¢ +0.0574
+0.190e —0.0471 —0.017¢#
+0.22h +0.00051
+0.2331 -+0.005!
+0.219k
Py +0.3302 —0.041" +0.054¢ —0.1184
+0.150k —0.110¢f
—0.1048!
Py —0.189» —0.162b —0.126¢ —0.2594
—0.184h +0.020f —0.177¢=
—0.1788i —0.15461
—0.182%
11, +0.571» +0.193% +0.265¢ +0.1444
+0.55¢ +0.100f
+0.50k +0.08821
+0.136!
;s —0.0922 —0.015? +0.062¢ —0.1734
—0.120¢ —0.0141
—0.0464 —0.01981
—0.0091i —0.018!
—0.047%
VAT +0.227+ +0.017¢ —0.132¢ —0.2084
+0.202¢ +40.006! —0.165#
+0.168k

a Glasser and Callaway, reference 22, ¢ =6.5183 a.u.
b Callaway, reference 23, ¢ =8.002 a.u.

¢ Callaway, reference 24, ¢ =9.83 a.u.

d Callaway and Haase, reference 25, a =11.45 a.u.

e Schiff, reference 28, a =6.531 a.u.

f Howarth and Jones, reference 26, ¢ =8.138 a.u.

& Allen, reference 29, ¢ =9.83 a.u.

h Schlosser, reference 13, a =6.5183 a.u.

i Schlosser, reference 13, a =8.043 a.u.

i Callaway, reference 14, ¢ =6.5183 a.u.

k Present work on lithium interpolated to ¢ =6.5183 a.u.
1 Ham, reference 8, a =8.048 a.u.

S. HAM

TaBLE VI. Parameters of spherical approximation for energy
bands of the alkali metals as obtained by a least squares fitting to
calculated points (energy in rydbergs, lattice constant ¢ and
propagation vector k in atomic units).

a Ly (2n/a)Es  (2w/a)'Es

Lithium 5.338 —0.6844 +0.7620 +0.1759
6.651 —0.6821 +0.6757 +0.0012

8.109 —0.6226 -+0.5094 —0.0137

Sodium 6.651 —0.6440 -+0.9490 —0.1152
8.109 —0.6040 +0.6207 —0.0232

10.049 —0.5342 +0.3957 —0.0059

Potassium 8.109 —0.4997 +0.8183 —0.4488
10.049 —0.4815 +0.4509 —0.0822

11.458 —0.4500 -+0.3309 —0.0309

Rubidium 9.053 —0.4739 +0.7353 —0.4324
10.742 —0.4549 +0.4320 —0.1103

12.575 —0.4181 +0.2870 —0.0349

Cesium 10.049 —0.4286 +0.6503 —0.4718
11.458 —0.4190 +0.4121 —0.1650

13.348 —0.3886 +0.2680 —0.0557

order if it is to describe at all correctly the nonspherical
distortion. This already requires an inconveniently large
number of independent terms for a least-squares fitting
procedure. Moreover, if sixth-order terms are important,
one hesitates to exclude terms of eighth and higher order
for k near the zone face.

Accordingly, we choose to employ an entirely different
representation of distortions from spherical symmetry
near the zone faces. This is based on the nearly free
electron model and will be described in II. For the
nearly spherical central part of the band we shall simply
neglect nonspherical distortions and seek as accurate a
description of this part of the band as is possible within
the spherical approximation. Retaining as parameters
only E,, Es, and E4 in (2), we have then determined
these by a least-squares procedure using calculated
energy values for the following points:

[100] axis: (ak./27)=0, 1/8, 1/4, 3/8, 1/2, 5/8,
[110] axis: (ak./27)=1/8,1/4,
[1117 axis: (ak./27)=1/8, 3/16, 1/4, 5/16, 3/8.

The resulting representation should thus be a good
description of the spherical part of the conduction band
at low energies. At higher energies up to roughly the
Fermi level it represents an average of the [100] and
[111] directions. But it does not take appreciable ac-
count of the depression of the band near the Fermi level
in the [110] direction, since the states at large |k|
along the [110] axis were excluded from the fitting
process. This spherical representation may be compared
directly with the results of calculations using the spheri-
cal approximation of Wigner and Seitz.

The parameters resulting from this fitting are listed
in Table VI. These are given for three values of the
lattice constant for each metal at which energy values
were calculated. In Table VII we list values of E,4 and

4)
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TasLe VII. Effective mass m* (at k=0) and £, for alkali metals,
interpolated to equilibrium lattice constant for 0°K.

Li Na K Rb Cs
ao (a.u.) 6.597 7.984 9.874 10.555 11.424
m*/my +1.330 40965  +40.861 +0.779  +0.727
on +0.004 —0.069 —0.58 —1.01 —1.85

the effective mass (at k=0) m*= (E,)~!, interpolated
from Table VI to the 0°K equilibrium lattice constant.

We have found that this spherical representation
gives an exceedingly good fit in some cases to the points
used in the fitting. Thus for sodium, potassium, and
rubidium at the lattice constants used in Figs. 2 to 4, the
difference between the energy as originally calculated by
the Green’s function method and that given by Eq. (2)
with the best choice of Eo, Es, and E4 was for none of
these points greater than 0.0005 Ry. This result inci-
dentally provides excellent support for our belief that
the Green’s function method as used here usually gives
energy values accurate to at least 0.001 Ry. In other
cases when the band gap is large and the band appre-
ciably distorted, this difference at points of larger |k| is
typically about half the energy difference between the
[100] and [111] axes for that |k|. Elsewhere in the
band the difference is typically less than 0.001 Ry.

In Table VIII we compare our results for these
parameters, suitably interpolated, with those obtained
by Brooks" using the method of Wigner and Seitz.

V. DISCUSSION: BAND STRUCTURE TRENDS AND
COMPARISON WITH OTHER CALCULATIONS

Quite a number of people have made energy band
calculations for individual alkali metals using various
procedures, and Brooks!®!? has made a systematic
study of the cohesion of all the alkali metals using the
spherical approximation and the quantum defect
method. In the most extensive previous study that has
taken account of the actual lattice structure, Callaway
and his collaborators have calculated energy values for
many states at symmetry points for lithium,? sodium,?
potassium,* and cesium? using the OPW method. The
present work has been the first systematic attempt to
seek trends in the band structures and Fermi surface
shapes of all five alkali metals from direct calculations
at low symmetry points within the Brillouin zone as well
as the usual points of high symmetry, while treating all
the metals on the same basis by means of the quantum
defect method and taking full account of the polyhedral
form of the unit cell.

Our results have indeed shown a definite trend in the
hand structure at equilibrium which agrees quali-
tatively with that proposed by Cohen and Heine? on the
basis of some simple theoretical considerations and their

2 M. L. Glasser and J. Callaway, Phys. Rev. 109, 1541 (1958).
% J. Callaway, Phys. Rev. 112, 322 (1958).

2 J. Callaway, Phys. Rev. 103, 1219 (1956).

* J. Callaway and E. L. Haase, Phys. Rev. 108, 217 (1957).
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interpretation of experimental data. The Fermi surface
is distorted from a sphere by depression of the bands in
the [1107] directions as a result of an energy gap be-
tween the s- and p-like states Ny and Ny at the center
of the zone face. For lithium N is about 3 eV below N,
and the Fermi surface is distorted appreciably, although
not so much as to touch the zone face in contrast to
Cohen and Heine’s proposal. Sodium has a very small
gap and a spherical Fermi surface, while for potassium,
rubidium, and cesium Ny is above N; by an amount
that increases in that sequence. The Fermi surface of
potassium is only slightly distorted; the distortion is
greater for rubidium and sufficient for cesium to cause
contact for a lattice constant 29, less than the equi-
librium value at 0°K (see IT). The results of Callaway
and his colleagues for the symmetry point N fit this
trend for lithium, sodium, and potassium, but not for
cesium, while Howarth and Jones’ result?® for sodium
does not fit the trend if compared with any of the calcu-
lated values of the gap for potassium.

From our calculations at different lattice constants,
we find that for all the alkali metals except sodium the
magnitude of the gap at IV increases substantially as the
lattice constant is decreased and that the Fermi surface
distortion increases correspondingly. For lithium this
reflects the rapid increase of the s state V) relative to the
p state Ny, as proposed by Cohen and Heine,? although
we find that the resulting distortion is not sufficient for
contact even with a 209, reduction in lattice constant
(Fig. 8). For potassium, rubidium, and cesium, however,
Ny rises relative to Ny with compression, the reverse of
Cohen and Heine’s proposal. For sodium N; and Ny
move very nearly together, so that the gap remains
small. Sodium evidently not only is the metal in the
alkali series that has the most nearly free-electron-like
energy bands at equilibrium, but it preserves this be-
havior as the lattice constant varies. Its effective mass
even remains close to unity (see Table III of II)!

The accuracy of the calculated band structure of a
given metal obviously depends on that of the assumed
potential. We have not attempted to improve the self-
consistency of the potential beyond that of the Wigner-
Seitz assumption and the quantum defect method, for
to do so would largely remove the advantages of the
latter method in dealing with all of the metals on the
same basis. Accordingly we have no accurate estimate

TasLe VIII. Comparison of parameters of spherical approximation
with values calculated by Brooks using Wigner-Seitz method.

Present works Brooksb
a (au) Eo E, Ey Iy E2 yon
Li 6.499 —0.685 +40.741 +0.009 —0.6865 +40.7305 —0.0303
Na 8.124 —0.603 +41.034 —0.064 —0.6011 +1.022 —0.0096
K 9.871 —0.486 +41.161 —0.58 —0.4876 +1.149 —0.3

a Interpolated from values of Table VI to lattice constant used by Brooks.
b H. Brooks, reference 12.

26, J. Howarth and H. Jones, Proc. Phys. Soc. (London) A65,
355 (1952).
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of the error in a given calculation arising from this
source. We shall point out below, however, in a short
discussion of each metal, that there is close agreement
between the important features of the conduction band
and Fermi surface predicted by our work and the results
of some other recent calculations on lithium, sodium,
and potassium, despite significant differences in the
potentials used. Numerical differences of course appear,
but even these are fairly small. In summary, this com-
parison supports the view that the structure of the
conduction band of each metal is not very sensitive to
uncertainties in the potential (excited bands are more
sensitive but less interesting) and that the present calcu-
lations give the important features of the alkali band
structures correctly.

The reliability of the calculated band structure also
requires, obviously, that the method of calculation for
a given potential be accurate. The Green’s function
method provides, in principle, a very accurate method,
giving very rapid convergence (Appendix). We have
carried out the calculations on an IBM-704 digital
computer in order to minimize the possibility of compu-
tational errors and to make sure that the same procedure
was followed in all the calculations. Permanent tables of
the necessary data such as radial functions and structure
constants were prepared on punched cards for repeated
re-use in the calculations. A check on the results was
provided by the mutual consistency of the calculated
determinants for a given state and adjacent energies,
and by that of the energy eigenvalues for neighboring
states for a given metal, and for the same state for
adjacent metals in the alkali series or for different values
of the lattice constant for the same metal. Use of this
standardized procedure, together with the good agree-
ment between our results and those of some other recent
calculations for lithium, sodium, and potassium which
should be reliable, give us confidence in the reliability of
our results. In particular, substantial unexplained differ-
ences between our results for the heavier metals and the
results of some earlier calculations by others lead us to
doubt the reliability of these earlier results.

Our use of the same approximations in dealing with
all of the alkali metals should insure that the calculated
trends in the band structure are correct, both as to
variation in the alkali series and variation with lattice
constant. In comparing with experiment in II it is the
trends which we emphasize. However, this comparison
again suggests that the actual numerical results may
not, in fact, be too seriously off, once corrections for
electron-electron correlation and electron-phonon inter-
action are allowed for, of course. Brooks’ partial success
inaccounting for the cohesive properties of these metals!
on much the same basis supports the same conclusion,
since these properties are sensitive to smaller changes in
the band structure than would be needed to change the
relative position of individual states by significant
amounts. Of particular interest is that all the evidence
seems to support the conclusion that sodium is, in fact,
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very nearly free-electron-like as predicted. It may well
be, however, that we underestimate the degree of Fermi
surface distortion for lithium and overestimate it for the
heavier metals, perhaps as suggested by Cohen and
Heine® because we have treated the correlation-exchange
hole rather inaccurately.

Trends among the excited states of the metals are also
evident (Table IIT). There is first of all an over-all re-
duction in the energy of a given state and in the energy
difference between states as we go from lithium to
cesium, corresponding to the increase in lattice con-
stant. This trend is illustrated by I'ss, Ps and H, which
as f states (Table I) are in these calculations inde-
pendent of the core potential characterizing the indi-
vidual metal. There also appears a lowering of d states
relative to s, p, and f states in the sequence lithium to
cesium. This behavior is clearly evident in the relative
position (Figs. 1 to 5) of the states H1a(d), Hi;(p), and
H,(s) and also in the relative depression of the d states
T';5 and T'ysr for the heavier metals relative to the states
Ti(s), Tis(p) and Te5(f) which are degenerate with
these at k=0 in the empty lattice (Table IV). This
effectisalsoin part responsible for V; falling increasingly
below V- for the heavier metals, since V1 mixes s and d
functions, and the latter were found to contribute a
greater energy shift for the heavier metals. Finally,
there is a rise in p states relative to s and f states in the
same sequence, as seen from Hys(p) and Hi(s), from
T15(p), T1(s), and I's5(f), and from Ny (p) and N1(s,d).
The precise numerical values of the energy of states
appreciably above the conduction band are of little
importance: Our extrapolation of the quantum defect
parameters becomes increasingly uncertain beyond a
few tenths of a rydberg into the positive energy range,
and the excited states appear to be increasingly sensitive
to changes in the potential with increasing energy.
(Note the differences in Table ITIT between the results of
different calculations; these differences may however
also reflect poorer convergence of the OPW method for
excited states, and for potassium and cesium there ap-
pears to be some unexplained additional source of error
in the OPW results.) It is interesting that there appear
to be substantial departures among these excited states
from a free-electron behavior even for sodium.

The order of states at symmetry points agrees with
but two exceptions with the ‘normal order” proposed
by Callaway.! Assigning states at I', N, P, and H to
s, p, @, or f “bands’ according to the term of lowest /in
the spherical harmonic expansion of the wave function
(Table I), we obtain the “normal order” of states in,
say, the “s band” from the order of the energies of these
states in the empty lattice (Table IV). Examination of
Table III reveals the same order of states within each
such “band” for each metal, with two minor exceptions:
(1) in the “s band” the third state N; falls below the
second T'1; (2) in the “p band” the first P4 is slightly
below Ny for cesium ; the second P, is below the second
Ny and Ny for all the metals and below I'ys for potas-
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sium, rubidium, and cesium. These exceptions appear to
reflect in part the effect of d states, which also contribute
to Vy and Py, in depressing these states.

The order of states which are degenerate in the empty
lattice but which belong to different “bands” can be
interpreted qualitatively from the point of view of the
OPW method, as Bassani and Celli have shown.*” As
these authors note, the sharp rise in p states relative to
s or d states in going from lithium to sodium corresponds
to the fact that in sodium there is a filled p state in the
core, which has the effect of raising the energies of
valence p states because of the orthogonality require-
ment. The more gradual rise in p states in the sequence
sodium to cesium indicates that as successive shells are
filled in the core the effect of the p states is somewhat
greater than that of s states in repelling corresponding
valence states. The lowering of d states for potassium,
rubidium, and cesium, on the other hand, results from
the changing potential of the ion and corresponds in
particular to these ions’ position in the periodic table
just preceding the transition metals. The fact that the 4
states of rubidium are not raised in comparison with
potassium despite a filled 3d shell in the core evidently
indicates that the 3d states, which are some 10 ry deep,
are relatively ineffective in repelling the valence states.

Lithium

Agreement between our results for the low-lying
states at symmetry points, interpolated to a=6.5183
a.u.,and those of Glasser and Callaway,” Schlosser,*and
Callaway' for this value of ¢ is good (Table V). Glasser
and Callaway used the empirical Seitz potential,*é
Schlosser a “muffin-tin” form of potential based on the
Seitz potential, and Callaway a smoothed Seitz potential
that avoids causing any discontinuity in the crystal
potential or its first derivatives. The Seitz potential
reproduces the atomic term values of lithium within a
fraction of a percent so that close agreement would be
expected for a muffin-tin potential based on this and one
based on the quantum defect method. Our values indeed
agree with all of those given by Schlosser within
0.002 Ry. Agreement with Glasser and Callaway and
with Callaway is excellent for the ground-state energy
(0.001 Ry), and very good for N, Ny, and Py ( 0.02
Ry). It becomes worse with increasing energy, as seen for
the states at H (~0.06 Ry), P, and the high excited
states in Table III, presumably because of increasing
sensitivity to differences in the potential.

Some results due to Schiff?® are also listed in Table ITI
which do not agree with any of the other recent work.
Schiff’s potential, however, was considerably less satis-
factory than the Seitz potential, as Kohn and Rostoker
have noted,? so that we shall not consider his results
further.

27 I, Bassani and V. Celli, J. Phys. Chem. Solids 20, 64 (1961);
Studia Ghisleriana (Pavia) Ser. IV, 2 (1959).
28 B, Schiff, Proc. Phys. Soc. (London) A67, 2 (1954).
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Schlosser® and Callaway have also made calcula-
tions for points within the zone on the [1007], [111], and
[110] axes. The graphs for their results appear indis-
tinguishable from our curves for the conduction band in
Fig. 1, apart from Callaway’s somewhat different nu-
merical values near Hy;. Callaway finds that the bulges
in the Fermi surface protrude by about 5%, in agree-
ment with our conclusion (see IT). The various esti-
mates for the gap at NV all agree within 7%,.

Sodium

Other calculations (Table V) for low-lying symmetry
points of sodium show poorer agreement with our re-
sults (Table II) than in the case of lithium, but the
agreement is still quite good. The Prokofjew potential,’”
used by Howarth and Jones?s and in “muffin-tin” form
by Schlosser,*® reproduces the atomic term values less
accurately than does the Seitz potential for lithium;
hence we expect greater differences from a quantum
defect calculation. Callaway?® used a pseudopotential
with two parameters chosen to fit spectral data, and
Ham? used the quantum defect method (without
polarization correction) but did not flatten the potential
in the outer parts of the cell as in the present work.

These differences in potential and small differences in
lattice constant probably account for most of the differ-
ences among these various results and between them
and our present work. Our results agree for I';, N3, Ny,
Hs,and Pywithin about0.01 Ry with those of Schlosser!
(when interpolated to his value of the lattice constant)
and with Ham’s old values® for N; and Ny. There is a
greater discrepancy with Schlosser for Py and H; (0.02
and 0.06 Ry), but both of these states seem to be particu-
larly sensitive to changes in the potential as well as to
changes in lattice constant (Figs. 11 and 12).

Differences between our results and those of Howarth
and Jones? and between these latter and Schlosser’s are
greater than we would have expected. In particular
Howarth and Jones found a value of —0.047 Ry for the
gap (NV1—Ny)in contrast to our value of +0.019 Ry and
Schlosser’s essentially zero value; also their value for Py
is +0.18 Ry above ours, and therefore their order of P;
and P, is the reverse of that other people have found.
We were able to account?® for the discrepancy in the gap
(N1—N7y/) on the basis of inaccuracies in the particular
boundary conditions used by Howarth and Jones in
finding their eigenvalues. Discrepancies in Py and H; are
in part the result of their use of a lattice constant 29,
larger than ours in Table II. But the large discrepancy
in P, would appear to reflect a computational error in
their work.

The various values for the energy gap (Vi—Nvy)
(even discounting Howarth and Jones’) differ by larger
amounts than in the case of lithium, but there is general
agreement that the gap is small, so that the Fermi sur-
face should be very nearly spherical. All agree too that
the effective mass of sodium is very close to unity. The
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only calculations besides ours for interior points in the
zone, those of Schlosser, find no significant difference
between the bands on the [1007], [1107, and [111] axes
within the Fermi surface, in agreement with Fig. 2.

Potassium

Construction of an explicit atomic potential for po-
tassium is more difficult than for lithium and sodium
and the uncertainties greater, because of the importance
of exchange interaction with the core electrons.** We
should, therefore, expect poorer agreement between re-
sults of our quantum defect calculation and those based
on an explicit potential, as is found. Callaway,* using
the OPW method, employed different potentials for
states of different (s,p,d) symmetry according to the
predominant character of the state, in order to take
approximate account of the I dependence of the effective
potential due to exchange. Allen® used the same po-
tentials as Callaway (except that Allen flattened the
potential into muffin-tin form), but he made his calcula-
tions with the augmented plane wave (APW) method.

In comparing the various results at symmetry points,
we note in Tables IIT and V that Allen’s values differ
from Callaway’s despite their use of similar potentials.
The discrepancy increases from 0.02 Ry for T'; to as
much as 0.4 to 0.7 Ry for some of the positive energy
states. These latter discrepancies are very much greater
than the change produced in these eigenvalues if the
exchange potential is changed from that appropriate for,
say, a d state to that for an s or p state. Allen found such
changes for excited states to be typically 0.01 to 0.1 Ry,
and those for the lowest states 'y, N1, Ny, Psand Hi,
to be quite small, less than 0.005 Ry. These differences
between Callaway’s results and Allen’s have not been
accounted for with certainty, although Callaway has
suggested that they may arise from incomplete con-
vergence of his OPW calculations for potassium. Since
our results show similar large differences from Calla-
way’s, and since the APW method in general provides
much better convergence than does the OPW method,
we shall compare our results only with Allen’s.

Allen’s values for the low-lying states (Table V) lie
between 0.02 and 0.04 Ry above ours. The potential used
by Allen, however, took no account of the contribution
of core polarization to the interaction with a valence
electron, and Brooks' has shown that for potassium
this lowers the energy of I'; by about 0.035 Ry. With a
somewhat smaller correction for p and d states, this
accounts quite well for the differences, the remainders
being within what is expected from the remaining differ-
ences in the potentials. For the higher states of Table I1I
our values agree in general fairly well with Allen’s, most
of our values being below his by about 0.05 Ry. The only
major difference is in the location of the second and

2T, C. Allen, Quarterly Progress Report, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,
Cambridge, Massachusetts, October 1958 (unpublished), p. 45.
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third states N1; Allen’s values are surprisingly low with
respect to both our values and the position of these
states in the empty lattice.

Although there are no other calculations along the
symmetry axes for potassium, it appears certain from
Allen’s small value for the gap at IV that his calculations
if extended would agree with ours in finding a nearly
spherical Fermi surface.

Cesium

Callaway and Haase? used a potential for cesium
which Sternheimer® had constructed taking account of
exchange interactions appropriate to a 6s state. Their
values for the states 'y, V3, and P are in quite good
agreement with ours. However, they find a value for
Ny which is 0.13 ry below ours and which reverses the
sign of the gap at V. Their values for the other p states
Py and H;ys are also very low compared to ours. These
discrepancies are undoubtedly due in part to Callaway
and Haase’s use of an exchange potential that is not
really appropriate for p states, although they are sur-
prisingly large if this is their only cause. Such large
discrepancies for cesium and the somewhat similar un-
explained differences between Callaway’s results for
potassium and those of Allen suggest that for some
reason the results of the OPW calculations for potassium
and cesium are not as reliable as those for lithium. In
view of these uncertainties, a detailed comparison of our
results for cesium with those of Callaway and Haase
does not seem worth while.

Our result that the d states like Hys, I'1o, I'ssr, and Ny
are lower relative to s and p states for cesium than for
the other alkali metals gives some support to a sugges-
tion of Fermi’s, which Sternheimer® investigated, that
a high-pressure phase transformation observed in cesium
by Bridgman® arises from the presence of a d band
slightly above the Fermi energy which crosses the
Fermi energy with increasing compression. Sternheimer’s
calculation of the position of the lowest d band at I" was,
however, marred by his use of very inaccurate boundary
conditions which even in the empty lattice lead to a 40%,
error in the energy of the d state relative to I'p®
Sternheimer found a value of about —0.235 Ry for this
state at equilibrium ; we see from Table III that this is
0.11 Ry below our I'ss but very close to His. As shown
in Figs. 5 to 7, Hys decreases relative to the rest of the
conduction band with decreasing lattice constant, in
such a way as ultimately to form occupied pockets of
electrons in the corners H of the cell. These results are,
of course, for the body-centered lattice ; Bridgman® has
found that cesium becomes face-centered at a lower
pressure than that at which the “electronic phase
transition’’ occurs. Thus, the present calculations are
not really relevant to the high-pressure transition, and
similar calculations on the d bands should be done for

% R. M. Sternheimer, Phys. Rev. 78, 235 (1950).
31 P, W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 55 (1948).
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fce cesium. The low position of the d bands for bec
cesium and the related rapid increase in Fermi surface
distortion with pressure, however, show that the com-
pressibility of cesium can not be calculated satisfactorily
in the spherical approximation. This importance of the
d bands is no doubt in large measure responsible for
Brooks’ result that the theoretical compressibility calcu-
lated in the spherical approximation is substantially
less than that found experimentally.’0-??

Spherical Approximation of Wigner and Seitz

Brooks'? has recently given a thorough discussion of
the method of Wigner and Seitz, in which the parame-
ters in the spherical approximation to the band struc-
ture are evaluated from simplified boundary conditions
on the sphere of volume equal to that of the actual
polyhedral atomic cell. We wish here to compare
Brooks’ values for these parameters for the alkali
metals to those we have obtained by a least-squares
fitting of the expression (2) to the spherical low-energy
portion of our calculated conduction bands.

Brooks’ results are directly comparable with ours be-
cause in his work on lithium, sodium, and potassium he
used the quantum defect method with the same form of
polarization correction we have used. Thus, the only
difference in the potential is that we used the muffin-tin
potential beyond the inscribed sphere, while Brooks
used the ion potential out to the radius of the equivalent
sphere. The only further difference is that our calcula-
tion takes direct account of the polyhedral shape of the
cell.

The comparison in Table VIII, with our results
interpolated to the lattice constant used by Brooks,
shows that the ground-state energies E, differ by no
more than 0.002 Ry, and the inverse effective masses E,
by about 0.01. There is little agreement, however, for
E,, apart from general order of magnitude.

Brooks' has estimated that use of polyhedral bound-
ary conditions instead of those on the sphere should
make only very small changes in E, and E; but that
changes in E4 can be comparable with Ej itself and can
not be estimated reliably. These conclusions are borne
out by the comparison. The small differences in E, and
E, appear reasonable on the basis of the differences in
the potential and uncertainties in interpolation. Our
values for E4 increase rapidly from lithium to cesium
(Tables VI and VII) and are typically roughly twice as
large as Brooks’ values.

The value of E; one obtains from a least squares
fitting depends very sensitively on which points are
selected for fitting. We have chosen in (4) only those up
to slightly above the Fermi energy which seem little
affected by the non-spherical distortion caused by the
bending down of the [110] axis. Thus, our parameters
are appropriate near the Fermi level only to the parts of
the band away from the [110] directions; at lower
energies they suffice for all directions. The fourth-order
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term in our procedure thus does 70f represent an average
departure of states near the Fermi energy from a para-
bolic dependence on Z.

While these results support Brooks’ conclusion'? that
the effective mass at k=0, m*=(E)~, is given ac-
curately by the Wigner-Seitz spherical approximation,
this approximation is not accurate for calculating the
thermal, optical, and cyclotron effective masses at the
Fermi surface. These depend on E, as well as E; even in
the spherical approximation and are affected signifi-
cantly by Fermi surface distortion. These effective
masses will be considered in IL

Callaway and his colleagues have also given values for
these parameters for all the alkali metals, obtained
mostly from the Wigner-Seitz method with various ex-
plicit potentials. The agreement of their values for E,
and E, with ours and with Brooks’ is reasonable, in
view of the differences in potential : the largest difference
isbetween their value?? E;= 1.181 for rubidium (¢=10.58
a.u.) and our value (for this @) of 1.28. Their values of £,
are however even greater than ours: They find —0.153,
—0.85, —1.28, and —3.64 for sodium,*® potassium,**
rubidium,® and cesium,? respectively. For lithium
Callaway' has fitted a polynomial of sixth order to his
calculated points along the three axes, including in the
polynomial the anisotropic cubic terms of fourth and
sixth order. He finds E4,=-+0.105, in contrast to our
value of +0.01 and Brooks’ —0.03, but he also finds a
large symmetric sixth-order term with Es=—0.545 as
well as large anisotropic terms of fourth and (most im-
portant) sixth order that describe the nonspherical
distortion. The contrast between Callaway’s results and
ours for bands which appear almost identical illustrates
how sensitive these high-order terms are to the number
of terms used in the expansion and the points used in the
fitting.

Simplified Calculations of Cohen and Heine

Cohen and Heine® have proposed some simple criteria
for estimating the energies of the states Ny and Ny
relative to I'y, the gap (V1— Nv), the effective mass, and
the Fermi surface distortion. By comparing their pro-
posals with our calculated bands we find'® that while
they predict the same trend in the band structure at
equilibrium through the alkali series, these proposals are
not, in general, reliable. Their formula for the “s state”
N, is fairly accurate as long as d functions make no large
contribution to this state, as for lithium and sodium, but
it may be quite inaccurate when the d contribution is
important, as is the case for the heavier alkali metals
and also for the noble metals. Their formula for Ny, for
which they, in fact, claimed no great accuracy, except
for lithium predicts entirely the wrong variation of this
state with changing lattice constant, even as to sign.

32 J. Callaway and D. F. Morgan, Phys. Rev. 112, 334 (1958).

3 J. Callaway, Phys. Rev. 123, 1255 (1961).

3¢ J. Callaway, Phys. Rev. 119, 1012 (1960).
35 J. Callaway, Phys. Rev. 112, 1061 (1958).
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This led Cohen and Heine to predict that the gap in
potassium, rubidium, and cesium should decrease with
compression if Ny > N, whereas our calculations show
an increase. While their formula gives roughly the cor-
rect value for Ny at equilibrium, this agreement seems
fortuitous since Cohen and Heine gave no justification
for the factor 1/2 by which they related the depression
of Ny below the free atom p state e, to the correspond-
ing difference (e,—T'y).

VI. CONCLUSION

Our calculations have revealed clear trends in the
band structures of the alkali metals, in both the degree
of the distortion of the conduction band and the location
of excited bands. Of special interest, the gap (NV1—Ny)
at the zone face is large and positive for lithium (~3 eV
at equilibrium), almost zero for sodium, and negative
and increasingly large in the sequence potassium,
rubidium, cesium. Accordingly, the Fermi surface is
practically spherical for sodium and potassium and
distorted the most for lithium and cesium. Although our
calculations may underestimate the distortion for lithium
and overestimate it for cesium, they indicate that the
Fermi surface of lithium does not contact the zone face,
while that of cesium nearly touches at equilibrium at
0°K. Except for sodium, the distortion for all the alkali
metals increases significantly with a decrease in lattice
constant.

While our results differ in important respects from
those of some earlier calculations, they agree closely
with several recent calculations for individual metals
despite differences in the potentials used. Our compari-
son of these various results indicates that the significant
features of the calculated bands are not very sensitive to
uncertainties in the potential, provided that an accurate
method of calculation is used. While improvements in
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the self-consistency of the potential will certainly give
values for the band parameters somewhat different from
those we have obtained with the quantum defect
method, we believe accordingly that the present calcula-
tions should give the significant features of the bands
correctly.

Comparison with Brooks’ results with the Wigner-
Seitz spherical approximation supports his conclusion
that the ground-state energy and the effective mass at
k=0 are given accurately in that approximation but
that the fourth-order energy parameter E4 is not. Since
effective masses at the Fermi surface depend on Ej, as
well as on the nonspherical distortion, they cannot be
calculated accurately in the spherical approximation.
The present work has confirmed the usefulness of the
rapidly convergent Green’s function method of Kohn
and Rostoker in making possible extensive calculations
at points of low symmetry within the zone.
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APPENDIX: CONVERGENCE OF GREEN’S
FUNCTION METHOD

In Table IX are listed representative examples illus-
trating the convergence of the Green’s function method®-¢
in our calculations. Approximate energy eigenvalues
have been found from the zeroes of the #X# determi-
nant obtained when % independent terms (different
spherical harmonics) are included in the trial function.®
[Energy eigenvalues are given in Table IX in terms of

TasLE IX. Examples of the convergence of the Green’s function method for energy eigenvalues and wave function coefficients of the
alkali metals. The following results are for the state of symmetry A; at the point k= (27/a)(5/8,0,0) in the conduction band, for the
lattice constants of Figs. 1-3. The approximate eigenvalue (in terms of the reduced energy e) obtained with a trial wave function con-
taining # independent spherical harmonics is denoted by e,. The coefficients Cs, C;, and Cq in the spherical harmonic expansion of the
wave function inside the inscribed sphere are listed together with the terms of the series used to obtain C, and Cq. These terms are
labeled as follows: (C,). denotes the term obtained in the series for C, when the nth spherical harmonic is added to the trial function.
Spherical harmonics were added in this work in order of increasing I: s, p, d, f,. . . .

Li Na K Rb Cs

Energy eigenvalue

€ +0.2715 +0.2920 +0.3130 +0.3345 >+0.35

€ +0.2635 +0.2810 -+0.2875 +0.2905 +0.3070

€1 +0.2635 +0.2805 +0.2870 +0.2905 -+0.3055

€ -+0.2640 -+40.2805 +0.2870 +0.2900 +0.3065
Wave function coefficient

Cs 1.00 1.00 1.00 1.00 1.00

(Cp)2 —3.444-0.03 —2.43 +0.05 —1.75 £0.04 —2.75 £0.04 +2.03 +0.05

(Cp)s +0.23+0.01 +0.41 +0.01 +0.85 +0.03 +2.10 3-0.08 —2.49 +0.10

(Cp)a +0.01+0.01 +0.00640.001 +0.003+0.001 +0.00240.002 +0.001£0.001

Cp —3.20+0.05 —2.01 £0.06 —0.90 +0.07 —0.65 =+0.12 —0.46 +0.15

(Ca)s —34 401 —1.40 40.02 —0.4374-0.010 —0.3164-0.006 —0.1534-0.005

(Ca)a +0.2 0.2 +0.08 40.02 +0.01040.003 +0.00440.004 +0.001+0.001

Cq —3.2 £0.3 —1.32 3:0.04 —0.4274-0.013 —0.31240.010 —0.1524-0.006
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the reduced energy e of Eq. (1).] For the states in
Table IX there is no significant change in the eigen-
values as spherical harmonics with /> 3 are added, the
accuracy of interpolation in locating the zero of the
determinant being estimated as Ae=-0.001. We have
found that for states in the conduction band a trial
function including all allowed terms with /< 2 suffices to
give the eigenvalue to an accuracy of at least Ae
=40.002. For states in excited bands above the con-
duction band, terms with /=3 and 4 contribute shifts in
e of a few thousandths.

Coefficients in the spherical harmonic expansion of
the wave function within the inscribed sphere have also
been calculated for some states, using the procedure
given previously.® The examples of Table IX illustrate
the accuracy that is achieved for the coefhicients C,, C,,
and Cy of the s, p, and d terms. (The coefficients as
given in the table are not normalized, so that their
values are of no direct use without information on the
normalization of the radial functions.) The coefficients
were calculated by setting C, equal to unity and ex-
pressing C, and Cq as a series of terms such that the
change in each coefficient caused by addition of one
more independent term in the trial wave function is
expressed simply as an additional term in the series.
These additional terms equal zero when addition of
terms to the total function causes no further change in
the eigenvalue. Each term in the coefficient series was
evaluated by interpolating the appropriate expressions
to the energy of the final eigenvalue, and an estimate
was made of the uncertainty resulting from this pro-
cedure. The various terms in the coefficient series and
their uncertainties are listed in Table IX as well as the
final sum. The series are terminated with the term
arising from adding the /=3 term to the trial function.
This term is small, and its uncertainty is often as large
as the term itself; higher terms appear to make negli-
gible contributions. For the state of lithium given in the
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table, the estimated accuracy of C, appears to be very
good, about 2%, while that of Cq is about 10%,. For the
heavier metals, however, there is appreciable cancella-
tion between the first and second terms in the series for
Cp, so that although the individual terms should be
accurate to a few percent, the final value of C, for
cesium is uncertain by some 309%. For thé heavier
metals the accuracy of Cq appears, however, to be good.
To eliminate the cancellation in the series for C,, and
thereby presumably increase its accuracy, we should
change the sequence in which terms are added to the
trial function from s, p, d, f, at present, to s, d, p, f. The
uncertainty can, of course, also be reduced by directly
calculating the various necessary quantities at energies
very close to the eigenvalue so that interpolation is more
accurate.

Outside the inscribed sphere the wave function can be
expressed as a sum of plane waves of propagation vector
(k+K;), where the K.’s are reciprocal lattice vectors.
Although this expansion is not unique, an optimum
representation in terms of a given selection of a few
plane waves can be made.® We have not made such
calculations for most of the metals ; however, for the state
of lithium listed in Table IX with k= (2x/a)(5/8,0,0)
we have found, using the plane waves obtained from
k with the reciprocal lattice vectors (1) K=0, (2)
K= (4n/a)(—1/2, £1/2, 0) and K= (4n/a)(—1/2, O,
+1/2), 3) K= (4r/a)(—1, 0, 0), and (4) K= (4x/a) (0,
+1/2, 4-1/2), values for the coefficients of these waves
(the wave function again unnormalized) C;=—0.651,
Ce=+40.033, Coe=-40.025, C4=—0.005. These results
support the view that in this region of the cell the wave
function is predominantly a single plane wave. However,
it is not clear that one can always safely ignore the other
terms in the expansion, particularly since there are four
waves of set (2), and the various plane waves are not
mutually orthogonal over the region of the cell outside
the inscribed sphere.



