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energies of 10.4 A MeV and impact parameters approxi-

mately equal to rpA'". Thus, i for the sum of the fission-

ing nuclei will be lowered even more. For fission of

lighter nuclei where the transfer reactions do not lead

to 6ssion, ' the value of / for the fissioning nuclei will

be approximately that of the compound nuclei that are

formed.

These considerations are important in any attempts

to analyze fission fragment angular distributions with

heavy ions. Because the angular momentum enters

into the theoretical interpretation of these distributions

as t2, the uncertainties in the average angular momentum

created by the surface reactions a6ect the conclusions

quite strongly. This problem also hinders the treatment

of data from isomer ratios for metastable states formed
from heavy-ion systems.
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The Qnite nuclear size effects are of signi6cant importance in the study of the second-order corrections to
the allowed beta transitions, evaluation of nuclear matrix elements, and in all cases where the ( approxima-
tion is not valid. Accurate electronic. radial functions are computed by considering the Gnite nuclear size
effects and the 6nite de Broglie wavelength effects. A summary of the computation procedure is given, and
a comparison of the calculated beta-decay functions is made with the corresponding Coulomb functions.

i. INTRODUCTION

~
'HE extensive work done in the last three years has

led to the general acceptance of the vector and
the axial vector interactions for the processes of nuclear
beta decay. A considerable interest has developed in the
following types of problems: (I) a study of second-order
effects, (2) evaluation of nuclear matrix elements, (3)
precision measurements of beta polarization, and (4) a
detailed analysis of the P —y (circular polarization)
correlation experiments. For all these investigations,
one needs to know accurate electronic functions, which
occur in the theoretical formulas. For example, em-
pirical values of the nuclear matrix elements are ob-
tained by 6tting the relevant experiments with the
theoretical formulas, and then these can be compared
with those computed on the basis of a particular
nuclear model.

*The contribution of one of us (M.E.R.) was partially sup-
ported by the U. S. Atomic Energy Commission.

In the computation of beta decay functions, there
are two important effects to be considered: (I) the
finite nuclear size effects' and (2) the finite de Broglie
wavelength effect. ' The corrections due to the finite
nuclear size e8ects are those arising from a considera-
tion of a charge distribution inside the nucleus. For this
purpose, a nucleus is generally considered as a sphere of
radius 1.2A'" F and of a uniform charge distribution.
This is in contrast to a point nucleus, i.e., only Coulomb
field potential. As a usual practice, the electronic radial
functions are evaluated at the nuclear surface. These
electronic radial functions for a Q.nite nucleus can be
expressed (outside the nucleus) as a proper combination
of the regular and the irregular solutions of the Dirac
equation with a Coulomb potential. It turns out that
some of the beta decay functions are very sensitive to

' M. E. Rose and D. K. Holmes, Phys. Rev. SB, 190 (1951).
Also see M. E. Rose and D. K. Holmes, Oak Ridge National
Laboratory Report ORNL-1022 I'unpublished).

~ liI. E. Rose and C. L. Perry, Phys. Rev. 90, 479 (j.953).
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this admixture of the regular and the irregular Coulomb
functions. Such a study for the beta spectrum functions
was made by Rose and Holmes. ' As pointed out by Rose
et al. ,

' the 6nite de Broglie wavelength effects can be
taken into account if the expansion of the conQuent
hypergeometric functions, which appear in the Coulomb
Geld solutions, is not terminated by the leading term.
The parameter in this series expansion is the product of
the beta momentum and the nuclear radius.

In view of the large scale computations required for
each isotope, we have prepared tables' of the electronic
radial functions and the tangents of the phase shifts
exclusive of the logarithmic term for the total angular
momentum j=1/2 and j=3/2. The Fermi function is
also tabulated. YVe have neglected the small effects
(less than 0.2% for heavy nuclei) due to screening. It
is the purpose of this paper to summarize the procedure
used in these calculations, and to present a comparison
of the "field-sensitive" beta-decay functions with the
corresponding Coulomb functions.

We take the normalization of f„and g„ to correspond to
one particle in a sphere of unit radius. The asymptotic
behavior of the electronic radial functions is given by

W—1~»s f' nZW
rf„~ —

~
sin~ pr+ 1n2pr+6„ t(.

W+11 & ZW
rg„~

~
cos~ pr+

W j E p
ln2Pr+A. ),

where W'= (ps+1)'i'.
For the Coulomb field potential, we represent the

solution of the Dirac equation as

i i(F j~)x—). .
(G„/&)x„

f)„=—argl'(y„+ sy) +r)„—-', s.y„ (Sa)

The asymptotic behavior of p„(r) and G„(r) is given by
Eq. (4) with b,„written as fi„, where'

2. FORMULATION OF THE PROBLEM

Throughout, we use the relativistic rationalized units
A=m=c=i. Ke express the solution of the Dirac
equation,

E np P+—V (~)]—P."=W4.",

y= nZW/p,

(» snZ—/p)
g2 $7llg

(v.+'y)
'

y = L~' —(«)'7'"

(Sb)

(Sd)
(—if.(r)x .")

g, (r)X„s

where a uniform charge distribution inside a nucleus
corresponds to a potential V(r) for an electron: rf„(r)=Ap (') (r),

rg, (r) =AG„(') (r),V(r) = —nZ/r fol t'Q pq

(2) The irregular solutions shall be denoted by P„and 6„.
We represent by p(')/r and G(')/r as the regular

solution of Dirac equation, Eq. (1), for r(p. We obtain

nZ f' r'
V(r) = ——

~

3—— for r(p.
(3) rf„(r)=BP„(r)+CF,(r),

rg, (r) =BG„(r)+CG„(r).

The normalization condition on f„and g„gives

B'+C'+2BC cos(b —b) = 1.

The continuity of f„and g, at r= p gives

In our units, the nuclear radius p is given as

p= 0.428S~W&~3

where n is the fine structure constant (1/137.03). X„"is
the spin-angular function. 4 Also, we have AP. ' (p) =BP.(p)+CP.(.),

Ag. ' (.)=Bg.(p)+Cg. (.). (9)g= I.I

—1/2,

l=~ for ~&0,

f= —(i(+1) for i((0.
From Eqs. (9), we get

P/G P/6 q G, —
B

(P(i)/G(i) P/g j g (i)
(10)3 C. P. Bhalla and M. E. Rose, Oak Ridge National Laboratory

Report ORNL-3207, 1962 (unpublished). In these tables f., g„
tanh„ for ii=&1 and a=&2 and the Fermi function LEq. (A8)7 and
are given for 93 values of S separately for the electrons and the P/g P(i)/G(i)

& g
positrons corresponding to thirty values of beta momentum in C=
steps of 0.2 up to a maximum value of 6.2. Also see C. P. Bhalla P(i)/G(i) P/g j
and M. E. Rose, Oak Ridge National Laboratory Report ORNL-
2954, 1960 (unpublished). In ORNL-2964, the entries under sink
should be used with a negative sign for positrons. In Eqs. (10) and (11),we have put a subscript, ()n the

4 M. E. Rose, E/eeserltary Theory of Angllur N'omerltu~n (John
Wiley R Sons, Inc. , ¹wYork 1957). ' M. E. Rose, Phys Rev. S.l, 484 (1937).
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values of Z. Explicit calculations show that these cor-
rections' are negligible for fi, fs, g i, and g s.

For purposes of illustration, we consider only those
beta-decay functions which contain one or more of the
following: f i, gi, f s, and gs. In beta polarization, ' the
following combinations occur:

Bs= (p'Fpp') 'f igi sin(Ai —6 i), (14a)

Ds (p'F——sp)-'(fif i—grg, ) sin(Ai —6 r). (14b)

ln P—y (circular polarization) correlation formulas, we
have'

0.67—

0 t)5 I
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96 gi

gl (c3

96
f

f (el

I I.
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Vis=-(2psFsp) 'I f ifscos(8 r—8s)

+gig s cos(6i —8 s)$. (14c)

In Eqs. (14), Fe is the Fermi function. We define ABo
by Eq. (15).

aBo= LBo—Bo(c)g/Bo(c). (15)
pro. 1. The ratios of the Geld sensitive radial functions / ~ and

g, for j=l/2 to the corresponding Coulomb functions f q(c) and
g, (q) vs beta momentum for electrons (Z=96) and positrons
(Z=90).

parenthesis to imply that all the functions carry a sub-
script z. Also, wherever we omit the argument of radial
functions, it means that these are evaluated at the
nuclear radius p. We define H by Eq. (11) as

Eq. (8) gives

B=51+H'+2H cos(5—8)] 'n.

We obtain from Eqs. (6) and (11)

In Eq. (15), Bs(c) is computed for a Coulomb field.

potential. Similarly, we define AD0 and AS».
In Fig. 3, 680 and AD0 are plotted as a function of

beta momentum for electrons and positrons. ~Si2 is
given as a function of beta momentum in Fig. 4. The
dashed and the solid curves refer to electrons and
positrons, respectively. For electrons we take Z=50,
84, and 96, whereas for positrons we have taken Z=39,
57, and 90. Similar curves for beta spectrum functions
are given by Rose and Holmes'.

4. DISCUSSION AND CONCLUSIONS

To understand these numerical results, we examine
the indicial behavior of the radial functions for a central

and

F/G —I"/& ) G.(p)
g. (p) =BI

kF&'/G" F/g) p—
F (&) (p)

f.(p) =
. g.(p).

G."'(p)

(13a)

(13b)

L9l—
92

g2 {c}

~ 96 2
f

f 2tc)
~SI&+

In our calculations, we compute f„(p) and g„(p) from
Eqs. (13).The formula for the tangent of the asymp-
totic phase, exclusive of the logarithmic term, is given

by Eq. (A1) of Appendix A.

0.90—

f
~ 2

f 2Ic)

3. NUMERICAL RESULTS

In Fig. 1, we give the ratios of f r and gr to the
corresponding Coulomb functions f i(c) and gr(c) as a
function of beta momentum. The dashed and the solid
curves refer to electrons for Z=96 and positrons for
Z=90, respectively. Similar plots are shown for j=3/2
(i.e., g= +2) in Fig. 2. The finite nuclear size corrections
reduce the electronic radial functions for j=1/2 by
approximately 30% for heavy nuclei. This is in con-
trast to a reduction of f s and gs (for j=3/2) by
approximately 10%%uz. As is to be expected, the finite
nuclear size corrections to the electronic radial functions
decrease with higher angular momentum and with lower

0.89— g2

g2 (cI
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FIG. 2. The ratios of the radial functions/ s and gu for j=3/2 to
the corresponding Coulomb functions f s(t;) and g~(s) vs beta
momentum for electrons (Z=96) and positrons (Z=90).

e For heavy nuclei the p radial functions f1 and g & are reduced
at the most by 6% in contrast to a reduction of f2 and g 2 by
one percent.

r C. P. Bhalla and M. E. Rose, Phys. Rev. 120, 1415 (1960).
8 M. Morita and R. S. Morita, Phys. Rev. 109, 2048 (1958}.
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Geld potential, as given by Rose.' For convenience, we
use the same notation:

-0 I

~=~«~, X-r/p, and W(X)=(2j+2)X'f ',

gg Qi(2j+2)-'pf+'ts V(x)W(x)dx,

-0,2—
50=-39

-57

j„C,pr'i'~' for x)0, (16a)
bN ~ —84 ———12

03
96

g ~c~pg+ /

1

f s~Cs(2j+2) &p2+s&s P(x)g (X)ox

for x&0. (16b)

-0,4—

-0.2
z50—

-39--—-57—

-0.3— -90—84
) &oo

96-—50(—
-39
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hed to the curvesposltrons (so i( lid curves). The numbers attac e o
refer to the values of Z used in Eq. ( ) o

' M. E. Rose, Phys. Rev. 82, 389 (1951).

. jj.6~, C d C are constants. It is clear that
g~ and ~ I, are the "field-sensitive" functions, because
they contain an average of the Q.eld potential with 8' as
a weighting ac or. n

'
h f t On the other hand, the indicial

behavior of g i, and fs is essentially governed y t e
angular momentum considerations. However, since e
integrals in Eqs. (16) approach delta functions for

l f 1 r momentum the finite nuclear
size effects are negligible in such a case. These observa-

At this point, some remarks about the choice of a
h nvention used in the computations of radial

t' are pertinent. In the evaluation oQnc ioIls a
E . (A7) there is an ambiguity in the choice o qua
f because only exp(2iil„) is given by q. (

q. , e
or q, ec

h d'%cult arises in the computations o' t,.e ra
'

of the radial functions which appear in qs. ,
ever, all combinations of the radial functions and sines
or cosines of the difference in phase shifts, which occur

I

0.4 I.O 2.0 3.0 40
MOMENTUM IN mc UNITS

F 4 Correction factor for 3 12 vs beta momomentum for elec-IG. . or
solid curves). T etrons (dashed curves) and for positrons

used innumbers attac e oh d t the curves refer to the values of Z use m
Eq. (3) of the text.
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in the theoretical formulas, are independent of any
choice of this phase convention.

The numerical results presented in this paper show
that the beta decay functions, which are multiplied by
the appropriate nuclear matrix clem
retical formulas, are affected depending upon whether
or not these functions contain the Geld sensitive ra ial

as parameters in the standard treatment, and these are
etermine y ad

'
d b a comparison of the experimenta ata

with the relevant theoretical formulas. T ere ore, e

in this empirical evaluation of the nuclear matrix

values with those obtained from a nuclear mode ."
In the study of second-order eGects in the allowed

beta transitions, accurate functions mus emust be used be-
would because otherwise these very small effects

obliterated. Similarly, whenever there is a cancellation
of the leading terms in the theoretical formulas, ap-

te beta decay functions are not adequate.proxima e e a
el calculatedIn conclusion, since the tables of accurate y ca cu

electronic functions are avai a e,
~ ~

e ' these could be used
profitably and conveniently in the analysis of beta
decay experiments.
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APPENDIX A

The tangent of the asymptotic phase, exclusive of the
logarithmic term, is given by the following:

II'(v+zy) I
I'(1—2v) -(Wv —«) (»—v)-'"

~= (2pp)"-
I
I'(—v+zy) I

I'(I+2v) -(W»+v) (»+v)-

tank„=

where

—ao+a~ tang„+H„(cosy/cosg)„(az+az tang„)
7

ay+ao tangy+By (cosg/cosg)„(az a—z tangy)

(A1)
(~"'YG"').=p(Z- b./r, - b-'), (A6)

F&"/G"' was computed from the following equation
for ~&0:

ao ——a4 sin (zrv„/2) +az cos (zrv, /2),

a,= a4 cos(zrV„/2) —a, sin(zrv„/2),

a,= az sin (zrv„/2) —az cos(zrv„/2),

a3—az cos (zrv„/2) +a 7 sm (~v,/2),

r(v„+ y)
85= Im

I
I'(v.+zy)I

I'(v.+zy)
84= Rc

I
I'(v.+zy)I

I'(—v.+zy)I'(—v +zy)
ao=R 87= Im

l~(-v.+'y) I
l~(-v.+'y) I

The ratios of the radial functions were computed
from the following set of equations. In the following, we

omit the subscript ~ on y,.

bo' ——1, bo —(2——I»l+1) '(W —1+3nZ/2p),

3' nZ
b„'q—b &' (2n+2I»l+1) '

2p 2p

p2 $QZ QZ
b.'= —W+1+

2s 2p 2p

For»)0, F„"'/G„&" was obtained from Eq. (A6) by
interchanging F"& and G&" and changing the signs of
S' and Z.

In the computations of Q„S„/Q„T„,Q T /Q„V'„,
+„8„/P„T„,and Q„b„/P„b„', the series was termi-
nated when the contribution of the terms was less than
10 '. The complex gamma function and the real gamma
function were also computed to this accuracy.

G„was computed from the following equation:

where

and

S =—

(F/G). = (v+»/~&) (Z.S./2- 2'-), (A2)

~o= ro= &

n(n+2v)

nZp —(W—1)(v+n+»)
2 g+ (W+1)S„

»+v
(A3)

(1+W)'" II'(v+zy) I

G„= (2Pp) yew»/z

gll j2 I'(1+2v)

X,fe '»+'"(-v+iy) &F&(v+1+iy, 2v+1, 2ipp)+ c.c.],
(A7)

where the confluent hypergeometric function can be
represented by the series

nZp - (W+1) (v+n —«)
S„g—(W—1)T„g .

K

T—
n(n+2v)

(A4)

(F/6)„ is obtained by changing v to —v in Eqs. (A2),
(A3), and (A4).

(
G~ PT
Gi„g 'E„

(AS)

where F„ is computed from (A4) by replacing v by

I'(b) I'(a+tn) Z"
gFg(a, b,Z) =

I (a) m~ I (b+tn) tn!

over the entire complex plane IZI & ~. In the evalua;
tion G„ the terms in the series were terminated, when
two consecutive terms were less than 10 '.

The Fermi function, Po, was calculated from

ll(v.+ y)l
'

Fo(W s) =4(2Pp)z~"' '~e " (Ag)
I'(2v~+ 1)


