774 V. E. VIOLA, JR.,

energies of 10.4 4 MeV and impact parameters approxi-
mately equal to 7,413, Thus, I for the sum of the fission-
ing nuclei will be lowered even more. For fission of
lighter nuclei where the transfer reactions do not lead
to fission,® the value of I for the fissioning nuclei will
be approximately that of the compound nuclei that are
formed.

These considerations are important in any attempts
to analyze fission fragment angular distributions with
heavy ions. Because the angular momentum enters
into the theoretical interpretation of these distributions
as 2, the uncertainties in the average angular momentum
created by the surface reactions affect the conclusions
quite strongly. This problem also hinders the treatment
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of data from isomer ratios for metastable states formed
from heavy-ion systems.
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The finite nuclear size effects are of significant importance in the study of the second-order corrections to
the allowed beta transitions, evaluation of nuclear matrix elements, and in all cases where the £ approxima-
tion is not valid. Accurate electronic radial functions are computed by considering the finite nuclear size
effects and the finite de Broglie wavelength effects. A summary of the computation procedure is given, and
a comparison of the calculated beta-decay functions is made with the corresponding Coulomb functions.

1. INTRODUCTION

HE extensive work done in the last three years has
led to the general acceptance of the vector and
the axial vector interactions for the processes of nuclear
beta decay. A considerable interest has developed in the
following types of problems: (1) a study of second-order
effects, (2) evaluation of nuclear matrix elements, (3)
precision measurements of beta polarization, and (4) a
detailed analysis of the B—v (circular polarization)
correlation experiments. For all these investigations,
one needs to know accurate electronic functions, which
occur in the theoretical formulas. For example, em-
pirical values of the nuclear matrix elements are ob-
tained by fitting the relevant experiments with the
theoretical formulas, and then these can be compared
with those computed on the basis of a particular
nuclear model.

* The contribution of one of us (M.E.R.) was partially sup-
ported by the U. S. Atomic Energy Commission.

In the computation of beta decay functions, there
are two important effects to be considered: (1) the
finite nuclear size effects! and (2) the finite de Broglie
wavelength effect.? The corrections due to the finite
nuclear size effects are those arising from a considera-
tion of a charge distribution inside the nucleus. For this
purpose, a nucleus is generally considered as a sphere of
radius 1.24# F, and of a uniform charge distribution.
This is in contrast to a point nucleus, i.e., only Coulomb
field potential. As a usual practice, the electronic radial
functions are evaluated at the nuclear surface. These
electronic radial functions for a finite nucleus can be
expressed (outside the nucleus) as a proper combination
of the regular and the irregular solutions of the Dirac
equation with a Coulomb potential. It turns out that
some of the beta decay functions are very sensitive to

1 M. E. Rose and D. K. Holmes, Phys. Rev. 83, 190 (1951).
Also see M. E. Rose and D. K. Holmes, Oak Ridge National
Laboratory Report ORNL-1022 (unpublished).

2 M. E. Rose and C. L. Perry, Phys. Rev. 90, 479 (1953).
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this admixture of the regular and the irregular Coulomb
functions. Such a study for the beta spectrum functions
was made by Rose and Holmes.! As pointed out by Rose
et al.? the finite de Broglie wavelength effects can be
taken into account if the expansion of the confluent
hypergeometric functions, which appear in the Coulomb
field solutions, is not terminated by the leading term.
The parameter in this series expansion is the product of
the beta momentum and the nuclear radius.

In view of the large scale computations required for
each isotope, we have prepared tables® of the electronic
radial functions and the tangents of the phase shifts
exclusive of the logarithmic term for the total angular
momentum j=1/2 and j=3/2. The Fermi function is
also tabulated. We have neglected the small effects
(less than 0.29, for heavy nuclei) due to screening. It
is the purpose of this paper to summarize the procedure
used in these calculations, and to present a comparison
of the “field-sensitive” beta-decay functions with the
corresponding Coulomb functions.

2. FORMULATION OF THE PROBLEM

Throughout, we use the relativistic rationalized units
h=m=c=1. We express the solution of the Dirac
equation,

[—e p—B+V(r) =Wy, (1)
as
— i fe(r)X_e¥
"I"= , 2
v ( g (r)X,» ) @

where a uniform charge distribution inside a nucleus
corresponds to a potential V (r) for an electron:

V(r)=—aZ/r for r>p,

aZ 72 3)
V(r)= ——(3 ———) for r<p.

2p o’

In our units, the nuclear radius p is given as
p=0.4285041,

where « is the fine structure constant (1/137.03). X is
the spin-angular function.* Also, we have

= k| —1/2,
=« for «>0,
=—(+1) for «<0.

3 C. P. Bhalla and M. E. Rose, Oak Ridge National Laboratory
Report ORNL-3207, 1962 (unpubhshed) In these tables f, g,
tanA for k==1 and x==2 and the Fermi function [Eq. (A8)]
are given for 93 values of Z separately for the electrons and the
positrons corresponding to thirty values of beta momentum in
steps of 0.2 up to a maximum value of 6.2. Also see C. P. Bhalla
and M. E. Rose, Oak Ridge National Laboratory Report ORNL-~
2954, 1960 (unpubhshed) In ORNL-2964, the entries under sinA
should be used with a negative sign for positrons.

4 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York 1957).
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We take the normalization of f, and g to correspond to
one particle in a sphere of unit radius. The asymptotic
behavior of the electronic radial functions is given by

(W—l 1/2 . +aZW
rfi— - ) sm(ﬁr p

W1\1/2 aZW
78— <————> cos(pr—l— ln2pr+A,‘),
w b

where W= (p?41)'2
For the Coulomb field potential, we represent the
solution of the Dirac equation as

T )

In2pr+ A,‘>,
)

The asymptotic behavior of Fi(r) and G.(r) is given by
Eq. (4) with A, written as 6, where®

&= -argI‘(7~+iy)+m-%7T’Yx, (53,)
and
y=aZW/p, (Sb)
—iaZ
GRine— _S“__i"‘_@, (50)
(vet1y)
= [K2_ ((IZ)2]1/2. (Sd)

The irregular solutions shall be denoted by F, and G,.
We represent by F®/r and G®/r as the regular
solution of Dirac equation, Eq. (1), for  <p. We obtain

7f(r)=AF,9(7),

78(r)=AGD (r), (6)
and _
1'fx (7) = BF, (f) +CF, (r)i
72.(r) =BG (r)+CG. (7). Q)
The normalization condition on f, and g, gives
B*+C2+2BC cos(6—38)=1. (8)

The continuity of f, and g, at r=p gives

AFx(i) (P) = BF, (P)+CFK (p)7
AGD (p)=BG.(p)+CGx(p). )

From Egs. (9), we get

( F/G—F/G ) G« )
= 0
FO/GD—F/G/, G® (10)
and
F/G—F®/G® «
C= (—-————) —B. (11)
F@/GO—F/G

In Egs. (10) and (11), we have put a subscript « on the

5 M. E. Rose, Phys. Rev. 51, 484 (1937).
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F16. 1. The ratios of the field sensitive radial functions f_; and
g1 for j=1/2 to the corresponding Coulomb functions f_i(c) and
g1(c) vs beta momentum for electrons (Z=96) and positrons
(Z=90).

parenthesis to imply that all the functions carry a sub-
script k. Also, wherever we omit the argument of radial
functions, it means that these are evaluated at the
nuclear radius p. We define H by Eq. (11) as

C=BH.
Eq. (8) gives
B=[1+H>+2H cos(6—35) T (12)
We obtain from Egs. (6) and (11)
F/G—F/G Gy
gx(p)=B( — _> ©) (13a)
F®/GO—F/G/. »
and FO0)
«(p
«p)= «(0). 13b
i) = 5 e (13b)

In our calculations, we compute f¢(p) and g.(p) from
Egs. (13). The formula for the tangent of the asymp-
totic phase, exclusive of the logarithmic term, is given
by Eq. (A1) of Appendix A.

3. NUMERICAL RESULTS

In Fig. 1, we give the ratios of f_; and g to the
corresponding Coulomb functions f_i(c) and gi(c) as a
function of beta momentum. The dashed and the solid
curves refer to electrons for Z=96 and positrons for
Z=90, respectively. Similar plots are shown for j=3/2
(i.e., k==£2) in Fig. 2. The finite nuclear size corrections
reduce the electronic radial functions for j=1/2 by
approximately 309, for heavy nuclei. This is in con-
trast to a reduction of f_ and g» (for j=3/2) by
approximately 109%,. As is to be expected, the finite
nuclear size corrections to the electronic radial functions
decrease with higher angular momentum and with lower
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values of Z. Explicit calculations show that these cor-
rections® are negligible for fi, f3, g1, and g_..

For purposes of illustration, we consider only those
beta-decay functions which contain one or more of the
following: f_i, g1, f—s, and go. In beta polarization,? the
following combinations occur:

Bo= (p*F op*) 71 f_1g1 sin(A1—Ay), (14a)
Do= ($2Fop) " (f1f-1—g1g—1) sin(A1—A_1). (14b)

In 8—+ (circular polarization) correlation formulas, we
have?

Nig= (Q#Fop)'“l[f_qf-g Ccos (5_1—‘52)
+g1g s cos(d1—d-9) ] (14c)

In Egs. (14), F, is the Fermi function. We define AB,
by Eq. (15).
AB()=[B()“‘B()(G):'/BQ(C). (15)

In Eq. (15), Bo(c) is computed for a Coulomb field
potential. Similarly, we define ADy and AN 1.

In Fig. 3, ABy and AD, are plotted as a function of
beta momentum for electrons and positrons. AN, is
given as a function of beta momentum in Fig. 4. The
dashed and the solid curves refer to electrons and
positrons, respectively. For electrons we take Z=50,
84, and 96, whereas for positrons we have taken Z=39,
57, and 90. Similar curves for beta spectrum functions
are given by Rose and Holmes!.

4. DISCUSSION AND CONCLUSIONS

To understand these numerical results, we examine
the indicial behavior of the radial functions for a central
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Fi16G. 2. The ratios of the radial functions f_s and gs for 7=3/2 to
the corresponding Coulomb functions f_»(¢c) and ga(c) vs beta
momentum for electrons (Z=96) and positrons (Z=90).

8 For heavy nuclei the 8~ radial functions f; and g_; are reduced
at the most by 6% in contrast to a reduction of f; and g_; by
one percent.

7C. P. Bhalla and M. E. Rose, Phys. Rev. 120, 1415 (1960).

8 M. Morita and R. S. Morita, Phys. Rev. 109, 2048 (1958).
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field potential, as given by Rose.? For convenience, we
use the same notation:

k=|k|, X=r/p, and W(X)=(2j+2)X>H,

1

g~ Ca(2j+2) i f V(X)W (X)X,
0

kaCIpH-l/Z for K>0, (163)

and
~Conitl/2
g—k C2P7 ) 1
FoanCy(2j+2) 10 / V(X)W (X)dX
’ for x<0. (16b)

In Egs. (16), C; and C; are constants. It is clear that
ge and f_ are the “field-sensitive” functions, because
they contain an average of the field potential with W as
a weighting factor. On the other hand, the indicial
behavior of g and fi is essentially governed by the
angular momentum considerations. However, since the
integrals in Eqgs. (16) approach delta functions for
large values of angular momentum, the finite nuclear
size effects are negligible in such a case. These observa-
tions are confirmed by the numerical work.

At this point, some remarks about the choice of a
phase convention used in the computations of radial
functions are pertinent. In the evaluation of G, from
Eq. (A7), thereis an ambiguity in the choice of quadrant
for nx because only exp(2é,) is given by Eq. (5c). No
such difficulty arises in the computations of the ratios
of the radial functions which appear in Egs. (13). How-
ever, all combinations of the radial functions and sines
or cosines of the difference in phase shifts, which occur
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F16. 3. Correction factors for beta polarization functions By
and D, vs beta momentum for electrons (dashed curves) and for
positrons (solid curves). The numbers attached to the curves
refer to the values of Z used in Eq. (3) of the text.

® M. E. Rose, Phys. Rev. 82, 389 (1951).
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F16. 4. Correction factor for N vs beta momentum for elec-
trons (dashed curves) and for positrons (solid curves). The
numbers attached to the curves refer to the values of Z used in
Eq. (3) of the text.

in the theoretical formulas, are independent of any
choice of this phase convention.

The numerical results presented in this paper show
that the beta decay functions, which are multiplied by
the appropriate nuclear matrix elements in the theo-
retical formulas, are affected depending upon whether
or not these functions contain the field sensitive radial
functions. The nuclear matrix elements are considered
as parameters in the standard treatment, and these are
determined by a comparison of the experimental data
with the relevant theoretical formulas. Therefore, the
finite nuclear size effects should be taken into account
in this empirical evaluation of the nuclear matrix
elements. Generally, one can compare these empirical
values with those obtained from a nuclear model.??

In the study of second-order effects in the allowed
beta transitions, accurate functions must be used be-
cause otherwise these very small effects would be
obliterated. Similarly, whenever there is a cancellation
of the leading terms in the theoretical formulas, ap-
proximate beta decay functions are not adequate.

In conclusion, since the tables of accurately calculated
electronic functions are available,?® these could be used
profitably and conveniently in the analysis of beta
decay experiments.
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APPENDIX A

The tangent of the asymptotic phase, exclusive of the
logarithmic term, is given by the following:

— ay+a, tann,+ H, (cosi/cosn), (as+as tans,)

tanA,‘ = )
a3+ ao tanm+ H, (cossi/cosn), (a3 — a2 tani,)

(A1)
where

ao= a4 sin(rv,/2)+as cos(my./2),
a1= a4 cos(myy/2) — as sin(rv./2),
@y=ag sin(my,/2) — az cos(mv./2),
a3= a5 cos(my,/2)+as sin(rv./2),

P(’Yx’*"”’) I‘('Yx—*"iy)
=Re———,  a=Im——,

IT (yetiy) | IT (vatiy) |

T (=7 tiy) T (—vc+1iy)
do=Re—-———.—, G=lm—

IT (=7 t+1y) | [T (—v+1y)]

The ratios of the radial functions were computed
from the following set of equations. In the following, we
omit the subscript « on 7.

(F/G)= (’Y+K/OLZ) ConSn/2on Tade (A2)
where
So= T0= 1
and
aZ, W—1)(y+n+t«
_ p T ) (v )Tn_1+(W+1)Sn],
7z(n+2*y)l_ K+

(A3)
aZp r WH1) (y+n—x)

T.=
n(n+2’y)l_

Sp1— (W— 1)Tn_1].
K="y
(A4)
(F/@), is obtained by changing vy to —v in Eqgs. (A2),

(A3), and (A4).
(E) 2T
G ‘wazﬂ Tﬂ’

where T, is computed from (A4) by replacing v by

(A5)
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, |T (v+iy)| 1‘(1—27)[“(W7—K)(K—7):\”2
T (—y+i9)| TA+27)L ety) )]

F®/G® was computed from the following equation

for k<0:
(FO/GD)=p(Ln ba/ T b, (A6)

where

b'=1, bo=— 2|x|+1)"(W—1+3aZ/2),

3aZ al
b= [— (W—— 1—]———>bn'—l————bw_1’:l @2n42]«|+1),

2p 2p
0 3aZ aZ
bnl =""‘[<W+1+'“—)bn—l__bn—2:|
2n 2p 2p

For >0, F,®/G® was obtained from Eq. (A6) by
interchanging F® and G and changing the signs of
W and Z.

In the computations of 3, Sn/> 0 Tny >on Tn/>on T,
S aSn/Sn Tuy and 3, b,/3 1 b/, the series was termi-
nated when the contribution of the terms was less than
10~%, The complex gamma function and the real gamma
function were also computed to this accuracy.

G« was computed from the following equation:

NN L]

Gomm— L (2pp)"
PR T(1+27)

X3Lemirrtin(y+iy) P (v+1-+1dy, 2v-+1, 2ipp)+-c.c.],
(A7)

where the confluent hypergeometric function can be
represented by the series

T@®) « I'(atm)Zm™
1F1<d,b,Z)=_— )
T'(a) m=0 T (b-+m) m!

over the entire complex plane |Z| <. In the evalua-
tion G, the terms in the series were terminated, when
two consecutive terms were less than 1076,

The Fermi function, F, was calculated from

T(yitiy) | \?
FO(W,Z)=4(2pp)2(“’1’"1)e"”(M> . (Ag)

T'(2y:+1)



