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The integral under consideration, therefore, is from the one pole at k= ks+ie. We find

ip,
"e-'"—~|,""

lllTl dk.
r-aa $2 k 2+i, k2

(28)

The asymptotic Green's function, therefore, is

The two terms of this integral may be studied in the
complex plane, by suitably closing and deforming the
path of integration, initially along the positive real
axis. Figure 3 shows how the closed paths must be
chosen, encircling the first and fourth quadrants. For
suS.ciently large r the portions of path along the
imaginary k axis and along the circle at infinity do not
contribute, provided the lower path is used for the
term exp( —i') and the upper path for exp(i8q). Then
only the second term leads to a nonvanishing residue

(E+is Hp)—' —(2p/A') exp[k pf 1'I hl. (2ksr) j/ksrr'

&&+&,.e"'&-'"'f~(ko, r') I'),"(~2)J'g""(I)').

In the second line of this expression we recognize t.he
familiar "time-reversed final-state wave function, " de-
noted in the present article by p~' &*. The above dis-
cussion is interesting in that it shows the origins of the
various factors of the familiar expression and, in par-
ticular, the manner in which the Coulomb phase factor
enters this expression.
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The effect of the optical potential on the nucleon momentum distribution in nuclei is discussed in this work.
The idea of McCarthy et el. , that the refraction and localization effects caused by the real and imaginary
parts of the optical potential smears the single-particle momentum distribution, is ampli6ed and applied to
nucleon momentum distribution experiments. The assertion is made here that it seems impossible to directly
measure in any manner the momentum distribution of nucleons in nuclei. Further it is proposed that much
or all of the large discrepancy between the experimental momentum determinations and the shell-model
predictions is due to the neglect of these important sources of high-momentum components. The high-energy
C"(p,d)C» pickup reaction data are re-analyzed in the light of these considerations. It is shown that for
qs/ps&8, the 1p-shell harmonic oscillator distribution, (gs/p') exp( —qs/ps), has su%cient high-momentum
components to fit the data. The lack of agreement for q'/p')8 is possibly due more to a failure in the
distorted-wave approximation calculation used here than to lack of high-momentum components in the
wave function.

I. INTRODUCTION

'HE success of the shell model for predictions of
various properties of nuclei such as energy levels,

magnetic moments, etc. , has been amply verified by
many workers. However, it has not been so successful
in predicting the momentum distribution of ground-
state nucleons in target nuclei as found by various
nuclear reaction studies. ' "In general, the experimental

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.' O. Chamberlain and E. Segre, Phys. Rev. 87, 81 (1952).' J. Cladis, W. Hess, and B.Moyer, Phys. Rev. 87, 425 (1952).

3 J. Wilcox and B. Moyer, Phys. Rev. 99, 875 (1955).
4L. Azhgirev, I. Vzorov, V, Zrelov, M. Mescheryakov, B.

Neganov, R. Ryndin, and A. Shabudin, Nuclear Phys. 13, 258
(1958).

~ J. McEwen, W. Gibson, and P. Duke, Phil. Mag. 2, 231
(1957).' J. Garron, J. Jacmart, M. Riou, and Ch. Ruhla, J. phys,
radium 22, 622 (1961).

7 B. Gottschalk and K. Strauch, Phys. Rev. 120, 1005 (1960).

results require much larger amounts, by orders of
magnitude, of high-momentum components in the
single-particle ground-state wave function than are
supplied by the shell-model wave functions. This

' E. Henley, Phys. Rev. 85, 204 (1952); C. Richman and H.
Vhlcox, ibid. 104, 1710 (1956).' M. Block, S. Passman, and W. Havens, Phys. Rev. 88, 1239
(1952)."M. Lax and H. Feshbach, Phys. Rev. 81, 189 (1951)."G. Chew and M. Goldberger, Phys. Rev. 77, 470 (1950)."A. Wattenberg, A. Odian, P. Stein, H. Wilson, and R.
Weinstein, Phys. Rev. 104, 1710 (1956).

"W. Selove, Phys. Rev. 101, 231 (1956)."H. Hagiwara and M. Tanifugi, Progr. Theoret. Phys. 18,
97 (1957).

'~ E. Beltrametti and G. Tomasini, Nuovo cimento 18, 688
(1960)."T. Gooding and H. Pugh, Nuclear Phys. 18, 46 (1960);
K. Riley, Nuclear Phys. 13, 407 (1959); K. Riley, T. Gooding,
and H. Pugh, ibid. 18, 65 (1960); T. Gooding and H. Pugh,
J. phys. radium 21, 326 (1960)."K.Greider, Phys. Rev. 114, 786 {1959)."P.Cooper and R. Wilson, Nuclear Phys. 15, 373 (1960).
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difference has been explained" as being due to short-
range correlations existing in real nuclear wave func-
tions but lacking in independent particle wave func-
tions. These correlations, which are due to the residual
two-body interactions, e.g. , the repulsive core, etc. ,
produce more high-momentum components in the
single-nucleon wave function than does a smooth
shell-model potential.

In this work we shall show that the difference
between the real nucleon momentum distribution and
that given by the shell model is not as great as the
experimental results would seem to indicate. Our work
will be based on the ideas advanced by McCarthy
et al.": that the refraction and localization eGects
caused by the real and imaginary parts of the optical
potential contribute enough high-momentum compo-
nents to explain much and possibly all of the difference
between the shell-model and the experimental results.
Almost all the experimental work to date has neglected
this important effect entirely, or included the optical
potential distortion effects in such a manner as to
discard most of the localization and refractions.
Consequently, the lack of high-momentum components
had to be made up in the nucleon-momentum distri-
bution.

In Sec. II, we shall present a brief review of some of
the experimental work done to date. The ideas of
McCarthy eI, ul." will be discussed and extended in
Sec. III. In particular, we shall suggest that it appears
impossible to measure directly by any means, the
nuclear momentum distribution. We shall also see that
the reaction matrix element contains the Fourier
transform of a "wave function" which is the product
of distortion factors and a nuclear overlap or single-
particle wave function. In Sec. IV, we shall make
specific calculations for the (p, d) reaction to support;
the contentions of this work. In order to evaluate the
distorted wave integrals analytically, we shall make
some approximations which do not, in contradistinction
to earlier work, "discard much of the localization and
refraction effects. The results of our calculations are
discussed in Secs. V and VI.

II. EARLIER WORK

The results of 155—925 MeV ' ' proton-nucleus
quasi-elastic and inelastic scattering experiments were
analyzed in the plane-wave Born or impulse approxi-
mation with several functional forms for the momentum
distribution, such as the degenerate Fermi gas form, '
the one-' ' or two-' component Gaussian distribution. ,
and the harmonic oscillator' r 1s- and 1P-shell distri-

"K. Brueckner, R. Eden, and N. Francis, Phys. Rev. 98,
1445 {1955).' R. Kisberg, I. McCarthy, and R. Spurrier, Nuclear Phys.
10, 571 (1959);1. McCarthy, ibid 10, 583 (1959.); 11,574 (1959);
I. McCarthy, E. Jezak, and A. Krominga, ibid. 12, 274 (1959);
G. Baker, I. McCarthy, and C. Porter, Phys. Rev. 120, 254
{1960); I. McCarthy and D. Pursey, ibid. 122, 578 (1961);
A, Krominga and I. McCarthy, Phys. Rev. Letters 4, 288 (1960).

butions. The results show roughly that for a one-
component Gaussian dependence, exp( —E/Eo), Eo—16
to 20 MeV, and for a two component Gaussian,
exp( —E/Er)+b exp( —E/E2), Ei 7——MeV, E2 ——40
MeV, and 6 =0.05. For the 1s and 1p oscillator functions
for C" exp( —E/E, ) and (E/E„) exp( —E/E~), re-
spectively, E, and E„were found to be 16 MeV' and
6—2 MeV, ' " respectively.

Similar Born approximation analyses of meson
production by 340—380 MeV protons' or high-energy
bremsstrahlung" were made using the one-component
Gaussian and the Chew-Goldb erg er distribution, "
a/Lm'(a'+P')'j. The results obtained are roughly the
same as those given above, i.e., Ep ——13 MeV" and a'
corresponds to an energy of 18 MeV. ' A study' of the

(y,ep) reaction using 340-MeV bremsstrahlung on the
targets Li, C, and 0 gave Ep=8 MeV for Li and
Ep ——19 MeV for C and 0 with the one-component
Gaussian. The pickup reaction induced by 90—120 MeV
nucleons" "—"has been similarly analyzed using the
Born approximation. For the Chew-Goldberger distri-
bution"'5 g corresponds to 18 MeV and for the one-'
and two-"component Gaussian it was found that
Ea= 16 MeV and Er =2 MeV, E2——50 MeV, and
b =0.15, respectively.

Except for normalization, all the results quoted above
have neglected any effect of the nuclear optical po-
tential. The nucleus has been assumed to be perfectly
transparent to the incident and outgoing particles.
There have also been some studies of the above types
of nuclear reactions made with the distortion of the
particle waves by the optical potential calculated in
various approximations.

Using a linear %KB approximation, Riley, Gooding,
and Pugh" have calculated the distortion effects for
the (p, 2p) reaction at 153 MeV with the harmonic
oscillator (H.O.) 1p-shell wave function of C" and a
spring constant obtained from electron scattering
results of E~~7 MeV. They compared the angular
distribution so obtained, with that of the Born approxi-
mation and with experimental results, and found that
the distorted-wave calculations give better agreement
with experiment than the Born approximation by
filling in the minima. They do not discuss the sensitivity
of these results to the target nucleon momentum
distribution. However, they do show that in the Born
approximation the results are insensitive to the mo-
mentum distribution of the struck nucleon. Finally,
Greider' has shown that if one makes a simplifying
approximation to a %KB calculation of the distortion
of the incident and exit waves, the 95-MeV" and
145-MeV'8 C"(p d)C" differential cross sections can be
fit with a one-component Gaussian momentum distri-
bution with Ep=14 MeV. He points out that his
distorted-wave calculations do not require the presence
of the high-momentum components, E2= 50 MeV,
which were needed in earlier work. "

From these results one can conclude that, as a rough
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average the effective momentum distribution of nucleons
in light nuclei can be represented by a one-component
Gaussian distribution with Eo between 13 and 20 MeV.
Sy an eGective distribution, we mean one which
includes both the real distribution and the distortion
effects. The (p, 2p) data indicate relative insensi-
tivity' ' '" to the nuclear momentum distribution in
that it can fit with H.O. or Gaussian distributions with
I;o (or E, and 8„) ranging from 7 to 20 MeV or more.
The electron scattering resultss' give for the C" 1P shell
a value of E„of 7.4 MeV in the distribution function,
(E/E~) exp( —E/E~). We see that for large values of
E this distribution has a smaller amount of high-
momentum components than exp( —E/Eo) with Zo
=13—20 MeV.

III. THE EFFECT OF THE OPTICAL POTENTIAL

In a series of papers McCarthy et al.20 have discussed
the distortion effect of the optical potential on the
particle waves initiating and emerging from nuclear
reactions. They have separated the distortion effects
into the phase and amplitude distortion caused by the
real and imaginary parts of the optical potential. The
phase distortion essentially focuses the particles by
refractive effects. The strength of the focusing decreases
as the particle energy increases, "but is still appreciable
at energies around 100 MeV. The amplitude distortion
produces a spatial localization of the nuclear reaction
sites to some preferred region (e.g. , the surface) of the
nucleus. This localization is caused by the absorption
of the particles from the incident and exit waves into
different reactions than the one under consideration.

McCarthy et at." observe that, because of this
localization, the uncertainty principle requires that the
momentum distribution of the outgoing particles be
smeared. As they point out, the distribution especially
of high components of the momentum of the outgoing
particles is more dependent on the momentum compo-
nents of the localization or distortion than on any
components in a target nucleon wave function, which
is localized only to within the nucleus. They also
discuss the separation of the localization into radial and
angular parts and point out that if there is any angular
localization, e.g., localization to some parts of the
surface region, then the angular momentum resolution
is smeared or equivalently, the distortion carries
angular momentum. The equatorial localization already
found" "for simple reactions consequently carries both
radial and angular momentum components.

We would like, in this work, to amplify and extend
these ideas to the general problem of determining the
momentum distribution of nucleons in the nucleus.

"H. Ehrenberg, R. Hofstadter, U. Meyer-Berkhout, D.
Ravenhall, and S, Sobotka, Phys. Rev. 113, 666 (1959)."P. Benioff, Phys. Rev. 119, 324 (1960): Here the distortion
effects including the target nucleon spatial distribution are
computed directly for the total {p,pe) or {p,2p) cross section
using a purely imaginary optical potential.

First of all, we would like to suggest that it appears
impossible to measure dhrectly, by any means, the
momentum distribution of a nucleon in the target
nucleus. This is based on the fact that the two- (or
more-) body interaction which describes the reaction of
the probe with a nucleon is the same interaction which
describes the probe's reaction with the rest of the
nucleus, the elastic part of which is the complex optical
potential. "The optical potential will be zero in only
two cases. Either the two-body interaction is equal to
zero or it is such as to give zero-valued diagonal matrix
elements between states of the target nucleus. If the
two-body interaction is equal to zero, the momentum
distribution is unobservable as the reaction cross section
is equal to zero. For all types of probe-nucleus inter-
actions found so far, the diagonal matrix elements are
different from zero, i.e., there is an optical potential2'
for a probe-nucleus system whenever there is a probe-
nucleon interaction. There is also an optical potential
for any particle emitted by the probe-nucleon inter-
action(s).

Even though the nucleon momentum distribution is
not directly measured, we do measure a related quan-
tity, the distorted momentum distribution. This distri-
bution is essentially the Fourier transform of a "wave
function" which is a product of the single-particle wave
function and the distortion factors. Since the value of
the distortion factors is a maximum in some restricted
region of the nucleus, the product wave function is
more localized than the single-particle function and
contains more high-momentum components. For simple
direct nuclear reactions at energies of 100 MeV the
region of preferred reaction sites is the equatorial surface
region. " Roughly, this same localization is also quite
pronounced in the multi-BeV region, " due mainly to
meson production and should also inQuence the mo-
mentum distribution of. secondaries produced in
cosmic-ray jets.

Perhaps we can make these ideas more explicit by
considering a general transition matrix element for a
reaction in which one target nucleon is removed from
the nucleus by some type of direct interaction. The
transition matrix element is

~V=(lto (ro)ltr (rr)e'-~(ro —rr)+r(~~-i)
X

~
I(ro —rx)

~

lt o+(ro)+'(~~ r,rr)), (1)

where we have suppressed inessential spin and exchange
contributions. We have limited ourselves here to one
incoming particle, denoted by the distorted wave
function Po+(ro) and two outgoing particles denoted by
similar wave functions 4'o (ro), fr (rr), as well as one
internal wave function, y;„&(ro rr), betw—een particles
0 and 1. These limitations are not essential to the
argument here; we could have many nucleons and
mesons, each described by distorted waves, coming out
"H. Feshbach, Ann. Rev. Nuclear Sci. &, 49 (1958);A. Kerman,

H. McManus, and R. Thaler, Ann. Phys. (Nerv York) &, 55k
(1959};A. Glsssgold, Revs. Modern Phys. 30, 419 (1958}.
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of the target nucleus. The initial and final nuclear state
wave functions are denoted by 0; and +~, respectively,
and I(ro —ri) is an appropriate two-body interaction.

We shall define distortion factors D+(r,) by requiring
that

(2)

where D contains all the distortion effects. Ke now
assume that I(ro—r,) is of sufficiently short range so
that the distortion factors, D, which typically vary
appreciably over distances of the order of nuclear
radii, don't change much over the range of I(ro—ri)
for which I~O. Using this simplifying but inessential
restriction"'4 we can factor the matrix element to
give (we have let ro ——ri+r)

M;,=(e'o'1D;(r, )D;(ri) l8,f(rl)D1+(rl))
x (e'""o '- (r) l I (r) l

e"').
The nuclear wave function overlap is defined by

If recoil effects are neglected. we have, for (p,d) re-
actions, Di (ri)=1 and q=K —ko, ki ——K/2; and for

(P,2p) or (p,pn) reactions, qr;„,(r) 1 and q=ki+ks
—ko, where ko is the incident nucleon momentum and
K, ki, and ks are the respective outgoing deuteron and
nucleon momenta. The vector, q, is the quantity which
is varied in (p,d) or (p, 2p) differential cross section
measurements. The main result is given by Eq. (3),
where we see that the transition matrix element is
proportional to the amplitude for finding the momentum

q in the "single-particle wave function, " D(ri)8(ri).
For brevity all the distortion factors are lumped into
one D(ri).

%e can now understand the origin of the high-
momentum components. The function, 8(ri), often
taken to be a shell-model wave function, localizes the
target nucleon to be somewhere in the nucleus. The
function D (r,)8 (ri) electively localizes the target
nucleon to some restricted region of the nucleus, e.g.,
the equatorial surface region, and, by the uncertainty
principle, has more high-momentum components than
does 8(ri). It should be understood that D(ri) does not
actually localize the target nucleon to some region but
instead describes the regions of preferred sampling of
the target nucleon wave function. That part of D(ri)
coming from the real part of the optical potential,
while not localizing the sampled regions, distorts the
phase relations of the different parts of the incident
and exit waves and electively alters the momentum
distribution. In the Born approximation D(ri) =1 and
we have the familiar result that M is proportional to
the amplitude for finding momentum, q, in the overlap
function, 8(ri).

'4 N. Austern, Ann. Phys. (New York) 15, 299 (1961).

If we write the distortion containing part of 3f in
the momentum representation we And, as McCarthy
et al.20 do, that

M ~ p (k' —q) cV(k') dk'.

Here 1V(k') is the amplitude for finding momentum k'
in the nuclear overlap function. The factor p(k' —q')
denotes the amplitude for finding the momentum k' —q
in the distortion factors. We see that we can have a
small value of k' yet have an appreciable amplitude
for producing a large q if p(k' —q) has a broad enough
momentum distribution. Equation (5) is our main
justification for asserting the impossibility of directly
measuring the distribution of k' as we see that we must
integrate over k' in the matrix element, not in the
square of the matrix element. Only if p(k' —q) =8(k'
—q), as it is in the Born approximation, could one
measure directly the momentum distribution of the
nuclear overlap wave function.

From this discussion, we see that any approximations
made in the calculation of the distortion factors must
roughly reproduce the correct spatial localization and
refraction if the result is to be used to study the mo-
mentum components of the overlap function. If the
approximate form of D(ri) contains too little (much)
localization and refraction then the experimental
analysis will yield too many (few) high-momentum
components in the overlap function.

IV. THE (P,d) REACTION

For the remainder of this paper, we shall apply these
ideas to the (p, d) reaction. The experimental data in
the literature for this reaction are better suited than
those of the (p, 2p) reaction'"'" to study the mo-
mentum distribution of target nucleons. This is due to
the fact that most of the (p, 2p) data were not taken at
angles corresponding to a large momentum of the
target nucleon.

A. Theory

The distorted-wave Born approximation matrix
element is obtained from Eq. (1) by replacing both
outgoing nucleon wave functions by one for the deuteron
center of mass. The matrix element is"

M'i=(4n (R) O («—ri)+f(~A-1)
X l

&(ro—ri) lPo+(ro)+'(~A i,ri)), (6)

where R= (ro+ri)/2, 4', and 4'f are the wave functions
as defined for Eq. (1), and V(ro —ri) is the neutron-
proton triplet potential. " We now follow the previous
development of Eqs. (1)—(4) and factor the above
matrix element" to obtain

M,f ——(e'o "DD—(r,) l
D„+(r,)8,r(ri))

X(~;.„(r) I V(r) I
ef's') (7)

"N. Bessis, Compt. rend. 248, 2168 {1959).
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where

all.d
tl= LA/(A —1)]K—kp,

y= kp ——.', K.

B. Matrix Element Evaluation

If we choose a Hulthen wave function for the deu-
teron, then the right-hand matrix element of Eq. (7)
can be taken directly from the literature. ""It is

The factor, A/(A —1), is introduced to take account of
nuclear recoil."The vectors kp and K denote the c.m.
proton and deuteron momenta, respectively. To obtain
Eq. (7) we have replaced rp by r+ri and defined

if' (R) by
(R) =D (R)e' '".

The c.m. differential cross section is given by"

do 3 rts'A (A —1)

dQ 4 2s-sh'(A+1)'kp r

(10)

where ko is the proton c.m. momentum and the factor
3/4 is the spin statistical weight factor. The deuteron
momentum, E~, is determined by energy conservation
to be"

4(A —1)m A —1/2

&~+Qx
(A+1)h' A+1

(12)

The laboratory system incident kinetic energy is I-'"1.,
A is the target atomic weight, m is the nucleon mass,
and Qr is the mass difference between the initial and
final states (Qr&0 for endothermic reactions). We
shall take C" to be the target nucleus. For a j—j
coupled spin-zero target nucleus, the final-state sum,

Pr, reduces Eq. (11) to

do 3 m'A (A —1)
Ei,cvi,

I
3IIi, I'

dO 4 27r'A'(A+1)'kp

Eg„ÃI„
+ Z I~»,.I' . (13)

3 m=—1

' This result can be derived by making a change of variable
in Eq. (6) to the c.m. system of the target nucleus and relative
coordinates and integrating over the resultant momentum
conservation delta function, B(K'+K), for the total c.m. system.
The nuclear recoil is denoted by I'.

To get this result we have taken the overlap wave
function, Eq. (4), to be a single-particle wave function
for the 1s shell or 1p shell corresponding to the picked
up nucleon being in a 1s state, IMi, I', or in any one
of the three orbital 1p states, IMi~ I'. The sum on
m is over the squares of the matrix element because,
for given values of the spin projection of the incident
proton, the exit deuteron, and the target nucleus, only
one value of m is possible for a closed shell target
nucleus. lVt, and ¹„arethe number of 1s and 1p
neutrons in C": We shall leave them as normalizing
parameters when comparing theory to experiment.
This is the only use we shall make here of spins as we
shall in the following neglect any spin-orbit terms in
the optical potential.

47rBAs /ys es — 1

(v».p(r) I
V(r)

I

e"')= (14)
m ( es 1+ps/es

Ve(V+e) -'"
2s. (e—y)'

D„+(ri)= exp
kpL, A'c'

V„(ri)ds, (16)

Dg)
—(r,) = exp

El,k'c'
V~ (ri) dsxs, (17)

where I." is the total lab energy of the particle, including
the rest mass. The proton and deuteron optical po-
tentials are given by V„(ri) and Vi~(rt). The proton is
incident parallel to the s axis from —~. The integral
J;"dsrcs is along the direction of Kr, from the point at
which the deuteron is produced to + ~. The derivation
of these expressions has been given many times be-
fore.""We merely remark here that these expressions
are the result of the substitution of Eqs. (2), after they
are transformed into the lab system

I
kp~ (A+1)kp/A

= kpz, and K —+ K+kp/A = Kz,] into the one-body
Klein-Gordon (or Schrodinger) equations. The equa-
tions are solved by essentially the linear WEB method,
i.e., V'D is neglected in comparison to kdD/ds

It is worth noting that Do *(ri) is the complex
conjugate of the time-reversed solution and, in the
derivation of Eq. (17), one must be careful with the
signs and ordering of the integration limits. One way
to eva, luate DD "'(ri) is to determine Dii+(rr) in the
actual reversed scattering in which the deuteron is
incident a,long —K, and then use the relation, "
DD+( K, ri) =DD-'(K, r—i).

"E.Squires, Nuclear Phys. 6, 504 (1958).
2p R. Glauber, Lectlres iN Theoretical Physics (Interscience

Publishers, Inc. , New York), Vol. I; L. SchiG, Phys. Rev. 103,
443 (1956); G. McCauley and G. Brown, Proc. Phys. Soc.
(London) 71, 893 (1958); S. Brenner and G. Brown (unpublished
notes)."E. Merzbacher, Qucntlns mechanics (John Wiley R Sons,
Inc. , New York, 1961), Chap. 21, pp. 500, 501.

The factor 7 is given by y= (rrcB&/A')'i', where Bn is
the deuteron binding energy and &=6.2y.

The remaining matrix element is a bit more compli-
cated. Our method of evaluation has some points in
common with that given by Squires. The two dis-
tortion functions, D„+(ri) and Do *(r,) are given by
line integrals through the optical potential along the
incident proton and exit deuteron momentum vectors
respectively, "

—iE I,
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For actual calculations two approximations will be
made. First we shall use DD *(ri) computed for forward
scattering (K parallel to kb) for all directions of K.
This approximation, which has been used in other
work, ""is exact for forward scattering and should
contribute appreciable errors only for large scattering
angles where the actual path lengths are different from
the forward scattering path lengths. The other approxi-
mation consists of the replacement of the expression
DD *(ri)D„+(r&) appearing in the matrix element of
Eq. (9) by the expression

ing factor in Eq. (19)

exp —z .'V(r})/ls

14
= exp n„ 1+—s' exp( —s'), (21)

19

where s=P'b and b is the impact parameter. The
factor, e, is given by

(18) where

a„=—19l7r'/2tV (0)/12P', (22)

We take lV (r,) to be an arithma, tic average of
E&I,V&(ry)/(kpi, tt c ) and E/}I,V~(r})/(Ki, t't'c'), where

V„(r})and V~(r&) are taken as spherically symmetric
potentials with the same radial dependence but different
central values. Use of Eq. (18) will allow us to analyti-
cally integrate the distortion containing matrix element
for M;y as a simple power series.

Using these approximations, we get for the distortion
containing part of M;f

e z9 r& e—xp b z/V(r&)ds

X+al/(r}) &/., (&,y)«}., (19)

where O, t(r&) has been replaced by a single-particle
wave function with E &; and Vi being, respectively,
the radial part and the spherical harmonic. For the
target, C", the radial dependence of V„(r), Vr}(r), and
hence N(r) will be taken as the harmonic oscillator
model total nuclear density distribution with one
nucleon removed from the e, l, j shell. This exclusion
of the struck nucleon from the optical potential was
found to be necessary in other work" describing bound-
state inelastic scattering on C".We shall determine the
spring constant, P, in 1V(r&) by empirically fitting lV(r, )
to the experimentally determined Woods-Saxon po-
tential. We then get for lV(r})

1V(rz)=lV(0)I 1+(l/6)P"rP) exp( —P"rP), (20)

corresponding to the removal of a 1p neutron, and

tV(r})=tV(0) (4+—,'P"r}') exp( P'r}'), —

corresponding to the removal of a 1s neutron. We shall
follow through the derivation for the 1p case and
merely give the final results for the is case.

Using Eq. (20), we obtain for the distortion-contain-

'0 C. I.evinson and M. Banerjee, Ann. Phys. (New York) 2,
4/1, 499 (1957); 3) 67 (1959).

1 F,r, V„ I/g)r, VDi
tV(0) =-

2 kbiA'c' Ki,h'c' I
(23)

R„/, (r) is the harmonic oscillator wave function (n= 1),

Pb/2 2 l+2 1/2

Rii= (Pr)/ exp( —P'r2/2), (24)
m" 4 (2l+ 1)!!

where (2l+1)!!—= (2l+1)(2l—1) X3X1.
The integration of the matrix element, Eq. (19), can

be done in cylindrical coordinates if the exponential in

Eq. (21) is expanded in a power series. Each term of
the series can be integrated analytically if we note the
simple form of the spherical harmonics (sin8=b/r and
cose=s/r). We substitute Eqs. (24) and the expansion
of (21) in Eq. (19), make a change of variable t=P's
$p'r'= (t'+s')p'/p"] and set

q r = qbb cos (p„—&p)+ q, s.

With some algebra and use of the expressions"

&iz oozy —P &zzzz(y+$zz} J (S)

*11d

J„(at) exp( —p't')t -'dt

1' ( -I+ b) ( a/p)"
,F, (-,'u+-', ~; v+1; —a/p)

2p"1'(v+1)

we get an expression which can be written in one form
for all possible m and l for C". The result is

yi(~&, & ~l, m)Z~2(i —I'»&I+3) i~~3/4g»&~1l ~rb i J

X(f/b) "'(C/b)' '"' «p( —c'/2b')D/ (f)

"P. Morse and H. Feshbach, methods of Theoretica/ I'hysics
(McGraw-Hill Book Company, Inc. , New York, 1953), Part II,
p. 1322.

'2 G. N. Watson, The Theory of I3essel FNnctions (Cambridge
University Press, New York, 1952), pp. 393, 394.
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where the distortion effect is given by

& n (2d )v(++ 1))m)

D~-(f)= 2 E
n-p v=s (rs—p) l (2~+8&)v+Iml+1

&&exp( ef'/$P(2m+2)]}

XP(—y; ill+1; f'/(4m+22)) (27)

In these expressions P(a; c; x) is the confluent hyper-
geometric function which, in this case, is an associated
Laguerre polynomial, d for l=1 and 0 is 14/19 and
16/17, respectively, and 5 =P/P' where P' and P are the
spring constants for the optical potential and nucleon
distributions, respectively. The factors f and g are the
projections of q/P' on the plane perpendicular to ks
and on ks, respectively, and c=

~
q~/P'. From Eq. (8),

we see that
A E—sinH,

A —1

A E kp—cosH ——
)2—1P' P'

work "It is found to be

P=0.60F '. (32)

In order to facilitate a choice of VD, Eqs. (26) and
(27) were evaluated to (1.4% accuracy on the IBM
704 computer. To obtain this accuracy the upper limit
on the e sum varied from 8 for small scattering angles
to 14 for large angles.

100—
I

(p d)G
95 MeV

Vp = -25-I5i MeV

IO

V. RESULTS

The solid lines in Figs. 1 and 2 give the best fits to
the experimental points, marked by circles and triangles
for" 95-MeV and" 145-MeV incident protons, respec-

where 0 is the deuteron scattering angle. For /= 1, o.„is
given by Eq. (22) and for /=0, n, is

n, = —17ix'"X(0)/12P'. (30)

It is rather remarkable that the expression for B„g
turns out to be factorable into the product of the
momentum transform of the single-particle wave func-
tion and the distortion effect in momentum space.
This allows us to find directly the effect of the distor-
tion on the single-nucleon wave function momentum
transform.

O
L»

I.O
Xl
E

O. I

C. Parameter Choice

TAsLK I. Low-Z nuclear optical model parameters.

rp 8
(Fermis) (Fermis)

V+i W
(MeV)

Energy
(MeV) Reference

1.3 0.66
1.23 0.49

—25 —15i
-15—18i

95
130

23
23

We shall, for the most part, take the real and imagi-
nary parts of the deuteron optical potential as param-
eters to vary to give the best fit to the experimentally
observed differential cross sections. The proton Woods-
Saxon well parameters taken from the literature" are
given in Table I. For the Woods-Saxon well shape, we
have chosen rp ——1.25 F and a=0.60 F. A good fit of
Eq. (20) to these values of rs and a is obtained by
choosing

P'=0.47 F—'.

The value of P is obtained from the electron-scattering

0.0 I

0 IO 20 50 40 50 60
C. M. SCATTERING ANGLE, degrees

70

FIG. 1. The C12(p,d)C" differential cross section for 95-MeV
incident protons. The circles, with their associated error limits
are the experimental results of Selove. (See reference 13.) The
two dashed lines, labeled with 1 and 0, are the partial differential
cross sections for m= ~1 and m=0, respectively. The solid line
is the sum of the m=

~
1 and m=0 curves. The cross section for

pickup from the 1s shell is given by the dotted curve.

tively, for the 1p shell pickup reaction in C". The two
triangles given for each of the larger angles for the
$45-MeV data represent two extreme ways of analyzing
the experimental data and, as such, give the range in
which the correct value should lie. The 1p shell cross
section is made up of contributions from neutrons with
orbital projection quantum numbers m= 1 and 0. (The
contribution for m= —1 equals that for no=1.) The
dashed lines give these partial cross sections. The
curve for m = 1 is multiplied by two to include m= —1.
The dotted line gives the contribution for is-shell
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neutrons, normalized to half the eGective number of
1p-shell neutrons.

The values of the deuteron optical potential which
were required to give this best fit are

UD= —30—35i MeV, E»,t,a= 95 MeV, (33)

UD= —30—45i MeV, E„.t,.„=145 MeV. (34)

With these values as well as those given in Table I and
Eqs. (31) and (32) the effective number of 1p-shell
neutrons required to normalize theory to experiment
was found to be 4.0 and 6.7 for 95- and 145-MeV
incident energies, respectively. These values are in
satisfactory agreement with the expected value of four.

It is of interest to compare the required values of the
deuteron optical potential to the values which might be
estimated. If we use a suggested simple modep' " that
the deuteron optical potential equals the sum of the
neutron and proton optical potentials taken for nucleons
with half the kinetic energy of the deuteron [Eq. (12)],
we find for 95-MeV incident protons"

UD —(72+30i) MeV,

l00

IO

0

I.O
E

O. l

I I

CI2( p d) CII

!45 MeV

Vp, * -I5-Isi MeV

V * -30-45i MeV

and for 145-MeV protons"

UD (60+30i)—MeV.
0.0 I

0
I

10 20 30 40 50 60 70
C. M. SCATTER I NG ANGLE, degrees

These crudely estimated potentials have larger real
parts and smaller imaginary parts than the potentials
of Eqs. (33) and (34). It has been pointed out" that,
especially for light nuclei, the imaginary part of the
deuteron potential should be larger than the sum of the
two nucleon imaginary parts. This effect arises from
surface stripping. Also the low binding energy of the
deuteron should contribute to an increase of the
imaginary part of VD. On the other hand, the real
part of the estimated deuteron potential is larger at
both energies than what was required in this work.
Other work on elastic scattering of 95-MeV" and
167-MeV'4 deuterons on carbon and other nuclei has
found the deuteron optical potential to be —40—20'
MeV" and —28—16' MeV, '4 respectively. Our values
for the real and imaginary parts of the deuteron optical
potential at both energies are in satisfactory agreement
with the above-discussed values when one considers
the wide range of the empirical and estimated values.

The ranges of variation of the values of the real and
imaginary parts of VD which were used to try to 6t the
experimental data were 15—50 MeV and 10—45 MeV,
respectively. We also investigated the effect of changing
the extent of the optical potential by varying p'. In
general, we needed a large value of the imaginary part
and a small value of the real part of V~ to reproduce

"S.Watanabe, Nuclear Phys. 8, 484 (1959).
'4Q. Cheisvilli, J. Exptl. Theoret. Phys. (U.S.S.R.) B2, 1240

(1957) Ltranslation: Soviet Phys. —JETP 5, 1009 (1957)).
'5 H. Melkanoff, Proceedings of the International Conference on

the Nuclear Optical Model, Ii/orida State University Studies, No.
3Z, 1959 (Florida State University, Tallahassee, Florida, 1959),
pp. 207-215.

Fxc. 2. The C"(p,d)C" differential cross section for 145-MeV
incident protons. The triangles are the experimental data of
Cooper and Wilson. (See reference 18.) The double triangles for
many points represent two extreme ways of analyzing the data
and as such should roughly be the error limits. The two dashed
lines, denoted by 1 and 0, are the partial cross sections for m =

~
~1 ~

and m=0, respectively. The solid line is the sum of the m=0
and m= ~1~ curves. The cross section for pickup from the 1s
shell is given by the dotted curve.

the dips in curves in Figs. 1 and 2 at 20'. We were
unable to fit the data well with any values of UD if P'
was appreciably larger than 0.47. For values of p' less
than 0.47 we could 6t the data but the normalization
was less satisfactory and an even larger imaginary
part of VD was needed.

VL DISCUSSION

A. Momentum Distribution

Perhaps the most important characteristic of the
curves in Figs. 1 and 2 is that the experimental data is
fitted well for angles smaller than 35'—40 and for
larger angles the calculated curve drops off faster than
the experimental results. This lack of agreement at
larger angles is most likely due to either an insufhcient
amount of high-momentum components in the single-
particle wave function or the failure of our approxi-
mation of using the forward scattering expression for
DD *(r) for all scattering angles.

We can very crudely estimate which of these factors
is most responsible for the lack of agreement at large
scattering angles. If it were exclusively our forward-
scattering approximation which was causing the dis-



agreement, then one might expect the fractional
deviations between theory and experiment to be the
same for a given angle at both energies. If the lack of
high-momentum components were the ca.use of error,
then the fractional deviation of theory from experiment
would be the same for those scattering angles at each
energy with the same values of c'/5'=q'/P' (see Eqs.
(26), (27). These angles can be found from the relative
positions of the various "dips and bumps, " in Figs. 1
and 2 and are 10—15 deg larger at 95 MeV than at 145
MeV. Examination of Figs. 1 and 2 indicates that the
failure of the forward scattering approximation may
cause more of the disagreement than the lack of high
momentum components in the single-particle wave
function. On the whole, the fit of theory to experiment
is better at 145 MeV where smaller scattering angles
are involved than a,t 95 MeV. For both sets of data the
Gt is good for angles &35'—40 which corresponds to
values of q'/P'&8. Recalling that the reaction cross
section is the product of the momentum distributions
of the distortion and the single-particle wave function,
we conclude that (q'/P') exp( —q'/P') contains enough
high-momentum components up to q'/P'~8 to repro-
duce the experimental data. The difference between
this distribution and the previously obtained average
distribution, exp( —E/Eo), with Eo 13—20 MeV (q'/P'
=E/7. 5) is appreciable as 8 exp( —8)~0.0027 but
(E=60 MeV) exp (—E/15) 0.018.

Other approximations made, besides the forward
scattering approximation for DD *(r), are the neglect
of the variation of DD and D„+over the neutron-proton
interaction range; Eq. (7), the use of an average value
of cV(r), Eq. (18), and the neglect of changes in the
path length in the optical potential due to refraction ""
&Ve feel that. the effects of these approximations are
smaller than the use of the forward-scattering expression
for D~ *(r) and can be neglected here.

We conclude, then, that the 1p-shell nucleon mo-
mentum distribution fits the harmonic oscillator distri-
bution, (q'/P') exp( —q'/P'), with the spring constant
determined from electron-scattering work" up to q'/P

8. The question of a fit at larger values of q'/P', or
the deuteron scattering angle &35', can only be
resolved bv a more accurate determination of the
distortion factors with the correct scattering-angle
dependence.

B. Other Data

The other distorted-wave calculation made to deter-
mine nucleon momentum distributions is the work of
Greider" on the same reaction as was studied here,
C"(p,d)C". The same experimental data" "as we used
was analyzed with a square-well optical potential to
give a 1p-shell distribution, exp( —E/14). With this
distribution Greider was able to Gt the experimental
data over the whole range of angles with a normal-
ization of 4-6 neutrons required. He also remarks that
one does not need even the high-momentum compo-

nents in exp( —E/14) if the incident proton and exit
deuteron are allowed to scatter in the nuclear Geld.

Leaving aside this scattering for the present, we see
that there is a large discrepancy between the results
of Greider's work, hereafter called I, and our work in
that the momentum distribution obtained in I has
many more high momentum components than the
1P-shell H.O. distribution obtained in this work. This
discrepancy is the result of two factors. One factor,
which we feel is the most important, is contained in the
equations for the distorted proton and deuteron waves
which were actually used in I LEq. (24) and its equiva-
lent for the outgoing deuteron of reference 17] to
evaluate the matrix element. These equations, which
contain approximations to the actual path length inte-
grals in a square optical potential L(R' —r'sin'8)'"~
R], essentially replace the spherical nucleus by two
cylindrical pieces with end faces perpendicular to the
incident proton and outgoing deuteron. This replace-
ment discards most of the refraction and localization
effects which a spherical potential has (the refraction
and equatorial localization of plane waves incident
perpendicular to a cylinder face is essentially zero).
As was mentioned at the end of Sec. III this has the
consequence that nucleon momentum distributions
with too many high-momentum components will be
required to fit the experimental data. Thus, we feel
that a good portion of the difference between our
distribution and exp( —E/14) is due to distortion
effects which, in I, have been erroneously attributed to
the 1p-shell nucleon momentum distributions.

The other factor which helps to account for the
discrepancy is that a smaller deuteron optical potential
was used in I, V~= —20—15i MeV, for 95- and 145-
MeV incident proton energies, than was used here,
Eqs. (33) and (34). The smaller optical potential
reduces the distortion by reducing the amount of
refraction and localization and consequently supplies
less high momentum components. We made calculations
at both 95 and 145 MeV using the deuteron and proton
optical potentials of I and the values of P and P' given
by Eqs. (31) and (32) and got a poor fit to the experi-
mental results even for small scattering angles where
our forward scattering approximation for Dii *(r)
should be good. Also our calculated values of the
differential cross section with the potential of I were
too large by a factor of 3 requiring an effective C"
1p-shell neutron number of 4/3. Roughly, a correct
effective neutron number of 4 to 6 was required in I to
Gt the experimental data. It can be shown by simple
computation that the factor-of-three discrepancy be-
tween ours and Greider's' calculations is accounted for
by the increased path length resulting from the "cyl-
inder approximation used in I. Ke feel, then, that the
deuteron potential, —20—15i MeV, which would give
4/3 effective neutrons here and in I and which gives a
poor Gt in this work to the experimental data, is
probably too small.
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Because of the approximations used both in I and
here, it seems premature to invoke scattering of the
proton and deuteron in the nuclear field'~ to explain
the presence of any high-momentum components. It
could well turn out that, after these approximations
have been removed, the data will still show the effects
of the initial- and final-state interactions which have
been neglected so far.

1 000

Born% ~ ~ ~ ~ ~
0

100

lo =.

gtR ( p d) pit
95 MeV

I 1.

C. The Partial Differential Cross Sections

There are some interesting features of the partial
differential cross sections shown in Figs. 1 and 2, for
picking up neutrons with different orbital projection
quantum numbers. First of all, we note the zeros at 0'
and 42' scattering angles for the respective m=

~

1
~

and m=0 partial cross sections. To explain these
zeroes, we recall that Eq. (26) is the product of the
momentum transform of the single particle wave
function, (e'p'~ I'q~(8, q)R„~,(r)), and a distortion fac-
tor. Since the single-particle momentum transform is
proportional to F~ (8„p,), the zeroes are those of the
spherical harmonics, Y~~~~ ~ sin8, and Y~oa cos8„repre-
sented by f/8 and g/8, respectively, in Eq. (26). The
zero for Y~o is at 42 rather than 90', because 8, refers
to the direction of the vector q LEqs. (8), (28), (29)]
relative to kp rather than the direction of K.

Another feature of the cross sections is that, except
for angles of &7', the differential cross section and
also the integrated cross section consist predominantly
of the pickup of the m= ~1~ neutron rather than the
m=0 neutron. This effect is due to the fact that the
distortion effect, especially in the forward. -scattering
approximation, localizes the region of maximum pickup
probability to the nuclear equatorial regions sP" A 1P
nucleon with m=

~
1~ is more likely to be found in the

equatorial regions (P't~u ~sin8) than a nucleon with
m=0 (V»pc cos8). Consequently, the m= ~1~ nucleons
contribute more to the cross section than do the m=0
nucleons. This effect and its consequences will be
discussed more thoroughly in a subsequent publication.

D. The Distortion EBect

There are some additional features of the distortion
effect, which are worth examining at this point. We
have pointed out that the real and imaginary parts of
the optical potential distort the incident and exit
particle waves by refraction, (similar to the bending of
light by a spherical lens) and localization, respectively.
It is interesting to examine the effects of the real and
imaginary parts of the optical potential separate from
each other. This is shown in Fig. 3. The solid line
marked E is the 95-MeV differential cross section
computed for the same parameters as those used in
Fig. 1 except that the imaginary parts of V~ and V~
are set equal to zero. Similarly, the solid line marked I
is computed for purely imaginary V„and VD. The

l.o =

o.oi
0 l0 20 50 40 50 60 70

C. M. SCATTERING ANGLE, degrees

FIG. 3. The 95-MeV C"(p,d) C" lp-shell differential cross
section for special values of the proton and deuteron optical
potentials. The solid curves labeled with R and I are for pure
real and pure imaginary potentials taken from Table I and Kq.
(33).The dashed curve is for the complete complex potential and
is the solid curve of Fig. 1.The dotted curve is the Born-approxi-
mation cross section obtained by setting U„= UD =0.

dashed line repeats the 1p cross section already given
in Fig. 1 and represents the combined effect of the rea, l

a,nd imaginary parts of the potential. The dott d line
is the Born approximation cross section obtained by
setting V„=V~=0. All the curves are normalized to
four 1p-shell neutrons. We notice several characteristics
of the curves in Fig. 3. The curve for the real and
imaginary parts of the potential are less steep than the
Born approximation curve, indicating the addition of
high-momentum components by the distortion. The
curve for the pure imaginary potential is at least an
order of magnitude less than the curve for the pure
real potential indicating the large damping effect along
the particle paths. We also note an effect which we are
at a loss to explain: The purely real potential curve
shows no oscillations at all whereas the purely imaginary
curve has strong oscillations with minima at 28' and
~52'. Offhand we might expect the purely real curve
to show as much oscillatory behavior as the purely
imaginary curve. Finally, we note that the curve of
Fig. 1 partakes of both the R and I curves: The inter-
ference effects are partially washed out, and the
general slope of the curve is similar to that of the R
curve.

It is also of interest to examine the distortion factor,
D~ (f) of Eqs. (26) and (27). Figure 4 shows curves of

~D~ (f) ~' as a function of the scattering angle for
1p-shell nucleons with m= ~1~ and m=0 for 95-MeV
incident protons. The curves of Fig. 4 demonstrate
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Fro. 4. The 1p-shell distortion factor squared, ~D&m~s as a
function of scattering angle for 95-MeV incident protons. The
curves labeled 1 and 0 refer to m =

~
1

~
and m =0, respectively.

vividly the addition of high-momentum components to
the Born approximation cross section; they show an
initial fiat portion and a dip for small angles and then
become essentially an increasing exponential for larger
scattering angles LEq. (27)$. We believe that the reason
the distortion effect is larger for m=0 than for m= ~1

~

is due to the spherical harmonics in the single nucleon
wave function. Since Yr~r~ccsin8 the m= ~1~ nucleon
is more likely to be in the equatorial rather than the
polar regions of the nucleus. As the distortion effect
also preferentially selects the equatorial regions, the
resultant distorted single-particle wave function is not
as different from the undistorted function as it is if
m=0. In this case, as F~o~ cose, the nucleon is prefer-
entially in the polar regions of the nucleus which is the
region least likely to contribute to the cross section.

Finally, the strong dependence of the curves of Fig.
4 on the scattering angle show that, in general, it is

quite erroneous to assume that the only effect of the
distortion is to normalize the cross sections. However,
if one confines himself to small values of the effective
(real+distortion) target nucleon momentum then the

initial Rat portion of the curves show that the main
effect of ~D~~~ is that of normalization. . This is why
most (p,2p) quasi-elastic scattering work"" has not
found large distortion effects on the momentum
distribution.

VII. CONCLUSIONS

We have analyzed the 95- and 145-MeV 1p shell
C"(p,d) C" differential cross section data in the distorted
wave Born approximation. The effect of the distortion
was computed with a weighted average potential factor
E(0) in the forward scattering approximation. We
found that for q'/P'&8 with P given by the electron-
scattering results, the 1p-shell harmonic oscillator wave
function gives sufhcient high-momentum components
to fit the data for 0&35'—40' with reasonable values of
VD. We feel that the lack of agreement between theory
and experiment for 8&35—40' may be in large part due
to the failure of the forward-scattering approximations
rather than lack of high-momentum components in the
nuclear wave function. Work is in progress at present
to check this point and will be reported in a later
publication.

The results obtained here are at variance with the
results obtained by other workers' " using the Born
approximation or various distorted-wave approxi-
mations. We can understand this disagreement in the
light of the ideas advanced by McCarthy et' u/. 20 A
substantial fraction of the high-momentum components
found for target nucleons in nuclei is due to the refrac-
tion and localization effects on the incident and exit
particle waves caused by the real and imaginary parts
of the nuclear optical potential. For this reason, any
approximate distorted-wave calculation must correctly
reproduce the refraction and localization effects or a
nuclear momentum distribution with too many high-
momentum components will be obtained.

Finally, we note that for q'/P' (or E/7. 5)&8 and
possibly for q'/P'&8 the effects of short-range correla-
tions in adding high-momentum components to the
nuclear wave function may be less important than has
been assumed. "
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