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The calculation of the CE with the wave function

(3.1) can be carried out by the formulas given in

reference 5, when a charge distribution of Yukawa

type is assumed. The factor e—t"~ in the formula for

potential energy' should be deleted. If an exponential
charge distribution is assumed, the calculation becomes
much more complicated.

'T. Ohmura, M. Morita, and M. Yamada, Progr. Theoret.
Phys. (Kyoto) 17, 329 (1957), line 5.
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It is shown how the distorted-waves theory of inelastic scattering can give rise to angular distributions
with "anomalous phase, "such as observed in recent experiments with alpha particles. These occur when the
scattering takes place through second-order effects; excitation of a two-phonon vibrational state is studied
explicitly. There is an important cancellation between the amplitude for simultaneous excitation and part
of that for successive excitation, without which the anomalous phase would not be observed. These conclu-
sions are contrasted with the predictions of a theory using plane-wave Born approximation. Further study
of the cancellation is suggested as a sensitive test of the optical model.

I. INTRODUCTION

~ 'HE inelastic scattering of strongly-absorbed pro-
jectiles is known'' to show a clearly-dedned

phase-rule relationship among the oscillatory angular
distributions for exciting diferent states of a given
target. According to this rule, angular distributions
corresponding to odd values of the angular momentum
transfer I.have their maxima and minima out of phase
with those of angular distributions corresponding to
even J. Also the odd-I. patterns are in phase with the
elastic angular distributions. The conditions under
which these rules should be reliable are not very re-
strictive, "and are fulfilled very well by (cr,cr') reactions
at energies of about 40 MeV. The use of such reactions
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t'National Science Foundation Senior Postdoctoral Fellow,
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University, Princeton, New Jersey.' J. S.Blair, Phys. Rev. 115,928 (1959).' E. Rost and N. Austern, Phys. Rev. 120, 1375 (1960).
' N. Austern, Ann. Phys. (New York) 15, 299 (1961).
'K. Rost, Ph.D. thesis, University of Pittsburgh, 1961; and
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in the excitation of the lowest 2+ and 3 levels has
provided many experimental verifications of the phase
rule.

It was especially interesting, therefore, when several
(cr,cr') excitations of known 4+ levels of even nuclei
were found" to be in phase with the 3 excitations of
the same nuclei, and out of phase with the 2+ excita-
tions. The 4+ levels in question are believed to be part
of the two-phonon triplet of quadrupole vibrational
states of these nuclei, and it was suggested that two-
phonon excitation somehow reverses the phase rule.

Indeed Blair' and Drozdov' applied a formula of the
adiabatic theory, for the scattering from a "black."
ellipsoid, and discovered that in this model the part of
the scattering amplitude which is second order in the
deformation does give agreement with experiment. The

~ R. Beurtey, P. Catillon, R. Chaminade, M. Crut, H. Faraggi,
A. Papineau, J. Saudinos, and J. Thirion, Comp. rend. 252, 1756
(1961).

'H. Broek, J. L. Yntema, and B. Zeidman, Phys. Rev. 126,
1514 (1962).

r J. S. Blair (private communication).
8 S.I.Drozdov, J.Exptl. Theoret. Phys. (USSR) 38, 499 (1960)

Ltranslation: Soviet Phys. —JETP 11, 362 (1960)j.
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second-order terms which are appreciable at large
angles have oscillations with the reversed phase, and
their envelope falls more slowly with angle. Both
properties agree with experiment. An extended and
improved application of the adiabatic theory has been
developed by Austern and Blair' and gives the same
results.

However, the adiabatic theory does not distinguish
between simultaneous and successive excitation of two
phonons, so it does not give a complete picture of the
reaction mechanism. These two types of excitation are
defined if one considers a Taylor expansion of the
optical potential of a nucleus whose surface has a
2~-pole deformation, defined by

R(Q) =RpL1+Q, u, FI,'(0)].
If we assume that the potential U depends only on the
distance from this surface, we may write

U(r R)—= U(r —Rp)+DU,
hU= —ROLQ, n, Fy'(0)] U'

+-,'Ro'[p, n, Fg'(0)]' U"+ . (1)

In the vibrational model the deformation parameter,
n„creates or annihilates a phonon" with angular mo-
mentum k and s component q. The U' a,nd U" are
derivatives of U with respect to r, evaluated at o.=0.
Then U(r Ro) is interpre—ted as the spherical potential
giving rise to elastic scattering, while the U term is
able to excite a single phonon, and so forth. Simultane-
ous excitation of two phonons then refers to the direct
(or crossover) transition (from 0+ to 4+, say, if k=2)
by the operation of the nonlinear term of AU, that
proportional to U". Successive excitation refers to the
two-step transition (0+ to 2+ to 4+, if k= 2) by repeated
operation of the U' term. The adiabatic theory treats
only the combined result of these two terms. It is
interesting to study the reaction mechanism in greater
detail, not only to understand the role the optical
potential plays in giving these two terms, but also to
understand the conditions under which the results of
the adiabatic theory are obtained. A perturbative
approach will permit such a more detailed analysis.

A perturbation theory for two-phonon excitation was
given by I.emmer, de-Shalit, and Wall. "They simpli-
fied their considerations by using plane-wave Born ap-
proximation, and then found that the U" term of (1)
dominated the process, so that the two phonons were
excited simultaneously. They obtained both the anoma-
lous phase relationship and the slow dropoff of the
envelope of the angular distribution, and also could
predict the magnitude of the 4+ cross section relative
to that of the 2+ cross section.

' N. Austern and J. S. Blair, (to be published). Several approxi-
mations from this article are employed in the present paper.

'OA. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 27, No. 16 (1953)."R.H. LeInmer, A. de-Shalit, and N. S. Wall, Phys. Rev. 124,
1155 (1961l,

Nevertheless, plane-wave Born approximation is
certainly a false theory for (n,n') reactions. In par-
ticular, as we shall show below, its predictions for the
second-order process are very misleading. Fortunately,
distorted-waves Born approximation (DWB) describes
these just as accurately as it does nearly all other
direct reactions, and may be applied instead.

Normally DWB only is carried to first Born ap-
proximation, that is, to first order in AU, and in this
way includes only one of the two terms which are
second order in the deformation, namely the U" term.
To include successive excitation by the U' term it is
necessary to go to second Born approximation. In this
way, a series in powers of the deformation is generated.
It is interesting to recall that practical application of
the adiabatic theory also requires the use of a series in
powers of the deformation. To first order in the de-
formation the two theories are identical in the limit of
zero energy loss, and the adiabatic theory may be
thought of as a heuristic reformulation of DWB. Now
this same correspondence is followed to second order.
These two theories have the same content, but use
different techniques, such that one theory is simpler,
but the other can be more accurate. Different kinds of
insights thereby are obtained.

It will be seen in the present paper that to obtain
agreement with experiment both terms of Eq. (1) must
be carried, and that their ratio probably is essentially
as predicted by the simple picture which Eq. (1) gives
for the optical potential of a deformed nucleus. Because
the analysis is thus far only semiquantitative it is not
clear how good a fit to experiment the nuclear model
embodied in Eq. (1) as it stands can give. However, the
structure of the double-excitation theory does show
that agreement with experiment can be achieved in
only one way, and a study of such numbers as are
available then shows it to be plausible that this way is
successful. What happens is that either term of (1)
taken alone gives major disagreement with experiment,
contrary to the conclusions of reference 11, but that
the two terms combine so that the parts which dis-
agree with experiment cancel. Numerical calculations
of improved accuracy may be used to study this
cancellation, and it may be that new information about
deformed optical potentials and the nature of collective
excited states can thereby be derived. "It is interesting
that the one part of the transition amplitude which
survives the cancellation, and which does have the
right properties to agree with experiment, comes from
the successive excitation. This result reverses the order
of importance which had been found for the two terms
by the plane wave analysis, and is one of the most

"Such calculations have been begun by Brian Buck, Phys.
Rev. 127, 940 (1962),
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striking contrasts yet seen between DAB and plane
wave calculations. "

II. CALCULATION OF THE CROSS SECTION

The transition amplitude for exciting an even nucleus
to a state with spin I, s component M, is

Tf,M
(2&r Mx——g& &

~
DU

~
+,&+&).

To get all the second-order terms in If, it is necessary
to carry the total wave function 0 +) to first order:

+,&+& =(1+(E+ip—Hp)-'AU)2&pq„~+&.

Then the amplitude for double-excitation is the sum
of the second-order terms and is

Tf, =Ep'(pl yg' '~ (nY)U'(E+ip —Hp) '(nY)U'

+2(~Y)'U"
I
ppx '+'), (2)

where (nY) is an abbreviation for Q, n, Y&,'(0). Some
other notation used above is that x,'+' and yf( ' are
the initial state and final state distorted waves, satisfy-
ing the usual boundary conditions, ' and that vo and
e~~ are the eigenstates of the nuclear surface oscilla-
tion. It will be convenient to ignore the energy diGer-

ences among the vibrational eigenstates; these only
give small corrections at the kinetic energies in which
we are interested. The distorted wave functions which

will be used are

», &+& = L(42&)1/kprj p& i'(2/+1)lt,""f&(kp,r) Yp(D) (3a)

x&
—*——[4~/kpr J Pg„ i—'e'"f&(kp, r)

X Yp(0,0) Y&"*(0). (3b)

Here, f& is the radial wave function corresponding to
angular momentum /&2, 0 is the scattering angle, and

ko is the momentum of the incoming beam, assumed
above to equal that of the outgoing beam. Further
details of notation may be found in reference 2, and
also in the Appendix of the present article.

The f&rst term of Eq. (2) is the term which describes
successive excitation of two phonons. It involves as
intermediate states not only the one-phonon state of
the target nucleus, but also the complete set of con-
tinuum states of the projectile. Fortunately, it is not
necessary to consider the one-phonon nuclear state
explicitly. It is the only state to which n, can couple
the ground state, so quantum-mechanical completeness
is fulfilled automatically for the target nucleus co-
ordinates, and we just obtain in this term a product
of the operators n, and u, , the same product as in the
second term of Eq. (2). The equation mav then. be
rewritten in a form which greatly facilitates comparison

"The apparent agreement with experiment found in reference
11 resulted from their use of plane-wave Born approximation. A
further accident of their use of a square-well potential, is that the
details of their calculations closely resemble the corresponding
ones of D%8 I,'private communication, N. S. %all).

,M XP2g 2C(q" M+ q M)

where

PCY,M"=g„(v—, M~~~, ~.,)Y, Y,',
i7 M —( (—&

i
Y M*U&i

i
(+&)

(Sa)

(Sb)

(Sc)

( (—&

~

Y M*U&(P+

+U'(a+i p Hp)-—'U'YrM*
~
g, &+&) (Sd.)

In Eqs. (S), the parameter P2 is the mean square
deformation in the ground state,

P'=(P, ~~, ~') = (2k+1)W„/2C„.

Also in 9"2, the two-step term, the approximate group-
ing of spherical harmonic factors has been symmetrized,
to preserve Hermiticity.

The term V"~ is of the sort treated in usual first-order
DWB calculations. It may be evaluated, to give

V'&M= (42r/kp2) Qtp i' '(2l+1)

XL(2I+1)/(2/'+ 1)3'~"'+"'

X Y,.M(O 0)(/IOM i/'M)(/IOOi /'0)W», (7a)

f( f&U"dr. (7b)

The term V ~ has been studied numerically, using DAB
codes developed for the Oak Ridge IBM 7090 com-

puter. ' It had been hoped that this term would alone
be able to give agreement with experiment, as suggested
in reference 11.What was discovered instead was that
V& satisfied with great accuracy the usual phase rule
relations for angular momentum I, as shown in Fig. i.
This eBect was traced to the radial integrals 8"~~.
These integrals tend to be dominated by such large

'4R. H. Bassel, R. M. Drisko and G. R. Satchler, Oak Ridge
National Laboratory Report ORNL-3240, 1962 I'unpublished).

of the two terms:

Tr, Rp'——p„(2&r ~u~;~2&p)

)&(xf
~

YQ U'(8+ip Hp—) 'Y&, 'U
+lY 'Y."U"Ix,'+&). (4)

Because the spherical harmonic factors in the two
terms of Eq. (4) do not have quite the same structure,
the q, q' summation still is left in an awkward form.
Thus, Yg~ and I'&&' have the same arguments in the
second term of Eq. (4), but have different arguments
in the first term, because in that term they stand on
opposite sides of the Green s function. However, it is a
very good approximation to treat these factors as com-

muting with the Green s function, and the simplifica-
tion thus obtained will now be introduced. It will be
justified later, when a detailed analysis of the first
term is given. (This same approximation is used in the
article of Austern. and Blair, reference 9.) Upon com-

bining the spherical harmonics, Eq. (4) becomes
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excitation of 1.=2, 3, 4 levels. We see how distortion
reverses the predictions which the plane wave theory
makes for the phase of the I.=4 two-phonon angular
distribution, relative to the phases of the usual one-

phonon transitions.
The term T2 is more complicated to treat. Even in

the much-simplified Eq. (Sd) it is still necessary to
introduce an explicit form for the Green's function,
a,nd, within this function, to sum over the complete
set of continuum states of the projectile. For the
present article, it is very helpful to use a bilinear form
for the Green s function,

(F+ie—Hp) '

oo fg(k, r) fi, (k,r') Vg" (0) I'),"*(0')
dk Qi,„,(9)

rr'gi, (k) (Fp+ie k' k/—2p)

where p, is the reduced mass of the colliding pair, and
rfi, (k) is the elastic scattering amplitude for the partial
wave X at the momentum k. This Green's function is
based on the orthogonality relation for the optical-
model radial wave functions, "

fi(k, r)fi(k', r)dr= —', rrrf&, (k)6(k —k'). (10)

i0 30

8C M
(deg)

40 50 60

Fro. 1. Angular distribution of 43-MeV alpha particles from
Ni" with excitation of the 2.45-MeV 4+ level. The upper curves
were calculated using distorted waves, the lower curves using
plane waves. The erst derivative of the optical potential was used
as interaction for the two curves labeled U', and the second
derivative for those labeled U". A Saxon form was used for the
optical potential U, with parameters which fit the elastic scatter-
ing, V= —48 MeV, W= —14 MeV, Ro ——6.14 F and a, =0.55 F.

r values that U is essentially exponential over the
important region of integration. Then U"=—U'/a
over this region, and

W~E~ = —a fi fiV'dr,

where a gives the rate of falloff of the exponential
optical potential. In this circumstance, ~~ has the same
angular momentum structure as in usual one-phonon
excitation, so it is dominated by a few terms with l and
f' near lp ——kpRp, where Rp is the nuclea, r radius. One
must, indeed, expect to get the usual phase rule.

The dominance in V~ of the outer region of r is due
to the distortion effects, particularly the strong ab-
sorption. ' ' Figure 2 shows the results of a series of
numerical calculations in which the optical potential
and Coulomb 6eld from which this distortion arises
were progressively reduced to zero. The angula, r dis-
tribution for the I.=4 excitation by V~ is compared
with several more familiar ones for the one-phonon

2
q2=-

vr

-dk,
Fp+ie —k k /2fi

and may be expressed in terms of a delta function
term plus a principal value integral,

g(kp, o)—
&k k,

'
k k,)

"s(k,O)
dk. (12)

"In Eq. (10l an error in footnote 15 of reference 2 is corrected,

Actually, the optical-model regular radial wave func-
tions fq(k, r) do not, in themselves, form a complete set
for all functions of r, and it is for this reason that Eq.
(9) is written as an approximate equality. In principle,
second-order transitions could use as intermediate
states those channels to which the optical model
"absorption" is taking place. Projection on to the low,
vibrational. states of the target nucleus does not elimi-
nate this effect. However, it is argued that the simple
nature of the operator Fq'U' does not give much cou-

pling of the entrance channel to the more complicated
sorts of radial functions, so that for the present ap-
plication the absorptive channels need not be carried
in the Green's function. This approximation implies
that the transitions induced by FA, &U' are not the most
important contributors to the imaginary part of the
optical potential. It implies that the optical potential
is the same in all the levels being treated here. Some
further discussion of Eq. (9) is given in the Appendix.

'tVith the use of Eq. (9), T's takes the form
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E'rG. 2. Angles at which peaks occur
in the angular distributions of alpha
particles from Ni" for various angular
momentum transfers L. Calculations
were made with optical potentials and
Coulomb 6eldp of 3/4, 1/2, and 1/4
of the "correct" strength, as well as
with full strength, and with plane
waves. All cases show the normal
phase relation except the L=4 using
U" as interaction, which changes
phase on going from plane waves to
distorted v aves.

(a, a')
E=45 MCV

1.0
I-
UJ

0.75-

I~ 0 ~ 50
O
h.
O
z 0.25
0

DISTORTED
Vl AVES —A ——Q -A

o L=2
L=3

L=4 L/

0 L=4 g

0 M

PLANE 10
V/AYES

20
8C M, PEAK ANGLES (deg)

50

In the principal value integral it has been assumed
that k=kp will matter most, so (k+kp) =2kp has been
introduced as a simplification. The two terms of Eq.
(12) play very different roles in the determination of
the cross section.

Explicit evaluation of S(k, O~) yields

S(k,O) = (47r/kpk)

Xp„ i' '(2 —+/1)((2I+1)/(2/'+1)]l
Xe"'+"'Y) ~(O 0)(/IOM

~

/'M)(/IOO~ /'0)

X ( (Vl'l'Vll'/rlV)+ (Vl'EVtl/pll) }y (13)

where

and Blair' for k= ko, the case of principal interest. It is

V„(k,k) = —(iE/2k) (ay[/aZo), (15)

where Eo is the nuclear radius. This equation merely is
the expression for the rate of change of the scattering
amplitude as the potential is changed. It immediately
shows that the low /, /' terms of Eq. (13) are unim-

portant, despite the g~ denominators, so that localiza-
tion of the important terms of the series near /0 is
preserved. In addition, a simplification of Eq. (13) is
obtained. The sharp-cutoff property, well known for
the function g~, implies

Vii (kp, k) —= ft. (kp, r)f( (k,r) U'dr
el' t/Mp =

karl�

(/8—/,
(14) a.nd therefore

(V /„) = ,,'I:„, '(a„,/—W—).
—

(16)

It is at this stage that the consequences of the approxi-
mate grouping of spherical harmonics, used to go from
Eq. (4) to Eqs. (5), become clear. The approximation
has made it possible to perform the sum over X, p which
appears in the Green's function, and these quantum
numbers no longer appear. In the exact expression
spherical harmonics belonging to different 'A would
have different radial factors. Our approximation re-
places these different radial factors by one average
value, permitting the sum over X. If k= 2, then if /= l'

the allowed values of X would be l, /&2, whereas the
approximation selects the one radial factor for X=l. If
/=/'+2 then X=/, / —2, whereas the approximation
uses an average of the radial factors for these two X

values. If /=/'+4 then X=/ —2, uniquely, but the ap-
proximation uses an average of the radial factors for
l, l—4. This discussion would seem to make the ap-
proximation look good.

The factors gg and g~ in the denominators in Eq.
(13) become very small for /, /' much less than the
cutoff angular momentum, /p(k)=kEp. However, the
numerators are quadratic in the radial integrals V«,
which also become small at small l, l'. The numerical
magnitude of the radial fa,ctors may be estimated
fairly accurately by using an equation given by Austern

For / values near but below the sharp cutoff /0, the
logarithmic derivative of p& is approximately constant,
say 2$, where 2)=1. For /)/p the logarithmic deriva-
tive goes to zero. When such a function multiplies
V«, the other radial-integral factor in Eq. (13), it
displaces the rather localized peak in V~~ toward
smaller / values, but does not change the basic struc-
ture of this peak. The displacement is of the order of
half the peak breadth, and may be regarded as negli-
gible. The displaced peak has a height of the order of
f times its original height. With these approximations
the logarithmic derivative may be factored out from S,
leaving

s(k 0)= (-', is~) (4~/kk, )
XQ~~ i' '(2/+1)L(2I+1)/(2/'+1)j:e" &+ &'&

X Vi ~(0,0)(/IOM i/'M)(/IOO
~

/'0)

Xt.Vn+V( i]. (18)

This expression has the same basic structure in /, l' a,s

does the term V &, discussed previously; hence it obeys
the same phase rule as V"~, the usual phase rule for
a,ngular momentum I.

A further simplification of S appears if k=ko, in
which case the two radial integrals become equal, and
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The entire transition amplitude then is expressed in
terms of the function S,

2iiz ) 1
V' +r ' = — ~+ S"(k„O)

5'kof «a
ao SM(k 0~)

dk. (20)

It is easy to study the properties of this approximate
equation.

Equation (20) shows how agreement with experi-
ment must be achieved. Because S itself does not have
the anomalous phase which is characteristic of double
excitation, it is only possible to get agreement with
experiment if the first term of Eq. (20) should be small,
while the second have the anomalous phase. Indeed,
very little need be known about 5 in order to see that
the principal value integral does reverse the phase,
giving the essential ingredient for agreement with ex-
periment. It is more dificult to see under what condi-
tions the first term of Eq. (20) will be small enough so
that the term with anomalous phase may show itself. "

The ratio of magnitudes of the two parts of the 6rst
term of Eq. (20) is

(1/«a) —: (2~/A'k, ) = (1/k, a~). (21)

For 40-MeV alpha particles koa 2, and $ 1/2, so the
ratio is approximately equal to one, and the two parts
of this erst term do approximately cancel each other.
This cancellation is independent of energy if ko) is
independent of energy, a property which is not in dis-
agreement with optical-model calculations. Of course,
the present estimate only makes the cancellation
plausible, because crude approximations have been
used. However, to get agreement with experiment the
first term of Eq. (20) must very nearly vanish, and the
possibility is already seen to be sufficiently close that
that result is believable.

The second term of Eq. (20) may be evaluated on
the basis that S(k, O~) is an oscillating function of 0~,
of which the oscillations are known to shift their phase
as a function of k. Little more need be said. However,
it is useful to introduce a functional description of 5
which makes the evaluation of the principal value
integral more obvious. If 0~ is not too close to 0' a

"It is easy to show that the same ratios between the parts of
(20} appear if we consider instead the excitation of a 4+ rotational
state of a nucleus with quadrupole deformation P, although the
over-all cross section is reduced by {Sic}.

8 becomes a, simple multiple of V'~. A new expression
for V'i, therefore, may be given in terms of S(ko, O'), by
employing Eqs. (18), and (8) in Eq. (7a),

~,=—LS(k„O.)/i«a). (19)

2=- tan —'(nO/q) S'(k„O). (23)

Here, the function S' is defined as being obtained from
8 by a 90' phase shift of the oscillations. The origin of
the anomalous phase in double excitation now is
evident. The principle value integral selects a function
with shifted phase.

Our final expression for T~; now is

Tg,~= —p'Ro'C(2p/xiii'ko) (tan —'0)S'(ko 0) (24)

where the rough approximation (n/p) =1 has been in-
troduced, and the first term of Eq. (20) has been
dropped altogether. Over the range of values of the
scattering angle 0' which are of experimental interest
the function tan '0' continues to increase with O'. In
particular, this function does not get too close to its
asymptotic value of (m/2). Thus, the double-excitation
cross section drops off less rapidly with angle than does
the function g, in agreement with experiment. Gross
changes of parameter values would be required to alter
this result.

The amplitude for single-phonon excitation is
approximately

pROC'(2/iE&) S (ko, 0), (25)

where C' is a combination of Clebsch-Gordan factors,
of the same nature and order of magnitude as C in
Eq. (24). Upon combining Eqs. (24) and (25) the ratio
of the magnitude of the two-phonon cross section to
that of the one-phonon cross section is found to be,
roughly,

(-',pRokop tan '0~)' (26)

Typical parameter values which may be used in Eq.
(26) are P=0.2, koR0=17, )=1/2. Then the numerical
value of Eq. (26) becomes

0.8 (tan —'0)'. (27)

good approximation is

(k 8)= o(ko 0)—
Xsingn(k —kp)R00+kpRpO+Bj. (22)

The function So describes the envelope of the oscilla-
tions, and simply falls with 0' in the well-known way.
The exponential factor describes the fact that S must
also fall monotonically with ~k —ko~. Any other func-
tion with this same property gives the same general
result. The quantity &RO is approximately the extent
of the region of importance in the radial integral V&,&„,

therefore, p= —', very roughly. A plausible value for the
parameter n is a=2. Upon employing Eq. (22) in Eq.
(20) the part of S which is even in (k —ko) does not
contribute to the principal value integral, and the result
of integration then is

"S(k,O)
dk= —So tan '(nO'/y) cos(kpRpO~+g)

0 &—&0
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A more correct calculation wouM give a slightly smaller
value, because (C'/C) .1. Evidently at large O~ the
double-excitation cross section is still about an order
of magnitude smaller than that for one-phonon excita-
tion. This also agrees with experiment.

III. CONCLUSIONS

Our calculations make it quite convincing that the
transition amplitude has a part with the anomalous
phase, that this part has an envelope which falls slowly
with angle, and that it has approximately the right
magnitude to agree with experiment. Whether the
remainder of the transition amplitude is small enough
so this part can show itself depends on a cancellation
of the amplitude for simultaneous excitation of two
phonons by the energy-conserving part of the amplitude
for successive excitation. Of course, the cancellation
need not be complete, because the experiments on
double-excitation do not show very deep minima in
the oscillations of the angular distribution.

Here we have only shown the cancellation to be
plausible numerically, but its existence is required by
experiment and by comparison with the adiabatic re-
sults. ' ' More accurate calculations by Buck have
been started, which perform numerical integrations and
which treat the 0+, 2+, 4+ wave functions in a coupled
fashion, and prehminary results have been published. "
These establish that cancellation does occur in the way
we predict. Such calculations will be able to explore the
sensitivity of the cancellation effect to the details of
the physical model used, and to the details of the
optical potential; and it may be that new physical
information will thereby be obtained.

The adiabatic theory implicitly assumes a physical
model having the cancellation property we have studied.
In the rather accurate version of this theory given by
Austern and Blair' it is made very plausible that the
theory is adequate for the spectroscopic analysis of
experiment. Nevertheless, the present article shows
that other methods of analysis can obtain information
which the adiabatic theory does not envisage.

Why the cancellation occurs may be related to the
very strong interaction which alpha particles have with
the deformed part of the optical potential. It has been
suggested that the role played here by the energy-
conserving term of the amplitude for successive excita-
tion represents a depletion of the relevant part of the
incident wave function by excitation of the single-

phonon 2+ state. "

APPENDIX

Outside the region of strong nuclear interactions the
missing terms of the approximate Green's function,
Eq. (9), no longer contribute, and that equation be-
comes exact. It is interesting to evaluate Eq. (9) in the
limit r ~, to learn the structure of the asymptotic
Green's function.

As r becomes very large, the function fz(k, r) becomes
a very rapid function of k. The function fq(k, r') remains
a slow function of k, because r' is limited to the region
of overlap with internal nuclear wave functions, and
therefore must remain small. Accordingly, the integral
over k particularly concerns the function fz(k, r). If
only the rapidly varying factors of the integral over k
are considered, then we must discuss

lim
2p " fj (k r)dk

= lim-
8+i&—k'k'/2p """ k' 0

fg(k, r) dk
0

k(P+ jg k2

Asymptotically, the function f&, becomes'

f„~1~(~—i8z ~„~i6&)

where

8),=kr n ln(2kr) ———',X—~+Op.
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The integral under consideration, therefore, is from the one pole at k= ks+ie. We find

ip,
"e-'"—~|,""

lllTl dk.
r-aa $2 k 2+i, k2

(28)

The asymptotic Green's function, therefore, is

The two terms of this integral may be studied in the
complex plane, by suitably closing and deforming the
path of integration, initially along the positive real
axis. Figure 3 shows how the closed paths must be
chosen, encircling the first and fourth quadrants. For
suS.ciently large r the portions of path along the
imaginary k axis and along the circle at infinity do not
contribute, provided the lower path is used for the
term exp( —i') and the upper path for exp(i8q). Then
only the second term leads to a nonvanishing residue

(E+is Hp)—' —(2p/A') exp[k pf 1'I hl. (2ksr) j/ksrr'

&&+&,.e"'&-'"'f~(ko, r') I'),"(~2)J'g""(I)').

In the second line of this expression we recognize t.he
familiar "time-reversed final-state wave function, " de-
noted in the present article by p~' &*. The above dis-
cussion is interesting in that it shows the origins of the
various factors of the familiar expression and, in par-
ticular, the manner in which the Coulomb phase factor
enters this expression.
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The effect of the optical potential on the nucleon momentum distribution in nuclei is discussed in this work.
The idea of McCarthy et el. , that the refraction and localization effects caused by the real and imaginary
parts of the optical potential smears the single-particle momentum distribution, is ampli6ed and applied to
nucleon momentum distribution experiments. The assertion is made here that it seems impossible to directly
measure in any manner the momentum distribution of nucleons in nuclei. Further it is proposed that much
or all of the large discrepancy between the experimental momentum determinations and the shell-model
predictions is due to the neglect of these important sources of high-momentum components. The high-energy
C"(p,d)C» pickup reaction data are re-analyzed in the light of these considerations. It is shown that for
qs/ps&8, the 1p-shell harmonic oscillator distribution, (gs/p') exp( —qs/ps), has su%cient high-momentum
components to fit the data. The lack of agreement for q'/p')8 is possibly due more to a failure in the
distorted-wave approximation calculation used here than to lack of high-momentum components in the
wave function.

I. INTRODUCTION

'HE success of the shell model for predictions of
various properties of nuclei such as energy levels,

magnetic moments, etc. , has been amply verified by
many workers. However, it has not been so successful
in predicting the momentum distribution of ground-
state nucleons in target nuclei as found by various
nuclear reaction studies. ' "In general, the experimental
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results require much larger amounts, by orders of
magnitude, of high-momentum components in the
single-particle ground-state wave function than are
supplied by the shell-model wave functions. This
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