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The effect of finite nucleon size on the Coulomb energy of He' has been investigated. The experimental
value of the difference between the binding energies of H' and He' is 0.764 MeV, while the calculated
Coulomb energy is approximately equal to or greater than 1.0 MeV if the nuclear force has no repulsive core.
We show that, if the finite size of nucleon is taken into consideration, the Coulomb energy of He is reduced
by about 15—20%. The effect of finite charge distribution is determined mainly by the mean square radius.
If there is a hard core (with radius D), the calculated Coulomb energy (assuming point nucleons) is already
smaller, with the values 0.8—0.9 MeV for D=0.2)(10 ' cm, ~0.7 MeV for D=0.6X10 "cm. The reduction
of Coulomb energy due to the finite size is about 8% and 3%, respectively, for two different models. The
Coulomb potential between extended unpolarized nucleons is given in closed form for exponential and
Yukawa charge distributions.

1. INTRODUCTION

HE recent electron scattering experiments at
Stanford University' have established the finite

size of the proton. If a 6nite charge distribution is
assumed for the proton, the Coulomb energy (referred
to as CE) arising from the small interproton distance
in the He' nucleus is reduced. %e shall estimate this
eAect. Since the actual wave function for He' is not
known, the best thing we can do at present may be to
consider several simplified wave functions, and see
semiquantitatively how large the effect of the finite size
1s.

The experimental value of the difference between
binding energies of H' and He' is 0.764 MeV, ' which
is mainly due to the CE of He' if the same p-p and rr n-
nuclear forces are assumed. On the other hand, the
calculated CE of He' (assuming point nucleon) is
approximately equal to or greater than 1.0 MeV, ' 4 if
the nuclear force has no repulsive core. In Sec. 2 it is
shown that the theoretical CE is reduced by about
15—20% by taking into consideration possible charge
distributions. The reduction is roughly proportional to
the square of the mean-square radius of the proton-
charge distribution. The mean-square radius of the
neutron-charge distribution is assumed zero, consistent
with experiment.

U the nuclear force has a repulsive core (with radius
D) the calculated CE (assuming point nucleon) is
already smaller, with the values' of 0.8—0.9 MeV for
D=0.2&(10 " cm, 0.7 MeV for D=0.6)&10 " cm.
The reduction of CE due to the finite size is expected
to be smaller for larger values of D, because the hard
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core prevents the nucleons from approaching each other
closely. The evaluation with two simple wave functions
for He' yields reductions of S%%uq and 3% respectively
(Sec. 3). The general formula of the Coulomb potential
between two particles with extended charge distri-
butions is given in the Appendix. If the charge dis-
tribution is of the Yukawa or exponential type (or their
combination), the Coulomb potential is expressed by
elementary functions.

The difference of the energies of two mirror nuclei
(other than Hs and He') can be considered similarly,
but the effect of the finite size may be smaller.

2. NO HARD-CORE CASE

We shall assume a simple wave function for He'. the
spatial part is given by

lb
—p7—$e—Pir12+r23+rsl) (2 1)

with a doublet spin function which is antisymmetric
with respect to the exchange of two protons. p, is an
adjustable parameter which is determined by the usual
variational method. lb in (2.1) is very simple, but is a
fairly good wave function. (See reference 4.)

As the two-body nuclear force we assume (1) an
exponentia. l central potential or (2) a Yukawa central
potential. The potential depths and ranges are adjusted
so as to fit the following low-energy data of the two-
body system:

Binding energy of deuteron= 2.226 MeV,
triplet scattering length = 0.5378&(10—"cm,
singlet scattering length = —2.369X10 "cm,
singlet effective range = 2.7)&10 "cm.

The binding energy of H' thus calculated is 10.26 MeV
for the exponential potential, and 12.49 MeV for the
Vukawa potential, while the experimental value is
8.49 Mev. The adjusted value of ii is 0.479 (in 10"cm ')
and 0.605, respectively.

The electron-scattering experiment at low energies
tells us the mean-square radius of the charge distri-
bution which is about 0.8X10 " cm for protons and
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ur(r) = —,(r')=6/pi' (2.2)

0.0&&10 " cm for neutrons. We shall consider (1) the
Yukawa distribution and (2) the exponential distri-
bution for the protons only, with the value 0.8)&10 "
cm for the mean-squa, re radius. The neutron is a,ssumed
completely neutral.

2 e
—Plr

Charge distribution

Point nucleon
Yukawa (proton)
Exponential (proton)
Hofstadter-Herman
Experimental

Nuclear force
Exponential Yukawa

0.986 1.246
0.839 0.996
0.833 0.985
0.799 0.929

0.764

TABLE I. Coulomb energy of He' in Mev.

p, (r) = e-»r (r') =12/P2'.
Sx

(2 3) p&= (e&2/42r) (e ""/r), which is given by

The experimental data up to a few hundred MeV is
well reproduced by an exponential charge distribution,
but is not accurately fitted by the Yukawa distribution.
We shall consider both of them just for the purpose of
comparison. The recent higher energy experiment can
give more detailed information on the shape of the
charge distribution. Hofstadter and Herman' have
proposed the following form:

e2 P2e yr ~2e —er-
Vii(r) =—1+ +

r y2 P2 P2 —y2
(2 7)

If we take the limit y —& P=Pi, (2.7) is reduced to (2.5).
The Coulomb potential V~ between the proton with
the distribution pi and the other point proton is obtained
by taking the limit, p —+ +~ .

e 0,246(r) 0,280'e—e" 0.602'e
~n(r) =

, —+ +
4z r' r r

Vi(r) =—(1—e '") (2 g)

for the neutron, with P = 2.162X10"cm ' and y =3.162
&&10" cm '. The mean-square radius of p„and p„ is
0.85&(10 " cm and zero, respectively. The charge
distribution (2.2) or (23) modifies the Coulomb
potential e'/r between two protons. In order to get the
modified Coulomb potential, it seems enough to assume
that the proton charge is always distributed in a
spherically symmetric way around the center of the
proton as if it were alone, because the polarization of
the charge is estimated to be very small. Thus we find
the Coulomb potential between two protons as follows:

Vr(r) =—(1—e ~'"—-,'Pire ~2") for pr,
r

(2.5)

e' 11P,r 3 (P,r)' (P2r)'
Ve(r) = 1—1+ — + +

r 16 16 48

for ps. (2.6)

To construct the Coulomb potential between two
protons with the charge distribution (2.4), we need to
know the potential between pi ——(eP'/ )4(2ere"/r) and
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for the proton, and

e 0 646i (r) . 0.28P'e e" 0 60''e.
~.(.)=— + — —(2.4)

r r

The Coulomb potential between two protons, or
between proton and neutron, is expressed in terms of
V~, V~~, and V~. The general formula for the Coulomb
potential between arbitrary charge distributions p(r)
and p'(r) is given in Appendix I. The Coulomb energy
of He' is the expectation value of this modi6ed Coulomb
potential with the wave function (2.1).The calculation
can be carried out analytically (see Appendix II). The
results are given in Table I.

Let us first consider the case of an exponential
potential. The CE is about 1.0 MeV for point nucleons.
The more elaborate calculation of Pease and Feshbach
also gives almost the same value. They assume a
Yukawa shape for the central and the tensor potentials
(without repulsive cores) which are adjusted by the
low energy two-body data (scattering lengths, effective
ranges, quadrupole moment of the deuteron) and the
binding energy of the triton. The CE value is reduced
by 15—16/62 for the Yukawa and the exponential charge
distributions, and by 19%%u~ for Hofstadter and Herman's
distribution.

The mean-square radius would be the main factor
involved in the reduction of CE. The reason is the
following. The CE can be expanded in terms of the
moments of the charge distribution. If high-momentum
components are not strongly represented in the wave
function, the eGect of the finite size is mainly deter-
mined by the first term (the second moment) only.

DE in Table II is the difference between the CE of
point protons and that of extended protons with
various mean-square radii. (The Yukawa distribution
is assumed for Table II.) d E is proportional to (r') for
small value of (r'). The reduction of the CE in the case
of Hofstadter and Herman's distribution is someewha, t
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larger than in the Yukawa or exponential distribution.
This is reasonable because the former has a mean-
square radius of 0.85&&10 " cm in contrast with
0.80' 10 "cm in the latter.

The numerical values in Table I for the Yukawa
potential are somewhat larger, and the discrepancy
between the calculated values and the experimental
value is also larger. The Yukawa potential, however,
gives too large a binding energy for He' (12.49 MeV
is the value obtained by the variational method; the
true value will be larger by 1 MeV or so), so that the
extension of the wave function is too small and gives
too large a value of the CE. For this reason the values
for the Yukawa potential are somewhat unrealistic.
They are included in Table I just for the purpose of
comparison.

cyclic
(e I"~"' ~& —e "~"" &) for all r, ,)D

(3 1)

=0 otherwise,

where r;; is the distance between ith and jth nucleons,
and p and p are adjustable parameters which are
determined by the standard variational method. (For
details see reference 5.) Only the proton is assumed to
have a finite size with the Yukawa distribution (2.2).
The Coulomb potential is thus given by (2.5). The
Coulomb energies are summarized in Table III. The
CE is reduced about by 15% for D=O. The reduction
becomes smaller and smaller as D increases. The CE
of He' as well as the binding energy of H' seems to fit
the experimental data if the hard-core radius is taken
to be 0.2&10 "cm,

TAsr. K II. The reduction of the Coulomb energy of He' as a func-
tion of the mean-square radius of the charge distribution.

in 10 "cm'

(0~ ~&&1)
0.25
0.64
1.00

in MeV

0.483'
0.075
0.147
0.196

3. INCLUSION OF THE HARD CORES IN
NUCLEAR FORCES

If the nuclear force has a repulsive core (with radius

D), the CE is already smaller even if a point nucleon is
assumed, since the repulsive core prevents the nucleons
from approaching each other too closely. To estimate
the effect of the finite size we shall take the following
example.

The exponential central potential with a hard core
is assumed for the nuclear force. The radius of the hard
core, D, is varied from D= 0 to 8=0.6)& 10 "cm. The
depths and ranges of the potential are adjusted so as
to fit the low-energy data of two-nucleon system as
given in Sec. 2. The wave function of He' is

TABLE III, The Coulomb energy of He' for the point and ex-
tended protons. The Yukawa charge distribution (2.2) with a
mean-square radius of 0.8X10 '3 cm is assumed for extended
protons.

Hard core
D

in10 "cm

0.0
0.2
0.6

Experimental

Bln ding
energy of

H' in MeV

10.3
8.8
5.8
8.5

Coulomb energy of He'
in MeV

Extended

0.99 0.84 (15%)
0.84 0.77 (8%)
0.69 0.66 (3P)

Point

4. DISCUSSION AND CONCLUSION

The discussion in Secs. 2 and 3 has been based on
oversimplified models.

(i) Wave function Since .we have used the simple
trial function, (2.1) and (3.1), some errors will be
included in the results obtained. It is estimated that
the trial function is, however, fairly good' so far as the
central potential is assumed: The true binding energy
will not be larger by more than 1 MeV than that
obtained by the variational method with the trial
function (2.1) and (3.1). The calculated CE will be
larger than the true value by only several percent.

(ii) Nuclear forces. The largest error will come from
our omission of tensor forces. The inclusion of the tensor
potential in the two-body force may decrease the
Coulomb energy. This fact can be understood by
comparing the calculated values of Pease and Feshbach
with Table I of the present paper. Using the Yukawa
well for both central and tensor parts, Pease and
Feshbach obtained 1.01—1.04 MeV for the CE, while
Table I gives 1.245 MeV for the Yukawa well. The
reason may be as follows. The tensor potential mixes
D states (and I' states) in He'. These states are pushed
away by the centrifugal forces, so that the CE arising
from these mixed parts of the wave function decreases
considerably. There is also another reason, that the
inclusion of tensor force reduces the binding energy so
that the nucleus has a larger extension.

Thus, the numerical values given in Table I, II, and
III may have only an approximate meaning. However,
we shall follow a difIerent logic. We shall first take a
standard value for the CE of He'. Pease and Feshbach
adjusted six parameters for the nuclear forces (without
repulsive core) so as to fit the deuteron data, the low-

energy scattering data, and the binding energy of H'.
They get 1 MeU as the CE of He'. Therefore, we
may believe that the figure, 0.986 in Table I, can be
taken as a standard value. Table I shows that the CE
will be reduced to 0.80—0.84 MeU from 1.0 MeV if
the finite size of nucleon is taken into account. There
seems a possibility that the CE is reduced to the experi-
mental value even if the hard core is not assumed. The
values listed in the column "point" in Table III may
be considered as standard values for the following
reason. The values of p (which determines the damping
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r
in (r')&

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1,6
1.8
2.0

(7/") Ur

0.000
0.237
0.441
0.601
0.721
0.808
0.869
0.905
0.937
0.958
0.973

(r/e2) VE

0.000
0.213
0.408
0,571
0.700
0.797
0.865
0.913
0.945
0.966
0.979

in 2.6) with. the
Th unit of length is the mean

. The ratio of Vy in (2.5) or Ug
'

usual Coulomb potential e' r. e uni o
square radius of the charge distribution.

16z2
U(r) = s pi(s)ds

p

T—s 4m.2

t'-'p2 (t)dt+ spi(s) ds

I
s'+s

I

L2(st+sr+tr) —( s' + t2+r~) jtp 2(t) dt

r—sI

APPENDIX I. COULOMB POTENTIAL BETWEEN
EXTENDED CHARGED PARTICLES

~ ~Th pherically symmetrical charge distributionse s
d r are assumed not to be polarized wp, (r an p2 r are

th approach each other. L47r J77" p(r)r r= o a,r r'dr= totalthey approac
charge. ]The potential U(r) is given by

of the wave function in the outer region) are 0.479,
2 0.4

and 0.6)&10 " cm, respectively. The constancy o
su gests that the diminution of the CE as a function

large distances, w ichich is mainly determined by t e
binding energy, u isb t due to the vanishing of the wave
function at short distances. Thus, Table III may show

e ect of the finite size with reasonable accuracy.
Kh D is large the e8ect mainly comes r

f the charge distribution. There. ore, t eregion o e c
1 a s determined by the mean-square radiusis not a ways e

such asonly. owever, a1 . H r a different charge distribution, suc
the exponentia ype, w''

1 t will give similar results, ecause
both give rather similar (modified) Coulomb potentia s.

Tables I and III will supplement the result obtaine
in the reference w ic5 h' h treats the effect of hard cores
on the binding energies of H' and He'.
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+167r2 S'pi(S)dS tp~(t)dt

+167r' Spi(S)dS t2p, (t)dt.

APPENDIX II. EXPLICIT FORMULAS
FOR COULOMB ENERGY

In the course of the Coulomb energy calculation the
following formulas are needed. Although some of t em

1 d in reference 4, these are inclu ed for
completeness. P is defined in (2.1) with E= /( te

dT =r12r23r31 ~ 12 r23 r31d d d The domain of integration is
resi:ricted by the trigonometric inequality: x—=2tijP.

The last. two terms are equal when pi ——p2.= 2. The second
integra is o en i1

'
ft simplified by the transformation,

(s,t) —+ (x,y), x=s+t, y=s t If p—2(t.) is the pom-
charge istri u ion, ea'. 'b t' th second and third terms vanis .
The potential between the point charged partic e
charge e) and the extended charged particle with the

distribution p is given by

4~e
U (r) =—. s'p (s)ds+47re sp (s)ds.

r

1 Sx3 2x 1 2x
e ~"' 'dr= —1+ +—

7(2m+1)' 1+2m 7 1+2m)pri2

2 3 +2-
1 2x ' ( 2x / 2x-'-"=-,(, , '"'i. .. "„,.7

g696 x' x'(1+4x) 1
+

7 1+x (1+2x)' (1+x)(1+2x)' (1+x)' (1+x)'(1+2x)
20

(1+x) (1+2x)' (1+2x)'
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The calculation of the CE with the wave function

(3.1) can be carried out by the formulas given in

reference 5, when a charge distribution of Yukawa

type is assumed. The factor e—t"~ in the formula for

potential energy' should be deleted. If an exponential
charge distribution is assumed, the calculation becomes
much more complicated.
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It is shown how the distorted-waves theory of inelastic scattering can give rise to angular distributions
with "anomalous phase, "such as observed in recent experiments with alpha particles. These occur when the
scattering takes place through second-order effects; excitation of a two-phonon vibrational state is studied
explicitly. There is an important cancellation between the amplitude for simultaneous excitation and part
of that for successive excitation, without which the anomalous phase would not be observed. These conclu-
sions are contrasted with the predictions of a theory using plane-wave Born approximation. Further study
of the cancellation is suggested as a sensitive test of the optical model.

I. INTRODUCTION

~ 'HE inelastic scattering of strongly-absorbed pro-
jectiles is known'' to show a clearly-dedned

phase-rule relationship among the oscillatory angular
distributions for exciting diferent states of a given
target. According to this rule, angular distributions
corresponding to odd values of the angular momentum
transfer I.have their maxima and minima out of phase
with those of angular distributions corresponding to
even J. Also the odd-I. patterns are in phase with the
elastic angular distributions. The conditions under
which these rules should be reliable are not very re-
strictive, "and are fulfilled very well by (cr,cr') reactions
at energies of about 40 MeV. The use of such reactions
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in the excitation of the lowest 2+ and 3 levels has
provided many experimental verifications of the phase
rule.

It was especially interesting, therefore, when several
(cr,cr') excitations of known 4+ levels of even nuclei
were found" to be in phase with the 3 excitations of
the same nuclei, and out of phase with the 2+ excita-
tions. The 4+ levels in question are believed to be part
of the two-phonon triplet of quadrupole vibrational
states of these nuclei, and it was suggested that two-
phonon excitation somehow reverses the phase rule.

Indeed Blair' and Drozdov' applied a formula of the
adiabatic theory, for the scattering from a "black."
ellipsoid, and discovered that in this model the part of
the scattering amplitude which is second order in the
deformation does give agreement with experiment. The
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