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Photoionization from Outer Atomic Subshells. A Model Study
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Calculations of photoionization cross sections are reported which emphasize the spectral range (from
threshold to 150 eV above it) where the bulk of the optical oscillator strength is distributed and where the
cross sections are large but experimental evidence is scarce. We have used as a model the light absorption by
a single electron moving in a potential similar to the Hartree-Fock potential appropriate to the outer sub-
shell of each atom. Data are reported for the rare gases He, Ne, Ar, and Kr, for Na, and for the closed-shell
ions Cu+ and Ag+. Sum rules are used to analyze the oscillator strength spectral distribution and to attempt
extrapolations to still higher energies. The results suggest a classification of atomic subshells into two types
with fundamentally diferent spectral distributions of oscillator strength. One type consists of the subshells
1s, 2P, 3d, 4f, with nodeless radial wave functions, the other type includes all remaining subshells. The
present calculations are regarded as a first approximation to be improved upon by taking into account
configuration interaction.

I. INTRODUCTION

A LTHOUGH atomic photoionization has been
studied extensively in the x-ray region little has

been done at lower energies'; i.e., in the range from
threshold to 100 eV. While quantum mechanics provides
us with an explicit formulation in terms of the initial
and final states of the atomic system, the formalism
can be applied exactly only to the case of atomic
hydrogen. Hydrogen-like treatments form the basis of
all photoionization calculations in the x-ray region. At
lower energies a simple hydrogen-like treatment is
inadequate and photoionization calculations require
estimates of the wave functions of the atomic system
both before and after ionization takes place which are
accurate in the regions of electron configuration space
relevant to the calculations.

Such wave functions are difIicult to obtain. Hartree-
Fock wave functions are available for the ground states
of most atoms for Z(36, and provide a moderately
good approximation for photoionization calculations,
although they neglect correlation effects which may be
important. For excited states of atomic systems,
Hartree-Fock calculations may be carried out, but at
present this has only been done in a few cases. ' Calcu-
lations of continuum states representing a system
consisting of an ionic core plus an unbound electron
have been done mainly with electron scattering in
mind. Since the emphasis in such calculations is on the
asymptotic form of the wave functions at large distances,
they, in general, provide much poorer estimates in the
regions of conhguration space important for photo-
ionization calculations than do Hartree-Fock calcu-
lations for the ground states of atoms.

' See H. Hall, Revs. Modern Phys. 8, 358 (1936),and H. Bethe
and E. Salpeter, in Encyclopedia of Physics, edited by S. FlQgge
(Springer-Verlag, Berlin, 1956), Vol. 35, Sec. 69.

'A good recent review of low-energy photoionization calcu-
lations is not available. Most of the material through 1956 is
contained in rather condensed form in the article by G. L.Weissler,
Eecyclopediu of Physics, edited by S. Flugge (Springer-Verlag,
Berlin, 1956),Vol. 21, pp. 366—441.For reviews of earlier work, see
D. R. Bates, Monthly Notices Roy. Astron. Soc. 106, 432 (1946),
and M. J. Seaton, Proc. Roy. Soc. A208, 408, 418 (1951).

See, for example, R. S.Knox, Phys. Rev. 110,375 (1958).

Experimental work on atomic photoionization at low
energies has been confined mainly to the rare gases and
the alkalis, primarily because these are the only
elements that may be studied as free atoms. Work on
the rare gases is dificult, since the region of spectral
interest lies in the far ultraviolet. Experiments on the
alkalis are hampered by the small magnitude ( 10 "
cm') of the cross sections near threshold and by the

difhculty of obtaining purely monatomic vapors. Owing
to these practical difhculties„ little experimental work
has been done and, in addition, it has been limited to
an extremely narrow range of energies (usually a few
electron volts above threshold, never more than 10or 20).

Since little information is available, a logical step
towards a better understanding of low-energy photo-
ionization is the calculation in an approximate but
consistent fashion of cross sections for a number of
atoms over a broad spectral range. We have performed
such calculations for electrons in the outer subshells
of the atoms Ne, Ar, Kr, Na, and He, and of the ions
Cu+ and Ag+. The spectral range covered was from the
photoionization threshold to about 100 eV above it for
all cases except Na and He. The study of the rare gases
was extended below threshold by computing the
oscillator strengths for.a number of discrete transitions.
The calculations were performed using a central-field
model which, although simple, should predict the gross
spectral shape of the cross sections. The calculations are
exploratory in nature and are intended to complement
our knowledge of low energy photoionization and thus
to point the way towards better approximations.

The cross section for absorption of a beam of photons
of energy kv greater than the first ionization potential
of the atom is given by the dipole approximation formula~

dna o'
o (hv) = hv Pp(r, ,rs r~)

&(Q r,Pr(rr, rs r~)dr . (1)

4 See Hall, reference 1.' See Bethe and Salpeter, reference 1, Secs. 59 and 69.



JOHN W. COOPER

In (1), fs and Pr are the wave functions of a single
atom before and after absorption expressed in terms
of the electron coordinates r, . The wave functions are
expressed in atomic units, the integration is over the
entire electron configuration space and the sum is over
all atomic electrons. Ps is normalized to unit amplitude
and Pr per unit energy range; i.e.,

where E is the total energy of P~. rr is the fine structure
constant (1/137). The atomic radius as (as=5.29X10 '
cm) appears in (1) since r, is expressed in atomic units
and o. in cm'.

Equation (1) is valid for energies hv&(mc'-'. When
single ionization takes place, Pr must represent the
system consisting of an ion plus a free electron of energy
e. In the present treatment we shall ignore multiple
ionization corresponding to the emission of two or more
electrons.

If I is the first ionization potential of the atom the
photon energy hv and electron energy e obey the
Einstein relation

hv =I+e
This relation assumes that the ion is left in its ground

state. For low photon energies the relation is exactly
true but not for low electron energies, since for a given
electron energy the ion may, in general, be left in an
infinity of excited states, each corresponding to a
different value of hv. In what follows we adopt the
electron energy e as our independent variable.

The numerical evaluation of (1) requires estimates of
Ps and P~. To obtain these we make the following
assumptions:

(a) Ps and P~ are antisymmetrized products of one-
electron wave functions. Ps and tJy are each approxi-
mated by a single Slater determinant.

(b) Of the 1V one-electron wave functions from which

Ps and Pr are formed, cV—1 are exactly the same for
initial and final states. Under these assumptions, ' the
integral in (1) reduces to an integral over one-electron
wave functions,

(2)

In order to proceed further, the one-electron wave
functions ps(rt) and gr(rt) must be estimated. These
functions should describe as accurately as possible the
spatial distribution of a single electron before and after
photon absorption.

' lt is also assumed that the one-electron wave functions are
separable in radial and angular coordinates (spin is ignored in our
treatment) and that the cross section is averaged over the orien-
tation of the axis of quantization. Under these assumptions (2)
reduces to integrals involving the radial functions only. See, for
example, Bates, reference 2.

Assumption (a) is the starting point of the central-
field description of atomic structure. Minimizing the
total energy of an antisymmetrized product leads, as is
well known, ' to the Hartree-Fock equations, which
may be solved numerically for the individual one-
electron wave functions. Such one-electron wave
functions provide, for all except the lightest atoms, the
best spatial representation of the electrons in the outer
subshell of an atom in its ground state presently
available and have been used in most of the low-energy
photoionization calculations performed to date, in-
cluding the present work.

The choice of realistic final-state one-electron wave
functions requires some discussion. First of all, it
should be pointed out that in most of the previous work
of low-energy photoionization assumption (b) is not
made. The usual approach' is to assume final-state wave
functions which are antisymmetrized products of a
free-electron wave function and the one-electron wave
functions of the ionic core. Under the assumption that
the core functions are known (and, of course, they can
be obtained by a solution of the Hartree-Fock equations
for the ground sta, te of the ion) and that the total wave
function satisfies the Schrodinger equation, the radial
part of the free one-electron wave function satisfies an
inhomogeneous integro-differential equation analogous
to the Hartree-Fock equation for an electron bound in a
particular subshell of an atom. The resulting equation
can be interpreted physically as describing an electron
moving in the effective central field of the residual ion
with allowance made for electron exchange by the
inhomogeneous terms of the equation. Under these
a,ssumptions the integral in (1) reduces to the product
of an integral over one electron functions of the form
of. (2) and an "overlap" integral which describes the
relaxation of the ionic core.

Assumption (b) implies tha, t the ionic core is un-
relaxed. The assumption leads to the interpretation of
the one-electron orbital energies for the various electron
orbitals of an atom as ionization potentials for the
electrons in the respective subshells. '

While the one-electron orbital energies generally are
somewhat larger than the respective ionization po-
tentials" the difference is never more than 15—

20%%uq for
the outer subshells, which implies that (b) is a
moderately good approximation. In the present work we
make one further assumption, namely,

(c) The one-electron free wave functions are eigen-
functions of the same effective central potential as the
ground-state functions Qs(ri).

Physically (c) means we describe the electron being
ionized as moving in the same effective central field

VD. IC. Hartree, The Calculation of Atomic Structures (John
Wiley R Sons, Inc. , New York. , 1957).' See Seaton, reference 2, for an outline of this approach. Also
M. J. Seaton, Trans. Roy. Soc. (London) A245, 58 (1953).

" T. Koopmans, Physica 1, 104 (1933)."J.C. Sister, Phys. Rev. 98, 1039 (1955).
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both before and after ionization takes place." This
treatment explicitly ignores the eGects of electron
exchange in the computation of continuum state wave
functions. However, exchange eGects are to some extent
contained implicitly, since the effective central potential
of the ground state contains a contribution due to
electron exchange.

Assumptions (b) and (c) would appear to be more
unrealistic than the Hartree-Fock-like treatment of
reference 9. However, our approach has much to
recommend it, particularly since we are interested in
the spectral shape of the cross sections over a rather
large energy range. First, the "best" effective cen ral
field from the standpoint of photoionization calculations
is neither the 6eld of the relaxed ion nor the 6eld of the
unrelaxed ionic core which we use, but something
between these two extremes. The use of a relaxed core
assumes no effect" (apart from exchange) of the out-
going electron on the ionic fieM while the use of an
unrelaxed core overestimates this effect. Near the
edge of the atom the effect is small and the ionic field
is a good approximation. However, closer to the nucleus
the effective central field is probably more like the
unrelaxed ionic field. YVhile the difference between the
two fields is small, one would expect the relaxed 6eld to
provide good results for those calculations in which the
important regions of electron configuration space are
near the edge of the atom. This is just the region that
is important for low-energy calculations (where ex-
change effects are also large); i.e., in the range from
threshold to about 10 to 20 eV above it. At higher
energies the unrelaxed held is probably the better
approximation.

Second, the use of an unrelaxed core and the neglect
of exchange means that the initial and final one-electron
wave functions are eigenfunctions of the same central
potential Hamiltonian. The use of a one-electron
central potential model for the photoionization means
that the dipole length, velocity, and acceleration forms
for the matrix-element integrals, which are the same
when exact many-electron eigenstates are used, are also
the same in our approximation. A central potential
model has the added advantage, as we will see, that
one-electron sum rules apply to the photoionization
from the various subshells of the atom.

Finally, the use of a relaxed ionic core implies that
the ion is left in its ground-state configuration; i.e.,

"It should be emphasized that this approach is not new.
Hargreaves LProc. Cambridge Phil. Soc. 25, /5 (1929)]performed
calculations of this type for I,i. Apparently the poor agreement of
Hargreaves' results with experimental evidence discouraged
further calculations of this kind. LSee B. Trumpy, Z. Physik 71,
720 (1931)j. It should be noted, however, that more recent
calculations give no better agreement with experiment than those
of Hargreaves )see, for example, A. Burgess and M. Seaton,
Monthly Notices Roy. Astron. Soc. 120, 119 (1960), especially
Fig. 4 and the references quoted therein j.

"Attempts to correct for this effect and produce a more realistic
central potential for the case of scattering of electrons by atoms
have recently been made. See M. H. Mittleman and K. M.
Watson, Phys. Rev. 113, 198 (1959).

II. METHOD OF CALCULATION

A. The Central Potential

The radial Hartree-Pock equation for an electron
in the rslth subshell of an atom (or ion) may be written
as

+G i(r)+e.i-
t&

l (3+1)
P„,=X„,(r).

Here P„i(r) is the Hartree-Fock radial bound-state
orbital, e„i is the orbital energy (in rydbergs), and
G„i(r) and X„i(r) are the potential and exchange
terms. "ln (3), r is expressed in atomic units and P„i(r)
is assumed normalized so that J'o"P~i'(r)dr=1.

The simplicity of the form of (3) is somewhat mis-
leading since G„~(r) and X„t(r) are functions which
depend on integrals involving all of the other el orbitals
in the atom. (3) is thus one of a set of coupled integro-
differential equations which must be solved simul-
taneously, there being as many equations as there are
filled (or partially filled) subshells in the atom. An
iterative solution of this coupled set of equations by
numerical methods yields bound-state orbitals P„i(r)
and orbital energies e„~ for each subshell.

"The range of exact validity varies from atom to atom. I'or
argon it is true for hv&32 eV, for Na for hv &50 eV."H. A, Bethe (private communication). The result is rigorously
true only if exchange is neglected. The use of the unrelaxed core
approximation has been stressed by Professor Bethe. Communi-
cations with Professor Bethe provided the starting point of the
work described here. I would like to thank Professor Bethe for his
advice and encouragement.

'~The detailed form of G„~(r) and X„~(r} may be found in
reference 7, Chaps. 3 and 6.

that hv =I+e. While this is exactly true" for hi below
the energy of the 6rst excited state of the ion and is an
excellent approximation at all energies, multiply excited
states may have some eGect at moderately high energies,
although the total contribution to the cross section for
any given electron energy is probably less than 10%%uz.

Bethe" has shown that when product wave functions
are used, the average energy of the ionic core is the
same after ionization as before, regardless of its final
state of excitation. This result means that calculations
based on the assumption of an unrelaxed core may be
viewed in a broader sense; i.e., that they describe on
the average the photoionization which produces an
electron of energy e regardless of the frequency of light
causing the process and the resulting energy of the
ionic core.

As mentioned earlier, in the present work we adopt
the electron energy e as our independent variable.
Multiple excitation will tend to "smear out" rapid
variations in the energy dependence of the photo-
ionization cross section. A similar "smearing" is to be
expected due to the effects of electron correlation which
will be particularly important at low electron energies
near the photoionization threshold. These correlation
effects are not treated in the present paper.
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We define a central potential V„~(r) for the with
subshell in terms of the radial orbital P„~(r) and energy
~„& by means of the radial Schrodinger equation:

tr ds f(l+1)
+V„,(r)+e„, — P„,(r) =0. (4)

& mrs rs

From (3) and (4)

V-()=G-() —X-()/P. (). (5)

While the evaluation of V„t(r) from a previously
determined solution of the Hartree-I'ock equations"
(3) is straightforward, it leads to numerical difhculties.
First, the way of defining V„~(r) leads to singularities
at the nodes (if any) of P„~(r). Second, V„~(r) must
approach 2Z/r as r —& 0 and 2s/r as r ~ ~ where Z is
the nuclear charge and z the ionic charge (s=1 for
neutral atoms). While the form of (3) assures the proper
asymptotic forms $G„&(r)~ 2Z/r as r ~0;G„&(r)~2s/r
as r~ ~; and X„~(r) vanishes faster than P,~(r) as
r ~0 and r ~ eo] tabulated solutions of (3) are only
given to two or three significant figures at large dis-
tances. We found that this accuracy was insufhcient
to determine an effective potential from (4) directly,
given P„r(r) and e„d' The procedure we adopted
for determining V„~(r) was to evaluate directly the
functions G„~(r) and X„~(r) from the radial wave
functions for each subshell. Although this method
assures the correct asymptotic behavior of V„t(r), it
still leaves the function singular at nodes of P„~(r). We
have smoothed through these singularities in each case.
Re-evaluation of P ~(r) and e ~ using (4) has shown that
the errors introduced by the smoothing are small.

B. Solution of the Radial Equation for
Continuum States

Continuum state radial wave functions P,~(r) for
positive electron energy e have been obtained by solving
(4) with P„~(r) replaced by P,&(r) and e„& replaced by e.
Although the numerical solution of (4) is straight-
forward, several aspects of our method deserve mention.

Since the energy range we wished to cover was large
(0 to about 10 rydbergs) and the potential V„&(r)
varies rapidly "within the atom, " we adopted the
Runge-Kutta method of solution" with the mesh of

'6The Hartree-Pock solutions used were the following: Ne,
B.Worsley, Can. J.Phys. 36, 298 (1958);Ar, D. R. Hartree, Proc.
Roy. Soc. (London) A166, 450 (1938);Kr and Ag+, B. Worsley,
ibid. A247, 390 (1958); Na, D. R. Hartree and W. Hartree, ibid.
A193, 299 (1948);He, W. Wilson and R. Lindsay, Phys. Rev. 47,
681 (1935);Cu+, D. R. Hartree and W. Hartree, Proc. Roy. Soc.
(London) A151, 490 (1936).

"We tried to do this both by direct evaluation of P„&(r) from
the equation using numerical differentiation and by using the
analytic forms for P &(r) given by P. Lowdin and K. Appel
LPhys. Rev. 103, 1746 (1N6) $. Neither procedure was satisfactory.

'8 The Runge-Kutta method speci6es the solution of an equation
such as (4) at a point r0+h given the solution at the point r0. See,
e.g., J. B. Scarborough, Nnrlericcl Analysis (John Hopkins
University Press, Baltimore, Maryland, 1950), p. 301. All of the
computations referred to in this paper were done by machine
computation (704 Fortran).

integration speci6ed arbitrarily. The use of an arbitrary
mesh in calculations of this type where the functions
may vary rapidly in certain regions of integration has
decided advantages over the techniques of transforming
the basic equation (4) to fit a given set of circumstances
or of simply doubling or tripling a given size mesh as is
generally done in hand computation.

The integration of (4) was started in each case at r =0
using the power series expansions given by Hartree. "
The normalization of the wave functions at large
distances should be

P,r(r) —+a. '*e *sinLe"r —4-/2 —se 'in2e&r+3~1, (6)

where 8~ is a constant phase shift.
The normalization of solutions can be effected in

many ways, the usual approach" being to express
P,~(r) in terms of the regular and irregular Coulomb
wave functions Pt(efr) and G~(e&r). For numerical work
a more convenient procedure is available" which is
easily adapted to machine calculation. The method,
as applied in the present work, is presented in some
detail in Appendix A for reference purposes.

C. Radial Matrix Elements and
Photoionization Cross Sections

Under our assumption of a central potential model
the photoionization cross section a„t(e) for the with
subshell of an atom reduces to

where P ~(r) and P, , ~+t (r) are the bound and continuum
radial wave functions de6ned in Sec. B. Alternative
expressions for E&+& are the dipole velocity form,

P r(r)

21+1+1
P, ~t(r) W—P, r~t(r) dr, (9)

dr2r
' See reference 7, p. 81.
~ See, for example, reference 11.
' D. R. Bates and M. J. Seaton, Monthly Notices Roy. Astron.

Soc. 109, 698 (1949).Also M. J.Seaton and G. Peach, Proc. Phys.
Soc. (London) ?9, 1296 (1962)."See Bates, reference 2.

o „)(e)= (4mnas'/3) (e—e„()(C~,R~,'+C)+,Rr+t'). (7)

In the above, —c„&, the binding energy for an electron
in the with subshell, is assumed equal to the ionization
potential for that subshell. The numerical factors
C~+~ arise from averaging over all initial states of
angular momentum quantum number m and summing
over all final states. "The factors E.~+~ are the radial
dipole length matrix elements
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TABLE I. Photoionization cross sections computed using
length (L), velocity (V), and acceleration (2) formulas for
Ag+ and Cu+.

o X10's (cm')

p (Ry)

I I 0

IPO—

90—

r-
I I

0.0
1.0
2.0
4.0
6.0

21.0 18.1 13.1
30.0 24.2 15.7
31.2 25.3 23.2
13.6 9.2 7.6
3.4 2.1 2.1

8.33
12.28
11.92
9.63
7.06

8.23 7.53
12.14 11.88
11.92 11.81
9.48 9.46
7.06 7.07

80—

70—

and the dipole acceleration form,

4 " dV((r)
R~~r —— P„g(r) P, ~~r (r)dr. (10)

(e—e„()' p dr

The expressions (8), (9), and (10) are exactly equal
if P„~(r) and P, ,~~t(r) are eigenfunctions and e„~ and
e are the corresponding eigenvalues of the same central
potential. From a numerical standpoint (8) is prefers, ble
since, if wave functions are known numerically, E.~ ~ can
be evaluated by direct integration whereas (9) and (10)
require differentiation of the free wave function and the
central potential, respectively. In practice it was
relatively easy to evaluate all three forms" since the
derivative of the radial wave function is computed
at the same time as the wave function by the Runge-
Kutta procedure and the derivative of the potential can
be obtained by numerical differentiation.

D. Accuracy of the Calculations

The numerical accuracy of our work can be gauged
by a comparison of cross sections computed using the
length, velocity, and acceleration forms of the matrix
elements given by (8), (9), and (10). For all of the
cases considered the spectral shape of the cross section
is the same regardless of which form is used. The three
formulas give results accurate to better than 10% for
all of the calculations involving nodeless shells (He, Ne,
Cu+) and for the calculations for argon. For the Kr and
Ag+ calculations the accuracy is poorer, partly due to
the smoothing over the singularities previously men-
tioned, but mostly due to inaccuracies in determining
the exchange potential X„&(r)." The accuracy of the
sodium calculations is also less than 10% since the cross
section is small owing to cancellation of positive and
negative portions of the integrands in formulas (8),
(9), and (10). In Table I we list the cross sections
obtained for one of the better cases (Cu+) and one of
the poorer cases (Ag+) by way of illustration. Better
accuracy could, of course, be obtained by more careful
calculations.

"A fourth form, obtained by difFerentia, ting (9) by parts, which
expresses R~+I in terms of the free wave function and the bound-
sta. te functions and its Qrst derivative was also eve;luated.

~ G„&(r) and X„&(r) were evaluated by direct Simpson's rule
integration of the Slater integrals involved. This procedure leads
to round-off errors for atoms of large Z.
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Fxo. 1.Photoionization cross sections for Ne, Ar, and Kr.

Element

Ne
Ar
Kr
Cu+
Ag+
Na
He

ConfI.guration

(2p)'
(3P)'
(4P)'
(3d)»
(4dt) 10

3$
(1s)'

—e & (Ry)

1.705
1.18i
1.06
1.613
1.69
0.361
1.836

I (Ry)

1.585
1.158
1.029
1.491
1.579
0.3777
1.807

~5Ne, R. W. Ditchburn, Proc. Phil. Soc. London A76, 233
(1960);Ar, Po Lee and G. L. Weissler, Phys. Rev. 99, 540 (1955).
Kr has also been studied experimentally; see A. Pery-Thorne and
W. R. S. Garton, Proc. Phys. Soc. (London) A76, 833 (1960).
Seaton has calculated the cross section for Ne (Seaton, reference 2).
His results have the same spectral shape as ours and lie closer in
magnitude to the experimental values.

III. PHOTOIONIZATION RESULTS

He, Ar, Kr, Na, He, Ag+, Cu+

The results of the photoionization calculations for
Ne, Ar, and Kr are plotted in Fig. 1 along with available
experimental evidence on Ne and Ar." Since our
calculations refer only to ionization of outer subshell
electrons, the figure does not show the peaks due to
2s ~ ep and Bs —& ep transitions in Ne and Ar which
are observed experimentally. The curves are plotted
against X=911.2/(e —e„~) (Angstroms). Although our
chief purpose here is not comparison with experimental
results, Fig. 1 does show that our model gives correct
order of magnitude estimates. The spectral shape for

TAnLE II. One electron energies (—e r) and ionization
potentials (I) for all cases treated.
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I'IG. 2. Outer subshell radial wave functions and d
waves for &=0 for Ne, Ar„and Kr,

neon is similar to that observed even though the oroital
' d' r " (1.705 Ry) is 7% higher than the

observed ionization potential (1.585 Ry). ( ee a e

threshold is reproduced by the calculation although the
calculated curve is much steeper. As mentioned in Sec.
correlation effects which we have not considered are
expec epected to smear out this rapid drop.

an beThe spectral shape of the cross sections can
understood by considering the energy dependence of
the dipole matrix integral (Eq. 8). In Fig. we have

lotted the ground-state radial function P„i(r) and thepo e
d wave for zero energy Li.e,
Ne, Ar, and Kr. The d-wave matrix element is several
times larger than the s-wave matrix element for Ne, Ar,
and Kr at all energies and its spectral behavior wi
determine the spectral behavior of the cross section.
From Fig. 2 we see that the d-wave matrix element will
be small and positive for Ne but large and negative or
Ar and Kr at e=o. As the electron energy increases,

'n" towards thethe d waves in each case will move in ow
origin. 'or e isl N th' will cause an increase in cross section

fi t and then eventually a decrease when t e rsat rs an
d f the d wave has moved close enough to the o 'g'ri in

b comefor negative contributions to the integrand to be

4'6The orbital binding energies and experimental IonIzatIon
potentials for all cases treated are listed in Table II.

Ne

Rg+ (
-2

-6
0

I I I

2 6
ELECTRON ENERGY (6) IN RYDBERGS

I'iG. 3. Matrix elements for p ~ d transitions in Ne, Ar, and Kr.

"R. D. Hudson, Bull. Am. Phys. Soc. 5, 496 (1960)."See A. Dalgarno and A. L. Stewart Proc. Phys. Soc. (London),
A76, 49 (1960}for a discussion of work prior to 1960.

im ortant In the range of energies considered (0 to
10 Ry) the d-wave matrix element is positive. Since it
must be positive in the high-energy limit, any reversal
f

'
of the matrix element at higher energies is

unlikely. For Ar and Kr, on the other hand, the matrix

tude as the energy increases, becoming zero when
positive and negative portions of the integrand are
equal. This occurs at about ~=2 for Ar at about &=2.4
for Kr. At higher energies the matrix element is positive.
As in the case of neon, further sign reversals are unlikely
at higher energies. The d-wave matrix elements for
Ne, Ar, and Kr are shown in Fig. 3.

For sodium, almost complete cancellation of the
positive and the negative portions of the integran s
in E . (8) occurs at threshold. In Fig. 4 we show t e
cross sections calculated using our mode a o g1 n with the
earlier calculations of Seaton" using the relaxed core
approximation and a recent experim ental determina-
tion "The spectral shape of all three curves is the same.
Our calculations predict the minimum in the curve too
close to threshold, partially due to the fact that ~3, is
less than the ionization potential for Na (ea, ——0.361,
IN, =0.3777), and the agreement with experiment is
poorer than for Seaton's calculations. Nevertheless, the
model does predict the gross features (magnitude and
spectral shape) of the cross section.

Helium is the only atom besides hydrogen whose
photoionization cross section has een stu

'
udied exten-

sivel "Agreement between theory and experiment insive y. gree
the region between threshold and abou y a ot 2 R above it
is excellent (10—20%) compared to the results for
heavier atoms. Calculations have been made at hig er
energies also, mainly because of their importance in
estlDla ting e ath L mb shift correction to the helium
ground-state energy.
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FIG. 4. Photoionization cross sections for Na. Note expanded scale.

We have calculated the helium cross section in the
range 0 to 100 Ry mainly for comparison with other
calculations and experiments. The results for the range
0—2 Ry are shown in E'ig. 5 along with a recent measure-
ment" and the "best" values derived from an analysis
of experimental data and calculations by Stewart and
Wilkinson. ~

Salpeter and Zaidi" have recently computed the
photoionization cross section for He in the region from
threshold to 1000 Ry. In their calculations they used
the dipole velocity form of the matrix element and an
18 parameter variational wave function for the He
ground state. Their continuum state wave functions
were computed using the effective potential of the He+
ion (relaxed core approximation) with exchange
neglected. Their results at threshold are about 50'Pz
higher than the results of calculations and experiments.
This discrepancy, which according to the authors is due
to the use of a more accurate ground-state wave function
than other calculations, is hard to understand. However,
at higher energies (10—1000 Ry) their method should
give realistic results. In Table III we give a comparison
of cross sections computed at a few energies by our

method with those of Salpeter and Zaidi. I-ength,
velocity, and acceleration forms are given to indicate the
numerical accuracy. The agreement is excellent.

The spectral shape of the Na and He cross sections
can be understood in terms of the energy dependence
ot the s-p dipole matrix element. For He this matrix
element is always positive as was the case for Xe and
consequently the cross section decreases monotonically.
For Na, on the other hand, the matrix element is
negative at threshold and goes through zero at low
energy. Consequently, the cross section goes through
zero and then rises, finally falling off again at higher
energies as shown in Fig. 4.

The results for the rare gases and Na lead to the
generalization that the photoionization cross sections
from atomic subshells whose radial wave functions are
nodeless have, in general, a different spectral shape than
those from subshells whose radial wave functions have
nodes. "One wouM thus expect the cross sections from
the subshells of the type (1s)", (2p)", (3d)", etc. , to
belong to the erst category while all others belong to the
second. To check this generalization we have calculated
the photoionization from the closed subshells of Cu+,
(3d)" and Ag+, (4d)". The results are shown in Fig. 6.
In accordance with our generalization the Ag+ cross
section goes through a minimum at about 8 Ry above
threshold due to the vanishing of the matrix element for

CU

E

0
X
b

TABLE III. Photoionization cross sections for He.

(R.y)

3.98107
10
50.1185

100

a This paper.
b See reference 31.

I
0.617
0.0913
0.00115
0.000'12

0.)(1018 (cm2) a

V

0.615
0.0913
0.00113
0.00014

0.612
0.0906
0.00111
0.00013

~X 10» (cm2)b

0.603
0.0943
0.00110
0.000126 0

500
I

400 500
~ IN ANGSTROMS

FrG. 5. Photoionization cross sections for He.
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"D.J. Baker, Jr., D. E. Bedo and D. H. Tomboulian, Phys.
Rev. 124, 1471 (1961).

'0 A. L. Stewart and W. J.Wilkinson, Proc. Phys. Soc. (I.ondon)
A75, 796 (1960)."E. Salpeter and M, H. Zaidi, Phys. Rev. 125, 248 (1962).

"This generalization has been reported previously. See abstracts
by J. W. Cooper and by U. Fano, Proceedings of the Second
International Conference on the Physics of L'/ectronic and Atomic
Collisions, Boulder, Colorado, tune, 1061 (W. A. Benjamin Inc. ,
New York, 1961),pp. 7-10.
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where ~„~ and e ~ are the energy eigenvalues of the
states nl and eV and E„~ „~ is the radial matrix
element

(12)

6 8
ELECTRON ENERGY (6) IN RYDBERGS

FrG. 6. Photoionization cross sections for Ag+ and Cu+.

the d ftransit-ion which dominates the spectral behavior
of the cross section. For Cu+ on the other hand, the d f-
matrix element is always positive and slowly varying,
as wa, s the case for He and Ne. The spectral dependence
of these matrix elements is shown in Fig. 7.

The agreement of our calculations with experiments
and other calculations in the low-energy region is
somewhat better than one might expect for such a
simple model. The ma, in reason for this is that our use
of the unrelaxed ionic core approximation compensates,
to a certain extent, for the neglect of polarization eA'ects

while our use of an eQective potential which includes the
effects of exchange in the ground state to a, certain
extent compensates for our neglect of exchange in
computing continuum states. However, the most im-
portant result of these calculations is not that they
provide a method for computing cross sections to a
fair degree of accuracy in a given spectral range, but
that they give a reasonable estimate of the spectral
shape of the cross section over a broad spectral range.

IV. RESULTS FOR DISGRETE TRANSITIONS

In a central 6eld modeP' the oscillator strength for a
single-electron transition between states of quantum

I,O

-I O

The calculation of oscillator strengths using a central
potential model can be done in much the same way as
the photoionization calculations except that Eq. (4)
must be solved as an eigenvalue problem for values of
e„q and the corresponding functions P„~ (r) for variou. '
one-electron excited states e'l'.

Ke have computed one-electron energy eigenvalues
and eigenfunctions for the first few s and d states of Ne,
Ar, and Kr using the same potential as was used for
the photoionization calculations. " The results, along
with statistically weighted term values" (for excited
states) and inner shell ionization potentials", are listed in

Table IV. Also shown are quantum defects 0-„&, defined

by the relation e„t———(rs —o.~&) '. The close agreement
of the averaged term values and our computed orbital
energies and their respective quantum defects indicates
that our model gives a fairly realistic description of the
radial wave functions for the excited states of the atom.

The oscillator strengths for transitions of a single
electron in the outer subshells of Ne, Ar, and Kr to
other one-electron states are shown in Table V. Also
shown are oscillator strengths for transitions excluded

by the Pauli principle, such as 2p-is, which are necessary
for the application of one-electron sum rules to the total
oscillator strength spectral distribution. The table
shows that a small fraction of the total oscillator
strength distribution is due to discrete transitions. The
spectral distributions for Ar and Kr are similar and the
total strength for discrete transitions is much larger
for Ar and Kr than for Ne.

The discrete oscillator strength distribution can be
considered as an extension of the continuum oscilla, tor
strength distribution

dftyr (e)
(e—e„()R(~r-', (13)

de 3 (21+1)

where E~~' is the bound-continuum matrix element

i

6 8 '
ELECTRON ENERGY ]6 ) IN RYDBERGS

I

IO

"See Bethe and Salpeter, reference I, Sec. 61.

Fro. 7. Matrix elements for d ftransitions in Ag+-and Cn+.

3'These computations were carried out using computer codes
developed at the Rand Corporation. I would like to thank Dr. R.
Latter and Dr. W. Karzas and Mr. J. Babcock for permission to
use these codes and for instruction in their operation.

3'C. M. Sitterly, Atomic Energy Levels, National Bureau of
Standards Circular No. 467 (U. S. Government Printing Office,
Washington, D. C., 1948).

3'K. Siegbahn, Beau- und Gum@su-Euy Spectroscopy (North-
Holland Publishing Company, Amsterdam, 1955).
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TABLE IV. One-electron energies and quantum defects for Ne, Ar, and Kr.

$ states
Z(exp) 0 (exp)

(Ne)

&n'l'

d states
E(exp) o (exp)

1$
2$
3$
4$
5$
6$
7$

1$
2$
3$
4$
5$
6$

1$
2$
3$
4$
5$
6$
7$

59.91
3.364
0.376
0.141
0.0744
0.0459
0.03110

220.0
21.47
2.122
0.319
0.126
0,069

1024.6
137.0
20.4
2.01
0.300
0.122
0.067

64.0
3.56
0.360
0.139
0.0735
0.0456
0.0309

236.2
24.2

2, 15
0.304
0,124
0.067

1055~ 5
142.0
22.1
2.00
0.300
0.121
0.066

~ ~ ~

—1,37
—1.34—1.33
—1,33—1.33

—2,23—2.18
—2.19

—3.18—3.13
—3.14

~ ~ ~

—1.33
—1.32—1.31—1.32—1.31

(Ar)
3d
4d
5d

—2.19 6d—2.16
—2.15

(Kr)
3d

6d
7d

0.1132
0.0637
0.0407
0.0282
0,0207
0.0158

0.1340
0.0744
0.0455
0,0311

7.9
0.134
0.0731
0.0446
0.0306

0.1121
0.0630
0.0403
0.0279
0.0205
0.0157

0.1274
0.0717
0.0452
0.0308

7.1
0.126
0.0731
0.0450
0.0308

—0.028—0.039—0.042—0.044—0.045—0.045

—0.269—0.334—0.312—0.330

—1.27—1.29—1.27—1.29

—0.014—0.013
—0.018
—0.013—0.018—0.019

—0.200—0.265—0.298
—0.305

—1.18—1.30—1.29—1.30

defined by Eq. (8). In order to make a direct comparison
of the discrete spectral distribution of f as defined by
Eq. (11) with the continuum distribution (13) the

f values must be normalized per unit. energy range by
dividing by 2(e„ i —e„i)'.

Plots of df/de and f„i~„i/2(e„ i
—e„t)' for the

p ~ s and p ~ d transitions in Ne are shown on the
same energy scale in Fig. 8. The discrete values for both
series lie on the extrapolated continuum curve for all
values of N. Similar plots are shown in Fig. 9 for p ~ s
transitions in Ar and Kr. For these transitions the
discrete values show some scatter from the extrapolated
continuum curve due to the inaccuracy of the numerical
calculations. The scatterer is even greater for the case
of p ~ d transitions in Ar and Kr (not shown).

Transition

2p-1$
2p-2s
2p-3$
2p-4$
2p-5$
2p-6$

—0.0531
—0.1535

0.0272
0.0044
0.0015
0.0007

Transition

(Ne)
2p-3d
2p-4d
2p-5d
2p-M

0.0062
0,0033
0.0018
0.0011

V. PROPERTIES OF THE OVER-ALL OSCILLATOR
STRENGTH DISTRIBUTION —SUM RULES

For a one-electron central potential model the
oscillator strength distributions for I,

' =1+1and l'= I 1—
transitions as defined by Eqs. (11) and (13) obey the
following rules":

f.i- t

(r')-i, (14)
~' e„ i. e„i 3—(21+1)

TABLE V. One-electron oscillator strengths for Ne, Ar, and Kr.

df
dc

~ 2

0

Q 5d

3s
0

58 Gs

I

'12

I

0 .2
f IN IYDIERGS

df
3p-1$
3p-2$
3p-3$
3p-4$
3p-5$
3p-6$

4p-1$
4p-2$
4p-3$
4p-4$
4p-5$
4p-6$
4p-7$

—0.0056—0.026
—0.242

0.055
0.0082
0.0031

—0.00104—0.0045—0.0154—0.294
0.0675
0.0108
0.004

(Ar)
3p-3d
3p-4d
3p-5d
3p-6d

(Kr)
4p-3d
4p-4d
4p-5d
4p-6d
4p-7d

0.196
0.081
0.043
0.022

—0.047
0.210
0.083
0,046
0.023

Fio. 8. df/de and f„~„~/2 (e~& e~ ~ )& for p—~ d
and p —+ $ transitions in Ne. "Bethe and Salpeter, reference 1, Secs. 61 and 62.
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TAaLE VI. One-electron expectation values for all cases treated.

(r') 1

( )-
[&.3(r)/r]', 0

1.21
8.33
7.77 X 10'

Ar

3.3
5.6
2.6X 10'

4.45
5.42
1.9/X 104

He

1.145
2.86

22.6

20.8
0.69
6.3

2.17
16.2

1,2X106

1.28
18.88
3.51X104

n'

1 (l+1)(2l+3)
for l' = l+ 1,

3 2l+ 1

1 l(2l —1)
nl~n Z

= —— for /'=/ —1
3 (2l+1)

(14)—(16). It was not practical to use Eq. (17) in the
present work since the major contribution to the sum in
this case is at electron energies greater than 10 Ry. In
Table VII we also list the downward transitions such
as 2p-1s since these transitions, although excluded by
the Pauli principle, must be included in a one-electron

&n'Z' &nz nlmn'Z' (T)-t
3 (2l+1)

(16) TABLE VII. Contributions to Eqs. (14), (15), and (16)
for Ne and Ar p ~ s Transitions.

n'
&n'Z' &nZ nl-+n'Z'

4ls P„(r) '
(17)

3121+1)( r ), ,

(r')„i= -P i-'r' dr, -

In the above the sum over e' includes a summation over
all discrete transitions defined by (11) and an inte-
gration over the continuum as defined by (13). l is
defined in Eq. (11). (r')„i and (T)„~ are the nl-sta, te
expectation values of r' and of the kinetic energy of an
nlth subshell electron, respectively. P„i(r) is the value
of the nlth wave function defined by Eq. (3). Equations
(14)—(17) express the mth moments (m = —1, 0, 1, 2) of
the spectral distribution f(e) in terms of expectation
values of the with one electron state."The expectation
values (r')„& and (T)„&may be computed from the wave
function P„&(r) by the formulas:

2p-1s
2p-2$
2p-3s
2p-4s
2p-Ss
2p-6s
2p-L&s

Totals

(Neon p
—58216
—1.670

1.318
1.553
1.620
1.648
1.708—~

Totals computed from
expectation values

3p-1s
3p-2s
3p-3s
3p-4s
3p-Ss
3p-6s
3p-h. s

(Argon p
—218.80—20.30

0.953
0.851
1.054
1.100
1.181—~

Transition (e„ l
—e») (Iy)

—0.053
—0.154

0.027
0.004
0.002
0.001
0.067

0.1356

0.1349

—0.106

—0,111

3.615

3.702

—+ s transitions)

0.0000 —0.006
0.0013 —0.026
0.2544 —0.242
0.0648 0.055
0.0078 0.008
0.0028 0.003
0.0367 0.080

1,225
0.528
0.231
0.047
0.009
0.003
0.200

Eq. (14) Eq. (15) Eq. (16)

—& s transitions)

0.0009 3.091
0.0912 0.256
0.0207 0.036
0.0028 0.007
0.0009 0.002
0.0004 0.001
0.0187 0.222

(T) i= P i'V„i(r)dr+re, „,

In Table VI we list expectation values for all of the
atomic subshells for which photoionization calculations
were carried out.

The expectation values can be used to predict the
spectral shape of the oscillator strength distribution.
In the present case, since we have computed the entire
distribution (discrete and continuum) for the rare gases
Ne, Ar, and Kr, we can get an idea, of how much in-
formation can be obtained from the spectral moments
by evaluating both sides of Eqs. (14)—(17). Since the
distributions of Kr and Ar are similar we limit our
discussion to Xe and Ar.

In Table VII we show a "bala, nce sheet" for the p —+ s
transitions in Ne and Ar corresponding to Eqs.

Totals

Totals computed from
expectation values

45s.20—

.10—

lL g

7sh ~

5sW
%~6s

0.3678 —0.128

0.3667 —0.111

2.24

2.48

3 Equations may also be written for the moments corresponding
to m= —2, —4, etc. , and the moments may be evaluated from
experimental data. However, these moments cannot be obtained
directly from the nlth-state wave functions. Higher moments
corresponding to m=3, 4, etc. , are infinite.

.05
—4

I I I I I I I

—.3 —.2 —.I 0 .I .2 .3 .4 .5
6 IN RYOBERGS

FIG. 9. df/dc and f„l~„l /2(t l cn l )& fOr p —+S
transitions in Ar and Kr.
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TABLE VIII. Contributions to Eqs. (14), (15), and (16)
for Ne and Ar p ~ d transitions.

l,o—
Transition»„& —»z~ (ry) Eq. (14) Eq. (15) I:q. (16)

2P-3d
2p-4d
2p-Sd
2p-6d
2p-Ed

1.581
1.630
1.654
1.666
1.705—~

Neon p~d
0.0038
0.0020
0.0012
0.0006
0.2667

0.0062
0.0033
0.0018
0.0011
0.94

0.0097
0.0053
0.0030
0.0018
4.94

df
dE

0,5—

Totals

Totals computed from
expectation values

0.2743

0.2698

0.95

7.40

0
0 IO I5

6-6'~p IN RYDBERGS
20

Fro. 10. df/d» and (» »o~)d—f/d» for p ~ d transitions in Ne.

3p-3d
3p-4d
3p-5d
3p-6d
3p-Ed

Totals

1.035
1.095
1.124
1.138
1.181—~

(Argon p -+ d)
0.189
0.074
0.038
0.020
0.393

0.714

0.196
0.081
0.043
0.022
0.88

1.222

0.203
0.089
0.048
0.025
4.73

5.10

Totals computed from
expectation values

0.733 4.98

treatment. The table shows that for p —& s transitions
these excluded transitions make important contributions
to the one-electron sums of Eqs. (14)—(16). Most of the
"allowed" oscillator strength distribution for p —+s
transitions is in the continuum. The sums in Eqs.
(14)—(16) agree to the accuracy of our calculations with
the sums computed directly from the expectation values.

For p ~ d transitions in Ne and Ar there are no
excluded transitions. Balance sheets for Eqs. (14)—(16)
for p —& d transitions in Ne and Ar are shown in Table
III.The table shows that practically all of the oscillator
strength in Ne is in the continuum while for Ar about
70%%uq of the distribution is due to continuum transitions.

The disagreement for p ~ d transitions between
totals computed directly by integration over the
oscillator strength distribution and those obtained
from expectation values in Table VIII is due to the fact
that computations were only carried out to 10 Ry and
the distribution extrapolated to higher energies. While
the two values for Eq. (16) for Ne differ by about 30%,
this is not surprising since slight changes in the extrapo-
lation procedure will lead to large changes in the
oscillator sum. This is shown in Fig. 10 where we have
plotted df/d» and (»—»o~) d f/d» for the p

—+ d transitions
in Ne. The curves appear steeper than the cross. ections
shown in Fig. 1 due to the energy scale used. The
computed values of df/d» have been used out to
e=10Ry. For higher energies two extrapolations were
made assuming tha, t df/d» (»—»o„) ' and that the
extrapolated curve has the value computed at ~=10.
The upper curves were determined by requiring
that Eq. (15) be satisfied. This leads to s=2.4 and

Jo (»»2~) (df/d»)d»= 11.32 rather than the expec-
tation value of 7.40. The lower curves were obtained by
requiring that Eq. (16) be satisfied. This leads to

(Eo—E ) 'f o= '(IE' r I')oo,

P„f„o——Z,

(18)

(19)

2- (Eo E —)f o-o-I =(Eo+2 r. (O'. P )oo], (2o)

(Eo E) f o= (16—7rZ/3) Q; L5 (r;)]oo (21)

I.5—

dt
d6

1.0—

5-
df

(E-e~ )—

I I I

4 6 8 10 I 2 I4 16 I8 20
6-Egp IN RYOBERGS

Fio. 11.df/d and (» »3„)df/d» f—or p ~ d transitions in Ar.

"A. Daigarno and N. Lynn, Proc. Phys. Soc. (London) A70,
802 (1957).

s=2.9 and Jo"(df/d»)dc=1. 04 rather than 1.11. The
extrapolation could be done so that both sum rules are
satisfied, but this is scarcely justified considering the
numerical accuracy of the calculations. The numbers for
the continuum contributions listed in Tables VII and
VIII were based on a graphical extrapolation without
any attempt to satisfy the sum rules. In Fig. 11 we
show similar curves for df/d» and (c »s~)d—f/d» corre-
sponding to I —+ i+I transitions in Ar. The curves show
that the region e—e3„&3 makes important contri-
butions to the sums in Eqs. (15) and (16).

The sum rules (14)—(17) are special cases of more
general rules which apply to transitions from a given
state of an atomic system. "The more general rules are
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TABLE IX. Contributions to Equations (18)-(21).

Eq. (18)

Eq. (20)
Eq. (21)

This paper

0.763
2
7.62

120.5

Dalgarno and
Stewart'

0.7525
2
8.17

121.3

' See reference 28.

In the above f„o is the oscillator strength for a
transition from a given state 0 of energy Eo to a state ~z

of energy E„,r;, and Ip.; are the position and momentum
vectors of the zth electron and Z is the atomic number.
The more general formulas have so far only been applied
to the case of He. Applications to heavier atoms are
diAicult for two reasons. First, for most atoms the only
available ground-state wave functions are Hartree-Fock
functions and evaluation of expectation values from
these leads to a set corresponding to Eqs. (14)—(17)
rather than to Eqs. (18)—(21). Second, the correlation
term in Eqs. (18) and (20) of the form (r„"r;)po and

(p ' 'p&')Op will have the effect of mixing up contributions
of the oscillator strength distribution from different
atomic subshells.

For He there are no excluded states in the one-
electron trea, tment and the correlation terms in the
sum rules (18)—(21) are small. In Table IX we show a
comparison of the central potential expectation values
(for two electrons) corresponding to Eqs. (18)—(21)
with the more accurate values given by Dalgarno and
Stewart. "The close agreement of the expectation values
based on the Hartree ground-state wave function with
those computed from more accurate wave functions
explains why our model gives such realistic results for
the helium photoionization.

using semiempirical methods. ' However, the accuracy
of such calculations is dificult to estimate.

For light atoms, particularly Li and Be, calculations
of ground-state wave functions which include estimates
of the sects of electron correlation are available. 4'

Using Eqs. (18)—(21) it is possible to obtain a,n estimate
of the effects of electron correlation of the oscillator
strength distribution for transitions from such states
by evaluating the ground-state expectation parameters
which appear on the right-hand side of these equations.
While the mixing of contributions to the oscillator
strength distribution from different subshells will make
such an analysis difficult, such an approach is feasible,
at least for Li and Be.

A third approach is to consider the central potential
model described in this paper as an initial approxi-
mation, and to expand the wave functions for a particu-
lar state in the complete set of eigenstates pertaining
to the central potential model. This approach has
recently been formulated4' in a way that is applicable
to both discrete and continuum states. The application
to photoionization and oscillator strength calculations,
although complex, appears to be straightforward.
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APPENDIX A

Normalization of Continuum Wave Functions

For large r Eq. (4) is of the form

VI. FINAL REMARKS
d'P, //dr'+A (r)P, ~

——-0, (A1)

The preceding sections have shown that a simplified
one-electron model based on the effective central
potential obtained from Hartree-Fock ground-state
orbitals provides a reasonably good first approximation
to the oscillator strength spectral distribution for
transitions from outer atomic subshells. Application of
the model to inner subshells, while not made here, is
straightforward. Thus, the model may be used to
compute, in first approximation, the entire spectral
distribution of oscillator strengths from a particular
state of an atom. Such calculations, while lengthy,
can easily be performed using present-day high-speed
computers.

There seem to be three ways in which the methods of
the present paper might be extended. The first, and in
our opinion the least promising, is to perform calcu-
lations similar to those reported here using an effective
central potential which has been modified in some
manner to include eGects neglected by our treatment.
Some work has already been done along these lines

2 1(/+1)
A (r) = +c- (A2)

where
P, /

——C (7rx)
—'/' sin9 (r),

x =d8/dr

(A3)

and C is the normalization constant. From (A1) and
(A3) we ha, ve

g2 g (r)+~ 1/2d2 (g 1/2)/dr2 (A4)

"' See, for example, L. Bierman and K. Lubeck, Z. Astrophys.
25, 325 (1948) and A. S, Douglas, Proc. Cambridge Phil. Soc. S2,
687 (1956).

"See A. %'eiss, Phys. Rev. 122, 1826 (1961) and references
contained therein.

"U. pano and F. Prats, J. Natl. Acad. Sci. (India), {to be
published),

We assume that in the range where A (r) is of the form
given by (A2) that an unnormalized solution P, & may
be represented as
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For large r x~ O'I so a good approximation to xis
obtained by a first-order iteration of (A4). This gives

x'~A —A @'A"/4+—'(A')'A '" (AS)

where the primes denote diGerentiation with respect
to 'r.

Next we consider the solution given by (A3) at two
points r~ and r~ and de6ne the following quantities:

ai ——x&(ri)P, i(r,) =m &C sin8(ri), (A6)

a, =x&(r,)P,i(r,) =~-&C sin8(rg), (A7)
r2

(AS)

(A6), (A7), and (AS) may be solved for C in terms of
a~, a2, and e. The result is

C=sr'~ f(gi2+a22 —2aia2 cosa)/sin n)'i2 (A9)

(A9) may be used to evaluate the normalization
constant C using the first-order solution (A5) for x and
the values of the unnormalized wave function I', ~ at
any two points. The procedure fails for values of
n=nm, but apart from this restriction was found to be
quite unsensitive to the choice of r& and r2. Since the
formulas involved are simple, the computer coding was
arranged so that C was computed for a number of
values of r& and r2. Three-place accuracy in the values
of C computed was obtained in practically all cases.


