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Nuclear Magnetic Resonance and Relaxation of Four Spin Molecules in a Liquid*
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The semiclassical form of the density operator theory of relaxa-
tion is employed to calculate the longitudinal and transverse
relaxation and the resonance line shape of a liquid sample whose
molecules contain four identical spin 1/2 nuclei at the corners of
an equilateral tetrahedron. The relaxation is assumed to be due to
the time dependence of the intramolecular dipole-dipole inter-
actions that results from the classical rotational diffusion of the
molecules. The calculation is not restricted to correlation times
shorter than the Larmor period, but it is restricted to correlation
times much shorter than the reciprocal coupling frequency. The
second-order correction to the Zeeman energy due to the dipole-
dipole interactions is included. The longitudinal relaxation is
found to be, in general, the sum of three exponentials decaying
with different time constants, but in the limit of either short or
long correlation time there are only two exponentials. The ex-
pression for short correlation time agrees with the author' s
previous calculation. The transverse magnetization M' +M„, in
the absence of a radio-frequency field, is, in general, found to be

the sum of three terms each precessing with slightly diferent
frequencies and decaying exponentially with di6'erent time con-
stants. In the case of short correlation time the precession fre-
quencies are the same, and the amplitude decays in the same man-
ner as the longitudinal magnetization for short correlation time.
The resonance line shape, correct to first order in the magnitude
of the radio frequency field, can be expressed in terms of a complex
susceptibility x=g'+ig", which is shown to be proportional
to J'p (3E (t)+iMr (t)]exp (i~t) dt, where M, (t) +iM„(t) is the
transverse magnetization after a 90' pulse. The saturation be-
havior of the resonance line shape is calculated for the case of
short correlation time. The numerical values occurring in the
expressions for the longitudinal and transverse relaxation and the
resonance line shape are such that there is little difference between
the results calculated here and the results obtained by neglecting
in the calculation the effects of the correlations of different dipole-
dipole interactions with one another.

1. INTRODUCTION

~ 'HE longitudinal nuclear magnetic relaxation of
liquid molecules containing either three or four

identical spin 1/2 nuclei has previously been calculated
for the cases in which the nuclei are arranged equi-
distantly from one another at the corners, respectively,
of a triangle or a tetrahedron. ' The following assump-
tions were made: (a) The relaxation is due to intra-
molecular dipole-dipole interactions between the spins;
(b) the molecules diffuse rotationally as spheres in a
viscous fiuid; (c) the initial state of the spin system is
a Boltzmann distribution with spin temperature T„
and (d) the correlation time is short. The result obtained
for both the three and four spin molecules was that,
although the spins are all in equivalent positions, the
longitudinal relaxation after a 180' pulse is the sum of
two exponentials. However, the coefFicient multiplying
one of the exponentials is much smaller than the
coefFicient multiplying the other, and the relaxa-
tion differs little from the simple exponential decay
predicted by a calculation in which correlations of the
diferent dipole-dipole interactions with one another
are neglected. '

It is of interest to determine whether effects of larger
magnitude due to cross correlations of the dipole-dipole
interactions are present in (a) the longitudinal relaxa-
tion when the correlation time is not short compared
to the Larmor period, (b) the transverse relaxation, or
(c) the resonance line shape. In this pa,per, we calculate

* Supported in part by the National Science Foundation.
'P. S. Hubbard, Phys. Rev. 109, 1153 (1958); ill, 1746 {E)

(1958).' P. S. Hubbard, Ph, D. thesis, Harvard University, 1958
(unpublished) .

~ The relaxation of three- and four-spin systems has also been
treated by I. V. Aleksandrov, Soviet Phys, —Doklady 3, 110
{1958).His results do not agree with the results in references 1
and 2 or the present paper.

the longitudinal and transverse free relaxation of the
four-spin system without assuming from the beginning
that the correlation time is short compared to the
Larmor period, although it is assumed that the correla-
tion time is much less than the reciprocal coupling
frequency. %e also calculate the resonance line shape
to first order in the radio-frequency field without
assuming a short correlation time, and the saturation
behavior of the resonance line shape in the case of short
correlation time.

A feature of the calculation is the inclusion of the
second-order correction to the Zeeman interaction
resulting from the dipolar interactions, which average
to zero in first order. These terms are usually omitted;
however, they are of the same order of magnitude as
the transverse relaxation rates, and hence can be
expected to produce shifts of the resonance lines by
amounts comparable to the linewidths themselves.

2. FORMULATION OF THE CALCULATIO¹

The Hamiltonian of a system of spins and their
molecular surroundings can be written in the form

X=AD(s, t)+ Z(q)+G(s, q)], (I)

where t'tE(s, t) is the part of the Hamiltonian that
depends only on the spin variables s and the time t,
AF(q) is the energy of the molecular degrees of freedom

q, and tsG(s, q) is the energy of the interaction of the
spins and the molecular surroundings.

Consider a system of A identical nuclei in equivalent
positions in the molecules of a liquid, each nucleus

4 Sections 2, 3, 4, and 5 of this paper contain a condensation of
material in the author's original manuscript. A reader interested
in a more detailed description of the calculation can obtain a
multilithed copy of the original manuscript by writing to the
author.
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2

G= 2 2 U~)"V~P,
i&j le=2

where the t/';, ~ are spin operators defined by

V, '=——( /g3)'"[I'I' '(I'I '—+-I 'I')] (6a)

V;,+'= &(I/I +'+—I +'I ')
t/' ..+2=

The U;," in Eq. (5) are given by

(6b)

(6c)

U. "=—(6s-/5)"'y'Ar. '(—1)'Vo '(8...&;;), (7)

where the Y2~ are normalized second rank spherical

having a spin of 1/2 and a gyromagnetic ratio p. The
system is exposed to a strong constant magnetic field
and a rotating transverse magnetic field:

H(t) =Pok+Hi(cos(oti —sinootj). (2)

The part AE of the Hamiltonian consists of the interac-
tion energy of the nuclear magnetic moments with the
field H(t):

(3)

where I=+; I;. Hence,

E=—(ooI' —(o))/2) (Iie~'+I 'e '"'), (4)

where a)p=—pHp, (oI=—pHI, I+ —=I +iIy, aIld I =I,.
The relaxation mechanism AG consists of the magnetic

dipole-dipole interactions between the spins. G can
be written in the form

harmonics. The length of the vector r;; from the Jth
to the ith nucleus is denoted by r;;, and the polar angles
specifying the direction of r;, in the laboratory coordi-
nate system are denoted by 8,, and g,;.

The molecules in the liquid are assumed to undergo
isotropic rotational diffusion, so that all directions of
the constant magnitude vectors r;, are equally probable.
As a result, the average of G over the molecular motion
is zero, since the averages of the spherical harmonics
I P(8,&) over all directions specified by 8 and @ are zero.

According to the density operator theory or relaxa-
tion, ' the spin part of a system with a Hamiltonian in
the form of Eq. (1) can be described by a reduced
density operator o (s, t), in terms of which the ensemble
average of the expectation value of any spin operator
Q(s) is given by

(g) =TrLr(s, t)g(s)].
If it is assumed that the molecular degrees of freedom
remain in thermal equilibrium at all times, independ-
ently of the state of the spin system, it can be shown
that the reduced density operator is a solution of the
differential equation

do/dt+i LE+. lV, o]=R(0),

subject to the condition TrL(r(t)]=1. If the average
value of G((I,s) over the bath coordinates in thermal
equilibrium is not zero, the average value must be
included in E. For the present problem it can be shown
that the operators R(o) and 1V are given, respectively,
by the expressions

i&7 i'&j k, l—2

2 2 8M
V()'V')" ((I+ee ) 'I(' &&

"&"(&"'—&o)
—(1+e e") 'I("&&")"'(&"+(o)}—

~

~ i&2' e&P k, 1=2

where

(I k)ooo (12)

P is de6ned to be A/kT, where k is the Boltzmann
constant and T is the absolute temperature. The
function J(,,)&;, )~'((o) is given by

I())(')')"'(~) = s "(')(' '&"'( ) (13)

in terms of the correlation function

C(')(' ')"( )=({II'"(I+ )II""(t))) (14)

The semiclassical form of the relaxation theory, which
is used in this calculation, is obtained by evaluating
the correlation functions by considering the time
dependence of the functions U,P(8;;,p;,) to be due to
the variation with time of the angles 8;, and P;; as the
molecule undergoes classical rotational diffusion in the

liquid. By the same procedure used previously, "which
makes use of Furry's theory of isotropic rotational
Brownian motion, ' the correlation functions can be
shown to be

C(.,)(",)" ( )=8. (-I)"(v'"/") (—;.)
X(1——; sin P(,;)(,';))exp( —

I I/, ), (15)

where p&;,&&,", ) is the angle between the vectors r,; and
r;;, which are rigidly fixed in the molecule. The correla-
tion time r, is given by r.= (6D) ', wher—e D is the
rotational diffusion coeKcient introduced by Furry.
It has been argued that the rotational diffusion coef-
ficient is related to the radius, u, of the spherical
molecules and the viscosity, p, of the liquid by the
relation'2

D= k T/Srrr&as.

~ P. S. Hubbard, Revs. Modern Phys. 33, 249 (1961).' W. H. Furry, Phys. Rev. 107, 7 (1957).
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Since the Stokes formula for the translational diffusion Thus, the required matrix elements of 0. are diagonal
coefficient Dp is Dp =k T/6rra"), it follows that the in n= I»I34I.
rotational and translational diffusion coeff cients are By taking the matrix elements of Eq. (9), one obtains
related by

(17)D= Dp/as.

From (13) and (15), it follows that

J('')(' '
) (0)) =8 s, )( 1) 4J((0) (1 3 sin p( I)( 4 )), (18)

where J((0) is an even function of 0) defined by

J((0)—= (3/40) (ps'/rps)sr, D+ (&or,)3$ ', (19)

the common distance between the nuclei being denoted
by ro.

The conditions of validity of Eq. (9) are

(20)

where
l
R

l
and

l
E

l
are the magnitudes of the operators

given, respectively, by Eq. (10) and Eq. (11).Further-
more, expressions (10) and (11) have been obtained on
the assumption that

p(01, pMp, pM« 1~ (21)

and the expressions are correct only to first order in
Peur, Pa&p, and P~. In addition, it has been assumed that
when a radio-frequency Geld is present, it is small in
magnitude and its frequency is near resonance, so that

l
&o

l
«(ao, r, (22)

where 8 0=—Mo —co. In order to evaluate in closed form
the integral that occurs in X, Eq. (11), it will be
assumed that P«r„which is usually the case in liquids.

A complete set of spin vectors for the system of four
spin 1/2 nuclei consists of 16 vectors. It is convenient
to choose a coupled representation in which the
operators Its Iso Iss I4' I133=—(It+Is)s, I343—= (Is+ I4)'
I'—= (P; I,)' and I'—=P; I, are diagonal. The eigen-
vectors will be denoted by l

I»I34IM), the eigenvalues
that are always 1/2 being omitted. The three quantum
numbers I»I&4I will sometimes be abbreviated by n,
SO that

l
nM)—=

l
I13I34IM)~

The ensemble average of the expectation values of
the components of the total nuclear spin of a molecule
are given by

3. LONGITUDINAL FREE RELAXATION

In order to calculate the relaxation of (P) in the
absence of an applied radio-frequency magnetic field,
it is convenient to introduce the following combinations
of matrix elements:

»—=2 ((»22
l
0

l
11»)—(112, -2 I

lr
I
»2, -2)),

xs—= ((1121
l
0

l
1121)—(112, —1

l

0.
l
112, —1)),

$3—= P ((I13I3411la.
l
I13I3411)

I1g I34
—(IisI341 —1

l
0'

l
I»I341 1))~ (27c)

(27a)

(27b)

The density operator describing the four-spin system
with Hamiltonian —Ace oI', in thermal equilibrium at
temperature T, is

or=ca"3"/Tralee "'j=—,', (1+PoooI')) P=II/kT. (28)

The values of the x, with o. equal to o. , correct to first
order in Po)o, will be denoted by a,r:

xr ={4, 1,3) (Po)p/8) . (29)

Since the thermal equilibrium value of (P), correct
to first order in po)p, is

(P)r =Polo, (30)

—(nM [
0 lnM')+3(nM

[ pF-+I(I, (r]
l
nM')

dt
=(nM

l
R((r) l

nM'), (26)

where Z is given by (4), I('-(0.) by (10), and X by (11).
In order to evaluate the matrix elements of E and

R(o-) that occur in Eq. (26), it is necessary to calculate
the matrix elements of the operators V;;~ defined by
Eqs. (6). The operators U;," are the components of an
irreducible tensor operator of rank two with respect to
I; hence, the Wigner-Eckart theorem' can be used
to express their matrix elements in the

l
I13I34IM)

representation.

(I")=TrL0I"j=P P (nM
l
aln'M')(n. 'M'

l
I

l
nM). (23) it follows from Eq. (25a) that

nM' a'M'

Since

(n'M'l P lnM) =ML', 8'li', .lI, (24a)

(31)

it follows from (23) that

(I') =Q M Q (I13I34IM
l

(T
l
I»I34IM) )

I3f I12I34

(I+')=P $(I%M) (I&M+ 1)]'"

(25a)

(I13I34IM
l
0

l
I»I34I, M~ 1). (25b)

(n'M'
l

I+'
l
nM) = L(I%M) (I&M+ 1)]"'

+'gaia', uklI', zlf+lq (24b)

Differential

equations for the x; can be obtained from
Eq. (26). When the differential equations for the
matrix elements are combined so that the time deriva-
tive of one of the x; occurs on the left-hand side, it is
found that the other matrix el.ements in the equation
occur only in the combinations x;. The three resulting
equations can be written in matrix form as follows:

dx/dr= A(x—xr), (32)
7 A. R. Edmonds, A ngular Momentum in Quantum Mechanics

&Princeton University Press, 1957), 2nd ed. , Chap. 5,
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where, with the abbreviation J t,

—=J(l~o),

A11 ~8J1 48J2)

A 21=0,

A31= 9J1, A 32
——27J0—18J2, A 33= —9J0—25J1—46J2.

A 12=0) A 13—12J1)

A22 2~JO 2~J1 ~8J2) A23 9J0 6J2) (33)

(41)—(66Jo+P) (Po+ 146JoP+5145Joo) =0,

The solutions of Eqs. (32) for the x;(t) in terms of (coor.)&(1. In this case Jo=Jq=Jo, so that D(p)=0
x;(0) can be obtained by the use of Laplace transforms. becomes
The result is

x(t) —xr

= —P (Adj(A —PI I)Lx(0)—xr]e»'/D'(Pq)}, (34)

where Adj(A —pI) is the adjoint matrix of the matrix
A —pI, D(p) is the determinant of the matrix A—pI,
D'(p) is the derivative with respect to p of D(p), and
p~, po, and po are the eigenvalues of A, and hence are
solutions of D(p) =0. Equation (34) is valid if the
eigenvalues are distinct.

The initial condition of the spin system will be
considered to be the result of the application of a
rotating field H& ——H&(1 cosgot —j slnMot) to the system
in thermal equilibrium with density operator 0.~, Eq.
(28), for a time to sufficiently short that the eGects of
the dipole-dipole interactions can be neglected during
the pulse. The density operator at the end of the pulse is'

oo=e 'r "expLP&uo(I„sin8+I cos8)j
Xe-~o"'~/Trt ee"o"), (35)

With the values (42) for the po, it follows from (33)
and (39) that

ay
——L92+ 13(46) 'I'g/184,

a2 ——0,

ao ——L92—13(46) 't'j/184.
(43)

The expression obtained when (42) and (43) are sub-
stituted in (38) agrees with the result previously
calculated for short correlation time, ' ' which was
expressed in terms of a quantity T0 dered by

To
—'=—(7'It/ro')'r, = (40/3) Jo. (44)

The condition of validity of the relaxation theory,
Eq. (20), can be written for the present problem in
terms of T0 aS

the roots of which are

p, = —L73—2(46)'t' IJo) p, =—66Jo,

po =—L73+2 (46) jJo (42)

where 8=~H~to. Hence, to first order in pro, r,&(To, or r, '&((ro'/y%)'. (45)
(nM

i
oo inM) =M (Pa&o/16) cos8. (36)

For ~(0) =&ro, it follows from Eqs. (27) and (28) that

x(0) = (4,1,3}(P~o/8) cos8= xr cos8. (37)

By use of (28), (37), and (34), Eq. (31) can be written

Consider next the case of long correlation time,
((d'or ) ))1.A long correlation time is not incompatible
with the satisfaction of the condition of validity (45) if
&uo'»(y'It/ro')' The root.s p~ can be calculated correct
to first order in the small quantity ~

—=1/(~or. )' by
expanding Jq, Jo, and p as power series in o,

where

(I )—(I )r = (I )r(cos8 —1) Q aqe»' (38)
J =-J.Z (-)., J.=-J.Z (-/4)",

n=l n=l

az= —p (4 Adj(A —p„I);,+Adj(A —p„I),,

+3 Adj(A —pl„.I),",}/8D'(pj,). (39)

The elements of A are related to the quantities J~ by
Eqs. (33). From Eq. (19),

J~—=J(l~o) =JoL1+ (d'or. )'g '. (4O)

Because of the complexity of the expression for D(p),
it is impracticable to calculate general expressions for
the roots p& of the cubic equation D(p)=0. Hence,
the pq and aq will be calculated for several values of the
quantity (&d'or, ) upon which the J&—=J(i&so) depend.

Consider erst the case of short correlation time,

p P p(n) on

n=o

p&
———%11—(10)'I'$Joo,

po= —3L11+ (1O)"'jJoe,

po= —(36+26o)Jo.
(46)

The coeScients a& obtained by using the above values
of po in Eq. (39), retaining terms to the first power of

substituting the above expressions in the equation
D(p) =0, and determining the coefficients p&'& and p&'&

by equating to zero the coeKcients of the e', e', and e'
terms. The results are
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((1
0.01
0.05
0.1
0.3
O.S
0.7
1.0
2.0
40
6.0
8.0

10.0
50.0

)Q1

-PI/Jo —P8/Jp T1 /Jo

0.9792
0.9798
0.9772
0.9742
0.9708
0.9705
0.9707
0.9711
0.9722
0.9731
0.9734
0.9737
0.9738
0.9742
0.9743

59.435
57.503
50.958
44.752
30.660
23.655
19.383
15.338
9.1602
5.1216
3.5623
2.7323
2.2164
0.4645

23.5 1 e

0.0000
0.0009
0.0090
0.0172
0.0280
0.0293
0.0293
0.0289
0.0278
0.0269
0.0265
0.0263
0.0262
0.0258
0.0257

66.000
64.863
60.728
56.216
43.177
35.203
29.848
24.410
15.347
8.8752
6.2532
4.8290
3.9338
0.8362

42.49m

0.0208
0.0193
0.0138
0.0086
0.0012
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

86.565
84.692
78.600
73.214
62.302
57.142
53.889
50.651
45.271
41.391
39.807
38.944
38.400
36.511
36+26m

60.000
58.035
51.429
45.195
31.049
24.000
19.690
15.600
9.3333
5.2235
3.6343
2.7879
2.2616
0.4741

24.00m

TABLE I. Coefficients in expression (38) for the
longitudinal relaxation.

given in Table I are listed in the last column of the
table for the purpose of comparison with the more
rigorous results calculated in this paper.

It is apparent from Table I that for all values of
(~pr,)' the coeKcient ar is much larger than as or ap,

so that the relaxation is approximately a simple expo-
nential decay. Furthermore, the time constant, —(p&)

—',
of the dominant exponential is in all cases approximately
equal to the relaxation time T1 calculated by neglecting
cross correlations.

4. TRANSVERSE FREE RELAXATION

e in the numerator and denominator, are

ar ——L10+3 (10)'t'7/20,

as ——L10—3 (10)'t']/20,

a3 ——0.
(4&) yr =—2((1121(o.

~
1122)+(112)—2

)
o

~
112, —1)),

y&=6't ((1120~o
~
1121)+(112,—1~ o'~ 1120)),

(49a)

(49b)

The calculation of the relaxation of (I')=(I,)+i(I„)
in the absence of an applied radio-frequency magnetic
6eld is similar to the calculation of the longitudinal
relaxation given in the previous section. The following
combinations of matrix elements are introduced:

For intermediate values of (ropr, )', the cubic equation
D(p)=0 does not factor in an obvious manner. Hy
use of an electronic computer, the roots po and the
coeKcients u& have been calculated for many inter-
mediate values of (&d'or,)'. Some of the results are given
in Table I. The calculation was performed for many
more values than are listed in the table, but the
tabulated values are representative. The results
obtained above for the cases of short and long correla-
tion time are also listed.

It has previously been shown that, if cross correla-
tions between different dipole-dipole interactions are
neglected, the longitudinal relaxation of a system of
spin 1/2 nuclei is a simple exponential decay. o' In
terms of the present notation, the relaxation time T1 for
the four-spin system when cross correlations are neglected
can be shown to be

It follows from Eq. (25b) that

(I')= Z y . (50)

Differential equations for the y; are obtained from
Eq. (26). When the differential equations for the matrix
elements of o. are combined so that the time derivative
of one of the y; occurs on the left-hand side, the other
matrix elements in the equation occur only in the
combinations y;. The three resulting equations can be
written in matrix form as follows:

ys=&2 Q ((IrsIo410
~

o
~
ItsI3411)

+(IrsIp41, —1
~

o
~
IrpI3410)). (49c)

Tr r=12Jo(L1+(Mor,) j '+4/1+(2&@or,) $ } (48)

The values of Tr ' for the different values of (~pr,)' where

—(ye-")+id(ye-'") =B(ye'"')
df

(51)

Brr ——(—3/2) (9Jp+13Jr+22Js), Brp ——0, Bgs= —6(Jr—2Js),

821——0, Bss=—(3/2) (13Jo+25Jr+6Js), Boo=9Jr,

Bsr———9(Jt—2Js), &32=9J1, Bos———(1/2) (39Jo+ &1Jr+50Jp),

(52)

and d is a diagonal matrix with elements

d, = (3/2)a)pr, (—J,+20Js),
ds= (3/2)~or. (&Jr+12Js),

ds= (13/2)oror. (Jr+4J2).

Laplace transforms. The result can be written

y (t) = —Q $Adj (B—id —q&I) y(0)j
(53) o-r

Xe& -o& /D'(q, ), (54)

The solution of Eq. (51) can be obtained by the use of

s A. Abragasn, The Prirseiples of Nsselear Magwetisra (Clarendon
Press, Oxford, 1961), Chap. VIII.

where Adj(B —id —q&I) is the adjoint matrix of the
matrix (B—id —q&I), D (q) is the derivative with
respect to q of the determinant D(q) of (B—id —qI),
and q&, qs, and qp are the eigenvalues of B—id, and
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(Ii)—(Io)Tie iaroto si—ng p b„e{oo koo)t—
where (I')r =Pooo, and

b&= —P {2Adj(B —id —q&I);)+3 Adj(B id —q&I)—;&

+3 Adj(B —id —qoi), g}/8D'(qo). (60)

Consider the case of short correlation time, odor,«1.
Since in this case JI=J2=Jo, and di=d2=d3=0, the
equation D(q) =0 becomes

—(66J i)+ q) Pq'+146Joq+5145 Jo'3 =0

which is the same as Eq. (41) with p replaced by q.
Hence, the three roots q?, are equal, respectively, to the
solutions pi given by Eqs. (42). Furthermore, use of
these values of q), to evaluate expression (60) for the
quantities b?, results in values that are, respectively,
equal to the ao of Eq. (43). Thus, as expected, in the
case of short correlation time the transverse relaxation
is the same as the longitudinal relaxation.

If the correlation time is not short, the matrix
B—id is complex and non-Hermitian. Hence its eigen-
values, q?„are in general complex. The real part of qf,

is denoted by q~' and the imaginary part by q?„.
".'

qo ——qo'+iqo", k=1, 2, 3.

The secular equation, D(q) =0, is a cubic equation with
complex coefficients. It can be written in the form
D(q)=Fr(q', q")+iFs(q', q")=0, where Fi and Fs are
real functions of the real variables q' and q". Hence the
real and imaginary parts of each of the three roots can
be obtained by solving simultaneously the equations
F,(q', q")=0 and Fs(q', q")=0. The solutions of the
equations for several values of coor., have been obtained
on an electronic computer by use of Newton's iterative
method. Some of the results are given in Table II.

The coefFicients bs in Eq. (59) are in general complex,

b.=b„'+ibo"
~
bo

~
exp(.+o). (62)

hence solutions of the equation D(q) =0. The roots qo
must be distinct in order for (54) to be valid.

The initial conditions are again considered to be the
result of the application to the system in thermal
equilibrium of a transverse magnetic held rotating with
the Lamor frequency coo. After a short pulse of duration
tg=e/&IIi, the density operator is given by Eq. (35).
Hence, correct to first order in Po)o,

(o{M
i
o g

) {r, M+ I)+(n, —M—I
i

trg
i tr, —M)

= (Po)o/16)L(I —M) (I+M+1)]'~'e '"'", (55)

so that, with o (0)=og,

y(0) = (1/8) (2,3,3}PMo sine expLi(gr/2 —o)ofg) j. (56)

By use of (54) and (56) in (50), one obtains

TA))LE II. Coefficients in expression (63a) for the transverse
relaxation. Jo= (3/40) hob/ro )or, .

0.0
60.000
0.01

59.241
0.05

56.571
0.1

53.844
0.3

46.531
0.5

42.000
0.7

38.805
1.0

35.400
2.0

29.333
4.0

24.706
6.0

22.766
8.0

21.697
10.0
21.020
50.0
18.648

1QO.O
18.327

1000.0
18.033

bI'—qI'/JO

0.9792
59.435
0.9777

58.671
0.9534

44.903
0.8610

52.896
0.3501

43.404
0.2500

37.500
0.2182

33.638
0.2010

29.805
0.1948

23.606
0.2051

19.302
0.2135

17.581
0.2193

16.650
0.2236

16.065
0.2431

14.046
0.2464

13.775
0.2496

13.528

0.0000
0.0000

—0.002
2.8484

—0.016
5.5880

—0.077
6.7282

—0.049
6.8714
0.0000
6.3640
0.0145
5.8730
0.0219
5.2660
0.0237
4.0287
0.0177
2.9426
0.0132
2.4224
0.0102
2.1050
O.Q082
1.8861
0.0011
0.8475
0.0004
0.5996
0.0000
0.1897

l

-q2'/Jo

0.0000
66.000
0.0008

64.829
0.0234

60.726
0.1150

56.692
0.6279

47.871
0.7308

43.175
0./647

39.948
0.7845

36.546
0.7966

30.553
0.7940

26.030
0.7918

24.146
0.7916

23.112
0.7928

22.458
0.9291

20.185
0.6593

19.882
0.3788

19.540

b ll

-q2" /Jo

0.0000
0.0000
0.0002
2.7506
0.0126
5.4436
0.0720
6.8878
0.0461
8.9693
0.0000
9.1924

—0.0120
9.0511

—0.016
8.6865

—0.013
7.5096

—0.002
6.0333
0.0056
5.1716
0.0111
4,5953
0.0154
4.1/62
0.1175
1.9766
0.5991
1.4359
0,113
0.4727

l
—q3'/Jo

0.0208
86.565
0.0215

85.007
0.0232

79.800
0.0240

74.860
0.0031

62.834
0.0192

55.825
0.0171

50.958
0.0145

45.798
0.0086

36.619
0.0008

29.609
—0.005
26.668
—0.011
25.047
—0.016
24.020
—0.172
20.417
0.0943

19.926
0.3715

19.542

b ll
—q3"/Jo

0.0000
0.0000
0.0018
3.0510
0.0039
6.0584
0.0048
7.5549
0.0221
9.1132
0.0000
9.1924

-0.003
8.9971

—0.005
8.5976

—0.011
7.3965

-0.016
5.9300

-0.019
5.0804

—0.021
4.5134

—0.024
4.1012

—0.119
1.9282

—0.600
1.3445

—0.111
0.4121

3

(I )=i(Io)' sine p (b,'+ib,.")e«'e-'«"o-o") +"o'o (63a)

3

=g(Io)& sin{t) p ~
b&~

goo'te —[{ o—oo")t—so+ oto] (63b)

The values of b/,
' and b?,

" corresponding to the values
of coos-. in Table II are included in the table.

If cross correlations between diferent dipole-dipole
interactions are neglected, the relaxation of the magni-
tude of (Ii) is a simple exponential decay. For the
four-spin system, the time constant of the decay can be
shown to be"

Ts '=6Jo(3+5LI+(~or )'j '+2LI+(2~or )'j '} (64)

Values of Ts '/Jo are listed in Table II for the purpose
of comparison with the other values in the table, which
have been obtained without neglecting cross correla-
tions or the second-order corrections to the Zeeman
interaction.

The voltage induced in a coil, whose axis is in the x
direction, by the precessing magnetization after a 8

pulse, is proportional to d(I,)/dt, . With the assumption

As a result of the initial condition, Eq. (56), the complex
numbers bt, must have a sum of unity: bi+be+ho ——1.

By use of Eqs. (61) and (62), Eq. (59) for (Ii) after
a 0 deg pulse can be written in either of the two forms
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that ~p&&~ qg'+iqI, "~, it follows from Eq. (63a) that

—(I.)=p1p(Ip)~ sinHC(t) cos[Mpt+Mptp —g(t)g, (65)
df,

where

Equations for the time derivatives of the quantities xl,

can be obtained from Eq. (26), as was done in Sec. 3,
except now the terms multiplied by co~ must be included.
The equations can be written in matrix form as

dx/dt= A(x—x~)+M1Q.
3

g e"'(b2" cosq1."t+b2' sinq~" t)
k=1

tang(t) =
3

Q e"'(b1.' cosq~, "t bp" sin—q1."t)
k=1

3

C(t) ={[p e'2'(bq" cosq1,"t+bl, ' sinqp"t)]2

(66)

The elements of A are given by (33). Q is the column
matrix

Q=—{—2F1", Y1"—T2"„—Fp"}, (72)

where FI," is the imaginary part of F~. In obtaining
Eq. (71),use has been made of the fact that the operator
0 is Hermitian.

A differential equation for the quantity s' dined by
(70) can be obtained from Eq. (26):

3

+[+e"'(b1.' cosq1."t—bI,
"sinq2"t)]2}''2. (67)

If the voltage is amplified by a receiver with bandwidth
broad enough to include the three frequencies (~p—qk"),
the voltage presented to a detector following the
amplifier is proportional to (65). Since C(t) and g(t)
are slowly varying functions of time, the output of the
detector is proportional to C(t).

The time dependence of expression (67) for C(t) is
dificult to visualize. In view of the values in Table II,
it appears at first glance that C(t) might differ consider-
ably from exp( —t/T2), at least for intermediate and
large values of cop7-, . However, such is not the case. If
exp( —t/T2) is factored out of (67), the expression can
be written C(t)=exp( —t/T2)C1(t). For several values
of M p7, numerical values from Table II have been
substituted into the expression for C1(t) obtained from
Eq. (67). It was found, in all the cases investigated,
that C1(t) is very nearly unity for all values of t for which
exp( —t/T2) has appreciable magnitude. Hence, the
transverse relaxation appears to differ very little from
the simple exponential decay predicted by the calcula-
tion in which cross correlations are neglected.

5. RESONANCE LINE SHAPE

The resonance line shape depends upon the steady-
state expression for (I1)=(I„)+i(I„).The quantity
(I1) is given by g yp in terms of the yp defined by
Eqs. (49). As in Sec. 4. differential equations for the y1.

can be obtained from Eq. (26). If variables 7'2—=y1.

X exp(icot) are introduced, the equations governing
their time dependence can be written in matrix form as

dY/dt=[8 i(hpI+d) —jY+ip11P, (68)

where d, p—=p1p—s&. The elements of 8 are given by (52)
and the elements of d by (53). P is the column matrix

P—={x1—2x2+s, 3x2—s, xp}. (69)

The x2 are defined by (27), and s is defined by

s—=6'I2 ((1120
~

u
~
1122)—(112, —2

~

e
~

1120))e'2 '. (70)

ds/dt = [C11—i(2t4+e1)$s+ipp1 (2w+ 2 F1—F2), (73)

where
Ci1—= —6 (Jp+ 6J1+4J2),

e1=—(9J1+48J2)p)pr„

(74)

(75)

where
dw/dt= [C22—2(36p+e2) jw+3zpp18,

C —=—-', (9Jp+13J +22J2),

e2—= -', (13J1+44J2)p1pr ..

(77)

(78)

(79)

Equations (68), (71), (73), and (77) constitute a set
of simultaneous linear first-order differential equations
with constant coefficients which determine the time
dependence of the real variables x~, x2, x3 and the
complex variables I"~, I"~, I'3, i, and G. If it is assumed
that a steady-state solution exists, as is physically
justifiable, it can be obtained by setting equal to zero
the time derivatives in the equations, and then solving
the resulting algebraic equations. Thus, in the steady
state,

Y= —i,[8—(~,I+ d) )- P (80)

x= —pp1A Q+x

[C11 1 (2Ap+el)fs+~p11(2w+ 2 y 1 F2) 0y (82)

[C22—i(36p+e2) jw+3i(u18=0. (83)

Elimination of w from (82) and (83) gives

ip11[C22 i(—3&p+e2) j(3F1 2I'2)—
(84)

{2[C» i (26p+e1))[—C22 i (3hp+ e2))—+3pp1'}

If the above expression for s and expressions for the xl„

from (81) are substituted into P in Eq. (80), that
equation then involves only the real and imaginary
parts of the I'~, the other variables having been
eliminated. Since all terms in P are at least erst order
1I1 K1 except those arising from the xr term in (81), the

w—=6((112, —1
~

~
~
1122)+(112$—2

~

~
) 1121))e""'- (76)

A differential equation for z3 can also be obtained from
(26):



SPIN MOLECULES IN LIQUID 657

solution of (80) to 6rst order in oui is

Y= —i(oiLB—i(~oI+d)] '(2,3,3}Pa)o/8, (85)

where the values of the elements of x' given by (29)
have been used. In the calculation of the transverse
relaxation in the previous section a function D(q),
dered to be the determinant of LB—id —qI], was
introduced, and the roots of D(q) =0 were denoted q~.

Hence, it follows from (85) that

Y= icosi Ad—jt-B—i(hoI+d)]{2,3,3}P"o/8D(i~o) (86a)

p Adj/B —id —qoIj f2,3,3}
=+mi(P(oo) Q

' ', (86b)
8D'(q~, )(q~ —imp)

where the second form has been obtained by separating
into partial fractions. Since from (50), (Ii)=gyp
=exp( —i~t)P Yp, it follows from (86b) that the
steady-state expression for (I') can be written

The quantities ho', b~", qp', and qp" are givenin Table II
for different values of (orpr, )'. It is apparent from Table
II that the b~' are larger than the corresponding bl,

"by
about an order of magnitude except in the cases in which
both b~' and b~" are negligible. Thus, the terms which
have appreciable magnitude in the sum over k in (92)
are approximately Lorentzian absorption curves, and
the terms in the sum over k in (91) are approximately
dispersion curves. Each curve is centered at M =Mp —gA.

"
and has half-width ~qq'~. Since the qq" are less in

magnitude than the corresponding q,
' by at least a

factor of 4, the center of the resonance curve for each k is

displaced from the Larmor frequency coo by an amount
less than the linewidth.

Expressions (91) for x'(a&) and (92) for x"(~) satisfy
the Kramers-Kronig relations appropriate for a rotating
applied radio-frequency field»0:

(li),= —i (Io)'e- 'P b, (q,—iao)-', x'(~p+y) =-& x (~o+y')dg
(93a)

where (I')~=perp, the thermal equilibrium value of
(I') in the absence of a radio-frequency field, and. the
b& are given by (60).

Let e be the number of molecules per unit volume in
the sample. The nuclear magnetization is then M
=nyA(I). When the magnetic field (2) is present, and
the spin system is in a steady state, the complex
susceptibility x=x'+ix" is defined by the relation

M+iM„=Hix exp( —ia&t). (88)

Hence, it follows from (87) that

x= iyM p Q —bp(qp —i~p)—', (89)

where M p ny5(lo)r-—
The free relaxation of the transverse magnetization

after a 90' pulse is given by M, (t)+"M„(t)=eyk(li),
where the time-dependent expression for(I') is given by
(59) with 0=90'. From (59) and (87) it follows that

x=ye~"oo pI, (t)+i M(t)]e ~
td, (90)

since the values of qo are negative. Equation (90) is
similar to a relation given by Lowe and Norberg. '

The real part x' and the imaginary part x" of Eq.
(89) for x are

x"(~o+y) =- ——P
x (~p+y)d3'

(93b)

Yi+Yp
(Id/dt 0+i~oI)— Xi+up

(94)

The results obtained above for x' and y.
" give the

resonance line shape only to first order in H». The
resonance behavior for larger values of H» can in
principle be obtained from Eq. (80) after elimination
of the@panda from P byuse of (81) and (84). However,
the calculations are quite complicated, and will be
carried out here only for the case of short correlation
time.

If the correlation time is short, important simplifica-
tions occur in Eqs. (68) and (71) which permit a general
solution for (I') and (Ii) which describes both the
transient and the steady-state behavior of the spin
system. When Mom' &(l, J]=Jg= Jo in the elements of
B, Eqs. (52), and the elements of A, Eqs. (33). Also,
from (53), di=dp=d p=0. With these values, it follows

from (68) that the equation obtained by adding the
expressions for dYi/dt and dYp/dt, and the equation
for dY p/dt, can be written in matrix form as

x'=vMo Q Pi"qi.' b'(qa" 'o)]/— —
where I is the unit matrix a,nd

x"=—vMo Q Lb"'qi'+bi" (qp" —'o)]/

&&Lq«"+(qi"—'o)'j (92)
' I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957). I See, for example, reference 8, Chap. III, Eqs. (8"')

(95)
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Xt+X2
(Id/(Et —0)

a "+s
)

7/+ p 77

In a similar manner, one obtains from (71)

(96)

exponentials that were previously found to occur in the
expressions for the free longitudinal and transverse
relaxation in the case of short correlation time. The
treatment in this section shows clearly why there are
just two exponentials when the correlation time is short.

It follows from the steady-state part of (97) that the
complex susceptibility

x =x'+ix" =noh(I'), /LH) exp( —io)t)]
Note that Z has been eliminated, and that the same
matrix O~ occurs in both (94) and (96). Since the xb
are real, Eq. (96) contains only real numbers. However,
Eq. (94) is complex; when separated into real and
imaginary parts it gives two real equations. The general
solution of the three equations coupling {F'7'+ Fo'7 Yo'}

7

{I',"+7,", F',"}, and. {~,+x&, g,} can be obtained
relatively easily by use of matrix techniques. Without
going through the details of the calculation here, we
give the results for

(P)=exp( —icot)p Fb and (I,)=g xb..

(ob(ho —iX;)C, (tb.)
(17)—~ test P-

(),o+(o")

+sb C;(O)+ tC;(b)+—C;(a))sia 'S

Dp

+(sC;(a)——C;(b) sos '7, (77)

tdt Ct(a)
+ts)ctt C.(r)

(~7'+~")

—~;(a) sinco't+~, (b) cos(o't, (98)

where to'=((oi'+Do')'" Xt and 7(o are the eigenvalues
of the matrix O~:

X&——L
—73+2 (46)"'jJos 4= E—73—2 (46)"']Jo. (99)

a, b, r, and D are two-dimensional vectors that are
arbitrary except for the condition ~~r=hpD, and 0 is
the vector

t)t= {xP+xo",d'or} = {5,3}/coo/8. (100)

C~(a) and Co(a) are scalar functions of the two elements
of their arguments:

Cz(a) =—{L23+4(46)~]up+ L23+2 (46)&]uo}/46, (101a)

Co(a) ={L23—4(46) 'Jut+ f23—2 (46)&]uo}/46. (101b)

The time constants of the decaying exponentials in
(97) and (98) agree with the time constants of the two

for short correlation time is

92+13(46)&(&~ (a,—a„)
y=yMp

184 / P, )o+oo")

92—73(tt)'a) (3 —sl )
+

184 (Zoo+co")
(102)

The expressions for x' and x" from (102) differ from
the expressions (91) and (92), when the values of the
parameters for short correlation time are inserted, only
in the fact that M"=(o)'+do' replaces Ao' The satura-
tion behavior of each term in (102) is the same as the
saturation behavior of the single term susceptibility
obtained from the Bloch phenomenological equations.

9. DISCUSSION AND CONCLUSIONS

The form of the expressions obtained above for the
longitudinal and transverse relaxation and the resonance
line shape are quite interesting. However, the values of
the parameters occurring in the expressions are such
that there is little actual difference from the results
obtained by neglecting in the calculation cross correla-
tions of different dipole-dipole interactions. Nonetheless,
it cannot be concluded from this calculation alone that
the effect of cross correlations of dipole-dipole interac-
tions is negligible for all types of molecules undergoing
any kind of motion. Q'hile such may be the case, a
general proof has yet to be given.

It must be remembered that in the calculations in
this paper the relaxation was assumed to be due just
to intramolecular dipole-dipole interactions. Although
the effect of intermolecular interactions can be minimized

by diluting the four-spin molecules in a nonmagnetic
solvent, the eBect of spin-rotational interactions might
be significant. The author plans to investigate in detail
the effect of spin-rotational interactions on the relaxation
of four-spin molecules.
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