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The semiclassical form of the density operator theory of relaxa-
tion is employed to calculate the longitudinal and transverse
relaxation and the resonance line shape of a liquid sample whose
molecules contain four identical spin 1/2 nuclei at the corners of
an equilateral tetrahedron. The relaxation is assumed to be due to
the time dependence of the intramolecular dipole-dipole inter-
actions that results from the classical rotational diffusion of the
molecules. The calculation is not restricted to correlation times
shorter than the Larmor period, but it is restricted to correlation
times much shorter than the reciprocal coupling frequency. The
second-order correction to the Zeeman energy due to the dipole-
dipole interactions is included. The longitudinal relaxation is
found to be, in general, the sum of three exponentials decaying
with different time constants, but in the limit of either short or
long correlation time there are only two exponentials. The ex-
pression for short correlation time agrees with the author’s
previous calculation. The transverse magnetization M,=4iMy, in
the absence of a radio-frequency field, is, in general, found to be

1. INTRODUCTION

HE longitudinal nuclear magnetic relaxation of
liquid molecules containing either three or four
identical spin 1/2 nuclei has previously been calculated
for the cases in which the nuclei are arranged equi-
distantly from one another at the corners, respectively,
of a triangle or a tetrahedron.!* The following assump-
tions were made: (a) The relaxation is due to intra-
molecular dipole-dipole interactions between the spins;
(b) the molecules diffuse rotationally as spheres in a
viscous fluid; (c) the initial state of the spin system is
a Boltzmann distribution with spin temperature T';
and (d) the correlation time is short. The result obtained
for both the three and four spin molecules was that,
although the spins are all in equivalent positions, the
longitudinal relaxation after a 180° pulse is the sum of
two exponentials. However, the coefficient multiplying
one of the exponentials is much smaller than the
coefficient multiplying the other, and the relaxa-
tion differs little from the simple exponential decay
predicted by a calculation in which correlations of the
different dipole-dipole interactions with one another
are neglected.’

It is of interest to determine whether effects of larger
magnitude due to cross correlations of the dipole-dipole
interactions are present in (a) the longitudinal relaxa-
tion when the correlation time is not short compared
to the Larmor period, (b) the transverse relaxation, or
(c) the resonance line shape. In this paper, we calculate

* Supported in part by the National Science Foundation.

1;;;)5. Hubbard, Phys. Rev. 109, 1153 (1958); 111, 1746 (E)
( 2P, S. Hubbard, Ph.D. thesis, Harvard University, 1958
(unpublished).

3 The relaxation of three- and four-spin systems has also been

treated by I. V. Aleksandrov, Soviet Phys.—Doklady 3, 110

(1958). His results do not agree with the results in references 1
and 2 or the present paper.

the sum of three terms each precessing with slightly different
frequencies and decaying exponentially with different time con-
stants. In the case of short correlation time the precession fre-
quencies are the same, and the amplitude decays in the same man-
ner as the longitudinal magnetization for short correlation time.
The resonance line shape, correct to first order in the magnitude
of the radio frequency field, can be expressed in terms of a complex
susceptibility x=x'-+4ix", which is shown to be proportional
to JSo*LM.()+iM,(t)] exp(Gwi)dt, where M. (f)+iM,() is the
transverse magnetization after a 90° pulse. The saturation be-
havior of the resonance line shape is calculated for the case of
short correlation time. The numerical values occurring in the
expressions for the longitudinal and transverse relaxation and the
resonance line shape are such that there is little difference between
the results calculated here and the results obtained by neglecting
in the calculation the effects of the correlations of different dipole-
dipole interactions with one another.

the longitudinal and transverse free relaxation of the
four-spin system without assuming from the beginning
that the correlation time is short compared to the
Larmor period, although it is assumed that the correla-
tion time is much less than the reciprocal coupling
frequency. We also calculate the resonance line shape
to first order in the radio-frequency field without
assuming a short correlation time, and the saturation
behavior of the resonance line shape in the case of short
correlation time.

A feature of the calculation is the inclusion of the
second-order correction to the Zeeman interaction
resulting from the dipolar interactions, which average
to zero in first order. These terms are usually omitted;
however, they are of the same order of magnitude as
the transverse relaxation rates, and hence can be
expected to produce shifts of the resonance lines by
amounts comparable to the linewidths themselves.

2. FORMULATION OF THE CALCULATION*

The Hamiltonian of a system of spins and their
molecular surroundings can be written in the form

Ke=n[E(s,)+F(9)+G(s,9)], (1)

where #E(s,t) is the part of the Hamiltonian that
depends only on the spin variables s and the time ¢,
#F (q) is the energy of the molecular degrees of freedom
g, and %G(s,q) is the energy of the interaction of the
spins and the molecular surroundings.

Consider a system of IV identical nuclei in equivalent
positions in the molecules of a liquid, each nucleus

4 Sections 2, 3, 4, and 5 of this paper contain a condensation of
material in the author’s original manuscript. A reader interested
in a more detailed description of the calculation can obtain a
mulﬁilithed copy of the original manuscript by writing to the
author.
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having a spin of 1/2 and a gyromagnetic ratio v. The
system is exposed to a strong constant magnetic field
and a rotating transverse magnetic field:

H (¢) = Hok+ H:(coswii—sinwij). (2)

The part #E of the Hamiltonian consists of the interac-
tion energy of the nuclear magnetic moments with the
field H(?):

#E=—y-H({)=—v2I-H(), ©)

where I=3"; I.. Hence,
E=—wol'— (w1/2) (I'e!4-T-1¢=0), (4)

where wo=vHg, w1=vH,, I[#=1,41il, and I°=]1,.

The relaxation mechanism %G consists of the magnetic
dipole-dipole interactions between the spins. G can
be written in the form

G= % {7 UiV, ®)
i<i h—2
where the V;;* are spin operators defined by
Vif=— &/ PLA =3I +I71N],  (62)
Vitt=a (IO A T AT 0), (6b)
V,'j:sz —Iiilljil. (6(3)

The U;* in Eq. (5) are given by
Uif= (6m/5) 2t 5 (= 1)FY 5% (0ij9i),  (7)

where the Y4 are normalized second rank spherical

R(o)= 2 X 22: J wriry i (= lwo){[[ Vs o 1,V i 1= 18wi [V i,V 5]/ Tr[ 1]},

<7 <3’ k,l=2
and

IN LIQUID 651
harmonics. The length of the vector r;; from the jth
to the ith nucleus is denoted by 7;;, and the polar angles
specifying the direction of r;; in the laboratory coordi-
nate system are denoted by 6;; and ¢;;.

The molecules in the liquid are assumed to undergo
isotropic rotational diffusion, so that all directions of
the constant magnitude vectors r;; are equally probable.
As a result, the average of G over the molecular motion
is zero, since the averages of the spherical harmonics
Y :#(8,¢) over all directions specified by 6 and ¢ are zero.

According to the density operator theory or relaxa-
tion,’ the spin part of a system with a Hamiltonian in
the form of Eq. (1) can be described by a reduced
density operator ¢(s,t), in terms of which the ensemble
average of the expectation value of any spin operator
Q(s) is given by
(Q)=Trla(s5)Q(s)]. )

If it is assumed that the molecular degrees of freedom
remain in thermal equilibrium at all times, independ-
ently of the state of the spin system, it can be shown
that the reduced density operator is a solution of the
differential equation

do/dt+i[ E+N, o ]=R(o), 9

subject to the condition Tr[o(#)]=1. If the average
value of G(g,s) over the bath coordinates in thermal
equilibrium is not zero, the average value must be
included in E. For the present problem it can be shown
that the operators R(c) and N are given, respectively,
by the expressions

(10)

2 2 ® dw
N==3 > 2 ViVl / { (A+efo)=2T (ijy (oriny B (F—w) — (1+e78) 1T iy riry* (¥ 4w) } —, (11)
0 w

T i<i V'<§ k,l=—2

where
=1 (l—Ek)w,. (12)

B is defined to be #/kT, where %k is the Boltzmann
constant and 7T is the absolute temperature. The
function J(ij i7" (w) is given by

J gy arin® (w) =3 / Capy @i (r)edr,  (13)

in terms of the correlation function
Cipin® (7)={U i E+7)Usir' (£)} o (14)

The semiclassical form of the relaxation theory, which
is used in this calculation, is obtained by evaluating
the correlation functions by considering the time
dependence of the functions U;*(6:;,¢:;) to be due to
the variation with time of the angles 6;; and ¢;; as the
molecule undergoes classical rotational diffusion in the

liquid. By the same procedure used previously,!:? which
makes use of Furry’s theory of isotropic rotational
Brownian motion,® the correlation functions can be
shown to be

Clanyin® (1) = 8, (— D* (v*2/r#)*(F5)
X (1—% sin?Bejywrin)exp(— | 7| /7e), (15)

where 8¢ i 1s the angle between the vectors r;; and
ri i, which are rigidly fixed in the molecule. The correla-
tion time 7. is given by 7.=(6D)"!, where D is the
rotational diffusion coefficient introduced by Furry.
It has been argued that the rotational diffusion coef-
ficient is related to the radius, @, of the spherical
molecules and the viscosity, #, of the liquid by the
relation!+?

D="FkT/8mma?.

5P. S. Hubbard, Revs. Modern Phys. 33, 249 (1961).
8 W. H. Furry, Phys. Rev. 107, 7 (1957).

(16)



652 PAUL S.
Since the Stokes formula for the translational diffusion
coefficient Dy is Doy=kT/6man, it follows that the
rotational and translational diffusion coefficients are
related by
D = Do/ (12.
From (13) and (15), it follows that
J i i (w) =8-r,1(— 1)¥4J (w) (1—3 sinBep i), (18)
where J(w) is an even function of » defined by
J (@)= (3/40) (v*1/r) 7 [1+4 (wre)* T, (19)
the common distance between the nuclei being denoted
by 7o.
The conditions of validity of Eq. (9) are
r<&|R|7Y, [N, (20)
where | R| and | V| are the magnitudes of the operators
given, respectively, by Eq. (10) and Eq. (11). Further-
more, expressions (10) and (11) have been obtained on
the assumption that

ﬁwl, Bwo, 6w<<1, (21)

and the expressions are correct only to first order in
Bwi1, Bwo, and Bw. In addition, it has been assumed that
when a radio-frequency field is present, it is small in
magnitude and its frequency is near resonance, so that

| Ag|<Kwo, (22)

where Aj=wo—w. In order to evaluate in closed form
the integral that occurs in N, Eq. (11), it will be
assumed that g<r., which is usually the case in liquids.

A complete set of spin vectors for the system of four
spin 1/2 nuclei consists of 16 vectors. It is convenient
to choose a coupled representation in which the
operators 112, I,2, 1.2 12, Li2= (114 1,)2, L= (I;+14)2,
I!=C; 1)?% and I'=3; 19 are diagonal. The eigen-
vectors will be denoted by |I12I3.IM), the eigenvalues
that are always 1/2 being omitted. The three quantum
numbers 1573 will sometimes be abbreviated by «,
so that |aM)= |1 1213 M).

The ensemble average of the expectation values of
the components of the total nuclear spin of a molecule
are given by

IM=TrlcI*]=3" X (aM|o|a’M'}o'M'|I*|aM). (23)

an

w1, 70_17

aM o' M’
Since
(/M| I°|aM )= M3ar obsr a1, (24a)
@M I aM)=[(IFM)(I+M-+1)]"2
Kot abarr arp1, (24b)
it follows from (23) that
I=3"M 3 (I3 M|o|I1oD3 M), (25a)
IM  Inals
IF)=3 [TFM)Ix£M+1)]"
M
X Z <112]34IMIO'|112134I,Mi1>. (25b)

FStIEN
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Thus, the required matrix elements of o are diagonal
il’l a”='112[341.
By taking the matrix elements of Eq. (9), one obtains

d
?i—;aMl o|laMy+ilaM |[E+N, ¢]|aM’)
=(aM|R(0)|aM’), (26)

where E is given by (4), R(¢) by (10), and N by (11).

In order to evaluate the matrix elements of N and
R(0) that occur in Eq. (26), it is necessary to calculate
the matrix elements of the operators V;* defined by
Egs. (6). The operators V;* are the components of an
irreducible tensor operator of rank two with respect to
I; hence, the Wigner-Eckart theorem’ can be used
to express their matrix elements in the |23 M)
representation.

3. LONGITUDINAL FREE RELAXATION

In order to calculate the relaxation of (/% in the
absence of an applied radio-frequency magnetic field,
it is convenient to introduce the following combinations
of matrix elements:

0=2((1122|¢|1122)— (112, —2|0|112, —2)),  (27a)
w=((1121]¢] 1121)— (112, —1|¢|112, —1)),  (27b)
X3= z (<112[3411[0111213411>
I12134
—‘<.[121341, —‘].IO'II]2[341, —1>). (27C)

The density operator describing the four-spin system
with Hamiltonian —7%weI° in thermal equilibrium at
temperature T, is

o7 = oo’ /Tr[ bl | e (14-Buol®), B=H/kT. (28)

The values of the x; with o equal to o7, correct to first
order in Bwo, will be denoted by x:7:

x"'={4,1,3} (Bx/8). (29)

Since the thermal equilibrium value of (1%, correct
to first order in Bwy, is

(I°)" = Buwo, (30)
it follows from Eq. (25a) that
3
I)=U)"= X2 (xi—w:"). (31)
i=1

Differential equations for the x; can be obtained from
Eq. (26). When the differential equations for the
matrix elements are combined so that the time deriva-
tive of one of the x; occurs on the left-hand side, it is
found that the other matrix elements in the equation
occur only in the combinations «x;. The three resulting
equations can be written in matrix form as follows:

dx/di= A(x—xT), (32)

7A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, 1957), 2nd ed., Chap. 3,
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where, with the abbreviation J,=J (lw),
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An=—187,—4875, A1,=0, A=127J,,
A21=0, Age=—27T0—2171—18T3, A23=9J7—6J3, (33)
A31=974, Aze=27J—18J, Agy=—9J0—25J1—46J.

The solutions of Eqs. (32) for the wx:(¢) in terms of
#:(0) can be obtained by the use of Laplace transforms.
The result is

x(f)—xT
- ké {Adj(A—piD)[x(0)—x"Jers/ D' (p)}, (34)

where Adj(A—pl) is the adjoint matrix of the matrix
A—»I, D(p) is the determinant of the matrix A—-pl,
D’ (p) is the derivative with respect to p of D(p), and
P1, pa, and p; are the eigenvalues of A, and hence are
solutions of D(p)=0. Equation (34) is valid if the
eigenvalues are distinct.

The initial condition of the spin system will be
considered to be the result of the application of a
rotating field H;= H;(i coswet—J sinwet) to the system
in thermal equilibrium with density operator ¢7, Eq.
(28), for a time 4 sufficiently short that the effects of
the dipole-dipole interactions can be neglected during
the pulse. The density operator at the end of the pulse is?

ap= €91t exp[ Buwo (I, sing-+1° cost) ]

Xe—iwol’ts /Tr[gfool"]  (35)
where 6=-vHt,. Hence, to first order in Buwy,
(@b | ap| M) = M (Bewo/16)cos6. (36)

For ¢(0) =0y, it follows from Eqs. (27) and (28) that
x(0)={4,1,3} (Bwo/8) cosf=xT cosh. (37
By use of (28), (37), and (34), Eq. (31) can be written

(Y= (1Y (cosh—1) 3 auem,  (39)
where -
a=— Zj: {4 Adj(A—piD) i1 +Adj(A—pi]) o
B 13 Adj(A— peD)is} /8D (5). (39)

The elements of A are related to the quantities J; by
Eqgs. (33). From Eq. (19),

Ti=T (lwo) = Jo[ 14 (lwor o) * T (40)

Because of the complexity of the expression for D(p),
it is impracticable to calculate general expressions for
the roots pp of the cubic equation D(p)=0. Hence,
the px and a; will be calculated for several values of the
quantity (wer.) upon which the J;=J (Jw,) depend.

Consider first the case of short correlation time,

(wore)<1. In this case Ja=J1=J,, so that D(p)=0
becomes

— (66 o+ p) (p2+1467 op+51457 %) =0,  (41)
the roots of which are
p1=—[73—2(46)V21Jo, pa=—66J,,
ps=—[73+2(46)"2]7o. (42)

With the values (42) for the s, it follows from (33)
and (39) that

a;=[92+13(46)"/27]/184,

a2=0,

a;=[92—13(46)'/27]/184.
The expression obtained when (42) and (43) are sub-
stituted in (38) agrees with the result previously

calculated for short correlation time,2 which was
expressed in terms of a quantity 7'y defined by

T()_lE (’)’271/1’03)27'02 (4:0/3)]0

(43)

(44)

The condition of validity of the relaxation theory,
Eq. (20), can be written for the present problem in
terms of T as

7KLy, or 7KL (red/vh)2. (45)

Consider next the case of long correlation time,
(wor)®>>1. A long correlation time is not incompatible
with the satisfaction of the condition of validity (45) if
wo>>(v?/r*)2. The roots pi can be calculated correct
to first order in the small quantity e=1/(wor)? by
expanding Ji, Jo, and p as power series in e,

Si==To 2 (=97 Ji==Jo L (—¢/4)",
n=1 n=1

w0
=% pe,
n=0

substituting the above expressions in the equation
D(p)=0, and determining the coefficients p© and p®
by equating to zero the coefficients of the ¢, €', and €2
terms. The results are

P1= ——3[11-—— (10)1/2]]06,
D= —-3[11+ (10)1/2].]06,
pa=— (36+26¢)J 0.

(46)

The coefficients a; obtained by using the above values
of p in Eq. (39), retaining terms to the first power of
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TasrE 1. Coefficients in expression (38) for the
longitudinal relaxation.

(worc)? a1 —p1/Jo az —p2/J0 as —p3/Jo T171/Jo
<1 0.9792 59.435 0.0000 66.000 0.0208 86.565 60.000
0.01 0.9798 57.503 0.0009 64.863 0.0193 84.692 58.035
0.05  0.9772 50.958 0.0090 60.728 0.0138 78.600  51.429
0.1 00742 44.752 0.0172 56.216 0.0086 73.214 45.195
0.3 0.9708 30.660 0.0280 43.177 0.0012 62.302 31.049
0.5 0.9705 23.655 0.0293 35.203 0.0002 57.142  24.000
0.7 0.9707 19.383 0.0293 29.848 0.0000 53.889 19.690
1.0 09711 15.338 00289 24410 0.0000 50.651  15.600
2.0 09722 0.1602 0.0278 15.347 0.0000 45.271  9.3333
4.0 0.9731 5.1216 0.0269 8.8752 0.0000 41.391 5.2235
6.0 0.9734 3.5623 0.0265 6.2532 0.0000 39.807 3.6343
8.0 09737  2.7323 0.0263 4.8290 0.0000 38.944 2.7879
10.0 0.9738 2.2164 0.0262 3.9338 0.0000 38.400 2.2616
50.0 09742 0.4645 00258 0.8362 0.0000 36.511  0.4741
1 09743 23.51¢  0.0257 42.49¢ 0.0000 36+426e 24.00¢
e in the numerator and denominator, are
a;=[10+3(10)%/27]/20,
a;=[10-3(10)"21/20, 47

(13=0.

For intermediate values of (wor.)?, the cubic equation
D(p)=0 does not factor in an obvious manner. By
use of an electronic computer, the roots p; and the
coefficients @, have been calculated for many inter-
mediate values of (wor.)2. Some of the results are given
in Table I. The calculation was performed for many
more values than are listed in the table, but the
tabulated values are representative. The results
obtained above for the cases of short and long correla-
tion time are also listed.

It has previously been shown that, if cross correla-
tions between different dipole-dipole interactions are
neglected, the longitudinal relaxation of a system of
spin 1/2 nuclei is a simple exponential decay.>® In
terms of the present notation, the relaxation time 7 for
the four-spin system when cross correlations are neglected
can be shown to be

Ty =12Jo{[1+ (wore)* I +4[ 1+ (2wor) 7'}

The values of 77! for the different values of (worc)?

(48)

Bu= (—3/2) (9]0+ 13]1+22J2):
B21=0,
le= ‘—'9(]1_2]2)1

B12=0,

B32=9]1,

and d is a diagonal matrix with elements
d1= (3/2)wore(—J11+2072),
dy= (3/2)worc (1714127 5),
ds= (13/2)wor . (J 1447 1),

The solution of Eq. (51) can be obtained by the use of

(53)

8 A. Abragam, The Principles of Nuclear Magnetism (Clarendon
Press, Oxford, 1961), Chap. VIII.

Bag=— (3/2) (137 4+25714675),

HUBBARD

given in Table I are listed in the last column of the
table for the purpose of comparison with the more
rigorous results calculated in this paper.

It is apparent from Table I that for all values of
(wore)? the coefficient a; is much larger than as or as,
so that the relaxation is approximately a simple expo-
nential decay. Furthermore, the time constant, — (p;)7},
of the dominant exponential is in all cases approximately
equal to the relaxation time 7' calculated by neglecting
cross correlations.

4. TRANSVERSE FREE RELAXATION

The calculation of the relaxation of (I'Y)=(I.)+iI,)
in the absence of an applied radio-frequency magnetic
field is similar to the calculation of the longitudinal
relaxation given in the previous section. The following
combinations of matrix elements are introduced:

y=2((1121] 0| 1122)+(112, —2|0|112, —1)),  (49a)
y2=62((1120 0| 1121)-(112, —1 |0 | 1120)), (49b)
yazﬁIZI: ((T1213410| 0| I 121 3411)
o {12l 341, —1| 0| I1213410)). (49c)
It follows from Eq. (25b) that
19= 3 (50)

Differential equations for the y; are obtained from
Eq. (26). When the differential equations for the matrix
elements of o are combined so that the time derivative
of one of the y; occurs on the left-hand side, the other
matrix elements in the equation occur only in the
combinations y;. The three resulting equations can be
written in matrix form as follows:

d
;i—(ye"‘”"‘)-!-id(ye"‘”‘) =B (ye), (51)
i
where
Bis=—6(J1—2J5),
B23=974, (52)
Bss=— (1/2) (397 0+ 717143507 5),
Laplace transforms. The result can be written
3
y()=— kZ [Adj(B—id—g:1)y(0)]
=1
Xe@=at/D' (i), (54)

where Adj(B—id—gq,I) is the adjoint matrix of the
matrix (B—id—ql), D’(g) is the derivative with
respect to g of the determinant D(g) of (B—id—gl),
and qi, g2, and g3 are the eigenvalues of B—id, and
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hence solutions of the equation D(g)=0. The roots gy
must be distinct in order for (54) to be valid.

The initial conditions are again considered to be the
result of the application to the system in thermal
equilibrium of a transverse magnetic field rotating with
the Lamor frequency wo. After a short pulse of duration
ty=0/vH,, the density operator is given by Eq. (35).
Hence, correct to first order in Buy,

(aM |os|a, M+1)+{a, — M —1|0¢|a, — M)

= (Bwo/16)[(I— M) (I-+M~+1) J2e—ieots,  (55)
so that, with ¢ (0) =gy,
¥(0) = (1/8){2,3,3} Bwo sinf exp[ (r/2—wits) ] (56)
By use of (54) and (56) in (50), one obtains
3
<11>: <]0>Tie—iwoto sind Z bke(Qk'—iwo)t’ (59)
k=1

where (I°)7=(w,, and

3
br=— 2 {2 Adj(B—id—q:]);1+3 Adj(B—id—g;]);.
7=1

+3 Adj(B—id—q:I);5} /8D (g). (60)

Consider the case of short correlation time, wor<<1.
Since in this case Ji=Js=Jo, and di=do=~d;=0, the
equation D(g)=0 becomes

— (667 0+q)[¢>4-1467 og+-51457 2 ]=0,

which is the same as Eq. (41) with p replaced by g¢.
Hence, the three roots ¢, are equal, respectively, to the
solutions py given by Egs. (42). Furthermore, use of
these values of g to evaluate expression (60) for the
quantities & results in values that are, respectively,
equal to the a; of Eq. (43). Thus, as expected, in the
case of short correlation time the transverse relaxation
is the same as the longitudinal relaxation.

If the correlation time is not short, the matrix
B—id is complex and non-Hermitian. Hence its eigen-
values, gx, are in general complex. The real part of ¢
is denoted by ¢:" and the imaginary part by ¢.”’:

ae=qi'+iq, k=1,2,3. (61)
The secular equation, D(g)=0, is a cubic equation with
complex coefficients. It can be written in the form
D(q)=F.(¢',q")+1F1s(¢’,q"")=0, where F; and F, are
real functions of the real variables ¢’ and ¢"’. Hence the
real and imaginary parts of each of the three roots can
be obtained by solving simultaneously the equations
Fi(¢',¢")=0 and F.(¢’,¢")=0. The solutions of the
equations for several values of wor., have been obtained
on an electronic computer by use of Newton’s iterative
method. Some of the results are given in Table II.
The coefficients by, in Eq. (59) are in general complex,

bi=by' by = | bs| exp (igpr). (62)
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TasLE II. Coefficients in expression (63a) for the transverse
relaxation. Jo= (3/40) (v3%/red)?7e.

(wore)? b b’ 1.2% 1.2%4 b3’ b3’
T Jo  —@'MJo —a"/Jo —@'/Jo —@"/Jo  —a'/Jo  —ai/]o
0.0 0.9792 0.0000 0.0000 0.0000 0.0208 0.0000
60.000 59.435 0.0000 66.000 0.0000 86.565 0.0000
0.01 0.9777 —0.002 0.0008 0.0002 0.0215 0.0018
59.241 58.671 2.8484 64.829 2.7506 85.007 3.0510
0.05 0.9534 —0.016 0.0234 0.0126 0.0232 0.0039
56.571 44.903 5.5880 60.726 5.4436 79.800 6.0584
0.1 0.8610 —0.077 0.1150 0.0720 0.0240 0.0048
53.844 52.896 6.7282 56.692 6.8878 74.860 7.5549
0.3 0.3501 —0.049 0.6279 0.0461 0.0031 0.0221
46.531 43.404 6.8714 47.871 8.9693 62.834 9.1132
0.5 0.2500 0.0000 0.7308 0.0000 0.0192 0.0000
42,000 37.500 6.3640 43,175 9.1924 55.825 9.1924
0.7 0.2182 0.0145 0.7647 —0.0120 0.0171 —0.003
38.805 33.638 5.8730 39.948 9.0511 50.958 8.9971
1.0 0.2010 0.0219 0.7845 —0.016 0.0145 —0.005
35.400 29.805 5.2660 36.546 8.6865 45.798 8.5976
2.0 0.1948 0.0237 0.7966 —0.013 0.0086 —0.011
29.333 23.606 4.0287 30.553 7.5096 36.619 7.3965
4.0 0.2051 0.0177 0.7940 —0.002 0.0008 ~—0.016
24.706 19.302 2.9426 26.030 6.0333 29.609 5.9300
6.0 0.2135 0.0132 0.7918 0.0056 —0.005 —0.019
22,766 17.581 2.4224 24.146 5.1716 26.668 5.0804
8.0 02193  0.0102 07916  0.0111 —0.011  —0.021
21.697 16.650 2.1050 23.112 4.5953 25.047 4.5134
10.0 0.2236  0.0082 07928  0.0154 —0016 —0.024
21.020 16.065 1.8861 22.458 4.1762 24.020 4.1012
500  0.2431 00011 09201  0.1175 —0.172 —0.119
18.648 14.046 0.8475 20.185 1.9766 20.417 1.9282
100.0 0.2464  0.0004 0.6593  0.5991  0.0943 —0.600
18.327 13.775 0.5996 19.882 1.4359 19.926 1.3445
1000.0 0.2496  0.0000 0.3788  0.113 03715 —0.111
18.033 13.528 0.1897 19.540 0.4727 19.542 0.4121

As a result of the initial condition, Eq. (56), the complex

numbers b; must have a sum of unity: b;+bs+bs=1.
By use of Eqgs. (61) and (62), Eq. (59) for (I') after

a 0 deg pulse can be written in either of the two forms

3
([1) = 1<IO>T sinf Z (bk’_l_ibk”)eqk'te—i[(wn—qk”) t+wote] (633.)
k=1

3
(I sing 3 |by| et te=ileo—an —itootsl (63
k=1

The values of & and b, corresponding to the values
of wor. in Table II are included in the table.

If cross correlations between different dipole-dipole
interactions are neglected, the relaxation of the magni-
tude of (I') is a simple exponential decay. For the
four-spin system, the time constant of the decay can be
shown to be®?

T3 t=06Jo{345[14 (wore)? T H2[ 14 (2wor) 211} (64)

Values of 7571/ J, are listed in Table 1T for the purpose
of comparison with the other values in the table, which
have been obtained without neglecting cross correla-
tions or the second-order corrections to the Zeeman
interaction.

The voltage induced in a coil, whose axis is in the «
direction, by the precessing magnetization after a 6
pulse, is proportional to d(I.)/dt. With the assumption
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that we>| g’ +1gi”’ |, it follows from Eq. (63a) that

d
:i—t(lz)zwo 197 sindC (£) cos[wot+wote—p ()], (65)

where
§_j et (b" cosqy' i+ singy”1)

tang () = k:I ’ (66)
Izlg%’t(bk’ cosgy''t—by" sing:’’¢)

3
C)={[ 2 e®'t(bs'" cosq''t+b)' sing,”t)]?
E=1

3
+[ > e%'t(by’ cosqi” t—bi’ sing,”’t) P32 (67)
E=1

If the voltage is amplified by a receiver with bandwidth
broad enough to include the three frequencies (wo—gi”’),
the voltage presented to a detector following the
amplifier is proportional to (65). Since C(#) and ¢ ()
are slowly varying functions of time, the output of the
detector is proportional to C(#).

The time dependence of expression (67) for C(f) is
difficult to visualize. In view of the values in Table II,
it appears at first glance that C(f) might differ consider-
ably from exp(—#/Ts,), at least for intermediate and
large values of wer.. However, such is not the case. If
exp(—1/Ts) is factored out of (67), the expression can
be written C(f)=exp(—1t/T2)C1(f). For several values
of wer,, numerical values from Table II have been
substituted into the expression for C1(#) obtained from
Eq. (67). It was found, in all the cases investigated,
that Cy(£)is very nearly unity for all values of ¢ for which
exp(—1/T,) has appreciable magnitude. Hence, the
transverse relaxation appears to differ very little from
the simple exponential decay predicted by the calcula-
tion in which cross correlations are neglected.

5. RESONANCE LINE SHAPE

The resonance line shape depends upon the steady-
state expression for (IY)={(I,)+#«I,). The quantity
(IY) is given by J_ y in terms of the y; defined by
Eqgs. (49). As in Sec. 4, differential equations for the v
can be obtained from Eq. (26). If variables YVi=1yy
Xexp(iwt) are introduced, the equations governing
their time dependence can be written in matrix form as

aY/dt=[B—i(Al-+d)]Y+iwP, (68)

where Aj=wo—w. The elements of B are given by (52)
and the elements of d by (53). P is the column matrix

PE {x1—2x2—|-2, 3002—-2, xs}. (69)
The #x, are defined by (27), and % is defined by
F=612((1120|0|1122)—(112, —2|c|1120))e%t.  (70)
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Equations for the time derivatives of the quantities
can be obtained from Eq. (26), as was done in Sec. 3,
except now the terms multiplied by w; must be included.
The equations can be written in matrix form as

dx/di= A(x—xT)+wQ. (71)

The elements of A are given by (33). Q is the column
matrix
QE{—ZY{’, Yl”-— Yg”, — Y:;"}, (72)

where V" is the imaginary part of Y. In obtaining
Eq. (71), use has been made of the fact that the operator
o is Hermitian.

A differential equation for the quantity Z defined by
(70) can be obtained from Eq. (26):

dE/dt= [Cu—1(2A0+e1)]2+1w1(%@+%171—— Yz), (73)
where
C11E—6(]0+6J1+4]2), (74)
e1= (971487 )wor., (75)
and
B=6((112, —1| 0| 1122)4+(112, —2| 0| 1121))e®t.  (76)

A differential equation for @ can also be obtained from
(26):

d'@/dt: [ng—i(SAo—l—ez)]ﬁ—l-faiwl'z“, (77)
where
C22E —%(9]0'}‘ 13]1+22J2), (78)
and
ea=3 (1371447 Dwore. (79)

Equations (68), (71), (73), and (77) constitute a set
of simultaneous linear first-order differential equations
with constant coefficients which determine the time
dependence of the real variables x, xs, %3 and the
complex variables Yy, Vs, V3, 2, and @. If it is assumed
that a steady-state solution exists, as is physically
justifiable, it can be obtained by setting equal to zero
the time derivatives in the equations, and then solving
the resulting algebraic equations. Thus, in the steady
state,

Y= —iwi[ B—i(AI+d) P, (80)
x=—w; A71Q4x7, (81)
[Cii—i(2A0+er) ot Go+3Y1— V3) =0, (82)
[Cor—i(3A0te2) [+ 3i0iE=0. (83)

Elimination of @ from (82) and (83) gives

o —iwl[ng— 1/(3A0+62)] (3 y1_ 2Y2) (84)
= {2[C11—i(2A0+61)][C22"i(3A0+62)]+3w12} .

If the above expression for # and expressions for the a;
from (81) are substituted into P in Eq. (80), that
equation then involves only the real and imaginary
parts of the Y, the other variables having been
eliminated. Since all terms in P are at least first order
in w; except those arising from the x” term in (81), the
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solution of (80) to first order in w; is
Y= —io[ B—i(Ad+d)1(2,3,3)800/8,  (85)

where the values of the elements of xT given by (29)
have been used. In the calculation of the transverse
relaxation in the previous section a function D(g),
defined to be the determinant of [B—id—gqlI], was
introduced, and the roots of D(g)=0 were denoted gx.
Hence, it follows from (85) that

Y= — 1wy Ad][B"-’L(AoI+d)]{2,3,3},3wo/8D ('LA()) (863)

3 Adj[B—id—q:1]{2,3,3}
= +iw1(Bwo) 2 . ’
k=1 8D’ (gx)(gr—1iAo)

where the second form has been obtained by separating
into partial fractions. Since from (50), (IN=3

=exp(—iwt)Y, Vi, it follows from (86b) that the
steady-state expression for (I') can be written

(86b)

(I)s= —iw(I%)Tet 23: bie(gr—iA0)~,  (87)

where (I9T=fwy, the thermal equilibrium value of
(I in the absence of a radio-frequency field, and the
by, are given by (60).

Let # be the number of molecules per unit velume in
the sample. The nuclear magnetization is then M
=nyh(I). When the magnetic field (2) is present, and
the spin system is in a steady state, the complex
susceptibility x=x"+41x"" is defined by the relation

M A-iM ,=Hx exp(—iwt). (88)
Hence, it follows from (87) that
3
x=—9Mo 2 br(gr—10o)7", (89)
k=1

where M o=nyiI%T.

The free relaxation of the transverse magnetization
after a 90° pulse is given by M,(t)+iM ,(#)=nyiI"),
where the time-dependent expression for (I} is given by
(59) with #=90°. From (59) and (87) it follows that

x=yeisom f L) +iM, ()Je1dt,  (90)

since the values of ¢ are negative. Equation (90) is
similar to a relation given by Lowe and Norberg.?

The real part x’ and the imaginary part x'’ of Eq.
(89) for x are

3
x'=vMo 2. [0 ¢’ — i (g — A0) ]/
k=1

Xgw'*+ (¢ —A0)%],  (91)
3
X”: —'y.ﬂfo Z [bk/(]kl‘l“bk”(QkN_AO):]/
k=1
X[q]c,2+ (%”"‘AO)Z]- (92)

?1. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).
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The quantities by, b, ¢x’, and ¢;'" are given in Table IT
for different values of (wor.)2 It is apparent from Table
IT that the b, are larger than the corresponding 4" by
about an order of magnitude except in the cases in which
both & and ;" are negligible. Thus, the terms which
have appreciable magnitude in the sum over % in (92)
are approximately Lorentzian absorption curves, and
the terms in the sum over k in (91) are approximately
dispersion curves. Each curve is centered at w=wo—qz"
and has half-width |g4/|. Since the ¢" are less in
magnitude than the corresponding ¢x" by at least a
factor of 4, the center of the resonance curve for each k& is
displaced from the Larmor frequency wo by an amount
less than the linewidth.

Expressions (91) for x'(w) and (92) for x"(w) satisfy
the Kramers-Kronig relations appropriate for a rotating
applied radio-frequency field!:

1 = x"(woty")dy
X (0oty)=—6 / e R )
T J—0 y =y
U2 X (woty)dy’
X (@oty)= ——@ / —3,—— (93b)
) Y-y

The results obtained above for x’ and x” give the
resonance line shape only to first order in Hj. The
resonance behavior for larger values of H; can in
principle be obtained from Eq. (80) after elimination
of the x and Z from P by use of (81) and (84). However,
the calculations are quite complicated, and will be
carried out here only for the case of short correlation
time.

If the correlation time is short, important simplifica-
tions occur in Egs. (68) and (71) which permit a general
solution for (I% and (I') which describes both the
transient and the steady-state behavior of the spin
system. When wor L1, Ji=Js=J in the elements of
B, Egs. (52), and the elements of A, Egs. (33). Also,
from (53), di=dy=~ds;=~0. With these values, it follows
from (68) that the equation obtained by adding the
expressions for d¥i/d¢t and d¥,/dt, and the equation
for dV's/dt, can be written in matrix form as

. Vi+7, 1 X1+ xe
(Id/dt~®+zAOI)[ =m1{ e
I’;; J X3
where I is the unit matrix and
- 66 15
@E]()l: ] (95)
9 —&0

10 See, for example, reference 8, Chap. III, Egs. (8").
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In a similar manner, one obtains from (71)

(1d/dt— ®>(lx1+x2 } B {x1T+x2T })

X3 %57

= —w1

Y1” + Yz”

l vy } - 09
3

Note that Z has been eliminated, and that the same
matrix @ occurs in both (94) and (96). Since the
are real, Eq. (96) contains only real numbers. However,
Eq. (94) is complex; when separated into real and
imaginary parts it gives two real equations. The general
solution of the three equations coupling { ¥+ Y/, V3'},
{Y"+7Y,", Y5}, and {x1+xs, 43} can be obtained
relatively easily by use of matrix techniques. Without
going through the details of the calculation here, we
give the results for

IY=exp(—iwt)> ¥V} and )= x;:
<II)—_— —ith?: {wl(Ao—i)\,—)Cj(a)
Ot

=1

A
+ew[cj(n)+(icj<b)+—(,’cf(a>) sine'/
w

+<ic,-(a)—§c,~(b)> cosw't:I } o7)

w12Cj(e)

I)—([,)T= e
Y

i {
=1

+e)‘it|:Cj(l‘)

w1 w1
——,C ;(a) sinw’t—l-—/Cj(b) cosw’ t] }, (98)
w w

where o'= (w124+A¢%)1/2. A\; and )\, are the eigenvalues
of the matrix ©:

M=[—73+2(46)2]To, No=[—T73—2(46)"2]T,. (99)

a, b, r, and D are two-dimensional vectors that are
arbitrary except for the condition wir=A,D, and « is
the vector

a= {xlT—i—sz, x3T} = {5,3}6600/8

C1(a) and Cy(a) are scalar functions of the two elements
of their arguments:

Ci1(a)={[23-+4(46)la,;+[23+2(46)*]as} /46, (101a)
C(a)={[23—4(46)¥]a,+[23—2(46)¥]as}/46.  (101b)

The time constants of the decaying exponentials in
(97) and (98) agree with the time constants of the two

(100)
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exponentials that were previously found to occur in the
expressions for the free longitudinal and transverse
relaxation in the case of short correlation time. The
treatment in this section shows clearly why there are
just two exponentials when the correlation time is short.

It follows from the steady-state part of (97) that the
complex susceptibility

x=x"+ix"=nyi{I")s/[H1 exp(—iwt) ]

for short correlation time is

92413 (46)1/2\ (Ap—1\1)
x=7Mol<

184 /O2to’?)
2—1 12\ (Ao=—1ihg
+(9 346 (o=ida) | o
184 /(o)

The expressions for x' and x” from (102) differ from
the expressions (91) and (92), when the values of the
parameters for short correlation time are inserted, only
in the fact that o?=w24A¢? replaces A¢®. The satura-
tion behavior of each term in (102) is the same as the
saturation behavior of the single term susceptibility
obtained from the Bloch phenomenological equations.

9. DISCUSSION AND CONCLUSIONS

The form of the expressions obtained above for the
longitudinal and transverse relaxation and the resonance
line shape are quite interesting. However, the values of
the parameters occurring in the expressions are such
that there is little actual difference from the results
obtained by neglecting in the calculation cross correla-
tions of different dipole-dipole interactions. Nonetheless,
it cannot be concluded from this calculation alone that
the effect of cross correlations of dipole-dipole interac-
tions is negligible for all types of molecules undergoing
any kind of motion. While such may be the case, a
general proof has yet to be given.

It must be remembered that in the calculations in
this paper the relaxation was assumed to be due just
to intramolecular dipole-dipole interactions. Although
the effectof intermolecular interactions can be minimized
by diluting the four-spin molecules in a nonmagnetic
solvent, the effect of spin-rotational interactions might
be significant. The author plans to investigate in detail
the effect of spin-rotational interactions on the relaxation
of four-spin molecules.
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