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Influence of Electron Interactions on Metallic Properties. I. Specific Heat~
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The specific heat of an intermediate density electron gas has been calculated by the use of a momentum-
transfer interpolation procedure analogous to that used by Nozihres and Pines in the calculation of the
correlation energy. The explicit momentum transfer dependence of the derivative of the self-energy at the
Fermi surface has been calculated in the long-wavelength limit by the use of the random-phase approxima-
tion, and in the short-wavelength limit by the use of second-order perturbation theory with the neglect of
parallel-spin interactions. The contributions from the intermediate momentum-transfer interactions are
determined by a smooth interpolation between the short- and long-range regions. The results obtained by
this procedure are in excellent accord with the high-density results for r,~1, and in their application to the
alkali metals predict the experimentally observed enhancement of the specific heat ratio.

I. INTRODUCTION

T has long been assumed that the low-temperature
- - specific heat of an interacting fermion system could
be obtained from a knowledge of the single-particle
excitation spectrum in the immediate vicinity of the
Fermi surface. The essential assumption which is
required is that the fermion system be "normal, " in
that there is a one-to-one correspondence between the
excited states of the interacting system to those of the
noninteracting system. This assumption is at the heart
of Gell-Mann's' calculation of the specific heat of a
dense electron gas, and landau's' theory of a Fermi
liquid. A mathematical justification of such an approach,
with the assumption of the validity of perturbation
theory has been given by Luttinger. '

One is led by these arguments to view the low-lying
excitations of the electron gas as those appropriate
to a gas of independent quasi-particles which obey
Fermi-Dirac statistics. The quasi-particles may be
thought of as individual electrons (or holes) plus their
associated polarization clouds. Consequently, the low-

temperature speci6c heat is given by the standard
linear temperature relation,

Pp'kssT Pr 8Z(P))
Cv= + i

. (1.1)
3is' sm c)p 3

The self-energy, Z(p), reflects the modification in the
energy of the individual particles due to the interaction
with the medium; k~ is Boltzmann's constant, and Pp

is the Fermi momentum. It is convenient to express
the specific heat as the ratio of the interacting value C,
to the Sommerfeld free electron value, Co,

(1.2)
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Historically, the necessity of an appropriate account
of the effects of Coulomb correlations on the specific
heat was made apparent when Bardeen' showed that
the Hartree-Fock approximation predicted a vanishing
density of states at the Fermi surface and an altered
temperature dependence of the form T/lnT; a result in
contradiction with experiment.

A calculation of the correlation effects was made by
Pines' on the basis of the Bohm-Pines' collective theory
of the electron gas. He calculated the specific heat by
only considering the eGect of the exchange contribution
arising from the short-range part of the Coulomb
interaction. The justi6cation for such treatment was
the fact that the collective plasma oscillations are the
dominant low momentum (or correspondingly long
wavelength) elementary excitations of the electron gas.
Under ordinary conditions there is insufhcient energy
to excite one of these collective modes. Thus, the low-
momentum-transfer Coulomb interactions which de-
scribe the coupling between electrons and collective
oscillations are electively "frozen out" for wave
vectors k&~k. ; k. corresponds to the maximum wave
vector for which the plasmons constitute an independent
mode of the elementary excitations. The results of
Pines are approximate in that he neglected contributions
to the quasi-particle energy from higher-order terms
in the short-range interaction and from the screened
long-range interaction.

Gell-Mann obtained the speci6c heat in the random
phase approximation (RPA) by an appropriate generali-
zation of the Gell-Mann, Brueckner' technique for the
evaluation of the correlation energy. His resulting
expansion in the density parameter' r, is:

C/Co= L1—0.083r, (lnr, +0.203)+ $
—' (1 3)

' J. Bardeen, Phys. Rev. 50, 1098 (1956).
e D. Pines, Phys. Rev. 92, 626 (1953).
6 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
~M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364

(1957).
The density is represented in units of the dimensionless

parameter r„where n '=47r/t'3(apr, )3, up being the Bohr radius.
The Fermi momentum P» becomes 1/aaer„where a= (4/97r)'".
It subsequently proves convenient to work in units where mo-
mentum and energy are expressed in units of the Fermi mo-
mentum and twice the Fermi energy.
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Fxo. 1. The graphical representation of the RPA self-energy
process. The dashed and wavy lines correspond to the bare
Coulomb interaction —iV(q), and the screened Coulomb inter-
action iU—(q)/e(q, l) Th.e single lines correspond to free electron
hole propagators.

Quinn and Ferrell, ' in. a subsequent calculation, used
Geld-theoretic techniques to obtain the same high-
density expansion. DuBois, " using similar methods,
succeeded in calculating the next order in the r, expan-
sion. The net results, although extremely useful in a
pedagogical sense, are restricted to densities r, &1 and
thus do not apply to the intermediate r, region of
metallic densities, (2&r,&6).

A calculation aimed at the intermediate density
region has been given by Fletcher and Larson. "Their
work consisted of an extension to second order of the
previously discussed calculation of Pines. Metallic
properties were then calculated solely on the basis of
the short-range, large-momentum-transfer interactions.
As will be shown, their results suffer from the neglect
of long-range interactions and from the inadequacy of
second-order perturbation theory for momentum trans-
fers in the region of the plasmon cutoG k,.

The purpose of our calculation is to obtain the
electronic specific heat for the intermediate region of
metallic densities. We accomplish this by an appropriate
extension of the Nozieres-Pines" interpolation calcu-
lation of the correlation energy. That is, we obtain an
explicit momentum-transfer dependence of the long-
and short-range contributions to the derivative of the
self-energy. We assume that the eGect of long-range
interactions can be described by the RPA; the results
for which will be represented in the form

The intermediate momentum-transfer region (ptPs (g
&PsPp) is characterized by an admixture of direct
and exchange contributions which, at present, we have
no direct means of calculating. Therefore, we indirectly
approximate it by a smooth interpolation between the
long- and short-range regions. The contribution to the
derivative of the self-energy from all interactions is
then obtained by a numerical integration of the interpo-
lated a'(q) over all momentum transfers.

The results obtained by this procedure are in accord
with the high-density results for r, 1, and in their
application to the alkali metals exhibit the experi-
mentally observed enhancement of the speci6c-heat
ratio.

ZL.a. (p) =+i tPgdN
e(q)Gt&'(y+q, p'/2ns+u)

&~r~z (2~)'

a'(q)
11s(q,u)Grs(y+q; P'/2ns+u) . (2.1)

e (q,u)

The terms in this relation are de6ned as follows:

(a) e(q) is the bare Coulomb propagator, 4n'/q'.
(b) Ds(q, u) is the bare polarization propagator

coming from the closed loop of the second diagram of
Fig. 1.

(c) Gts is the free fermion propagator,

II. CONTRIBUTION TO THE SPECIFIC HEAT
FROM DIFFERENT REGIONS OF

MOMENTUM TRANSFER

We first wish to determine the contribution of the
long-range interactions to the self-energy. It has been
shown" that the long-range effects, characterized by
momentum transfers q&'ptPI, are well described by
the RPA. The self-energy expansion within this
approximation is indicated by the perturbation dia-
grams of Fig. 1.From the standard rules for interpreting
such diagrams, we obtain

(2.2)GP = 1/t ce p'/2m+—i(1 2n, )8j.—PIPy

o'L.a. (g)~Pi (1.4)~L.R. (Ip)
(d) e(qu) is the RPA dielectric constant, which is

conveniently expressed in terms of the integral equation
for the RPA screened interaction,where Z' denotes the momentum derivative of the

self-energy contribution. The short-range e8ects will be
calculated on the basis of second-order perturbation
theory with the neglect of parallel-spin interactions.
Likewise, the results will be expressed in the form

n(q)/e(q, u) =w(q) —n'(q)IIs(q, u)/e(q, u). (2.3)

o s.R.'(q) dq.&s.a.'(&z) =

' J.J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
M D. E. DuBois, Ann. Phys. (New York) 7, 174 (1959); 8, 29

(1959).
» J. G. Fletcher and D. C. Larson, Phys. Rev. 111,455 (1958).
"P.Nozihres and D Pines, Phys. R. ev. 109, 762 (1958).

den—Gr&e(y, ~) = in„—
2x

' (2 4)

(e) Gr&' corresponds to the nonpropagating fermion
line in the first diagram of Fig. i. This form is obtained
from the Wick contraction of the first interaction term

(1.5) in the standard S matrix expansion of the single-
particle Green's function. The frequency integral of this
function is given by



PR PPFRT&ESME TALL I CAC TlONS ONELECT- yNyER
1~

x ress the self-f (2g) we can re-e pQ y nlaiUng use
'

nt forlnh more convenienenergyin t e

d3g
(/(q)+&Zl, .R. (P

(2m')'

d qdg 8(q)
0( + .p1/2ln+ U) ~X

2~ ' ~(q")
(2.&)

+-up rgrrr r/r Irrrrrrrrr r

rrrrrrrrrr ~u Res~
oxts

of (2 (i) is jndePenTh erst term on the r'g '
Thus, it will

rs .
momentum.

eri1
OIte quasi-particle

of states an ed not conccontri u eb t tothedensity
8 e express t eunitsConvert g
jn rydberg

us u
rt of the self-energycontributing part o

in the form
q pe/2m+~)/'('l") 'f the f(111(:f1011Gl (i+

~h tour ('.QOQCI1 ~

PIG. 2. Themapplng o
Th arrows indicatethe complex I P]ane. e a

&L.R. (P =
&p,

G'(p+q p'/2
X d

o singularity which
'

h lies in thecon«i u tions from t
.

s to Quinn annner an.a ogothird quadran t. In a mann
e contour integrationFerrell, the results of t e con

he formexpressed in t e o

~(p) =~ '-.(p)+~,,(p, (2 9)
where

inte ral by contour integration.h to evaluate this integra rat on.

ro
'

he integrand. e
'

a inary
RPA dielectric consparts of the

' '
s

R«RP11, (q,g)

Z, )=res

A(q, q (lq+1))
(2 1o)

q (kq+u)

I'—Lq (q/2+1)]'

a!~s

2 2

de . (2.11)
e(q,m)

Imeap+(q, m) =
'7t V ~&l&l p+Ct

(1 p~e )/2pe

ds
e(q, —,'-q'+qpx)

7l" g

00

the line integra].

11d

~ 1

e
' '

f the residue an

0!18
d'P(~(~ —q bq+fi

he contributions rom.

tss the Fermi sur
is' ro-

m

tin the self energy prior
limit, theIn tne on-h 1 g-wavelengt

orres onding o

1
. T se solutions

constant wi
nsion relatio .t e p on pe . e

a ear in
tfo th 1ne where the pdis lacemen r

h limit. We
es the momenntun1 trans er w

nce of q was

th 1 1axis appro aches zero in t e o

m
' ' tht o t

represent these solutions y

=~~„L1+f(q)]vie.
transfer interpola ion proce ure re

I=&&y

ressed 'n our uni. ts, dependence
due term erst, we oue erm, tain, upon

p co, as expresse
the

T e asm

ft emom

es te o
ll exhibit

assum
x I lane wi

'
n limits,cuts ex

' —' '+q)&ib. Finally, ta lng in

Mo" «)
asons of clarity thein Fi 2 For reaso

in ularities
teg 'o g

Ps

factors have
b the equivalentp ..t.d;. t.oreover, w

avet e X'0.'fg y ]self-energies for which )I' p, ence,



S. D. SILVE RSTE IN

Expanding about the Fermi surface and taking the
derivative, wc obtain -ig {p) p -p

&. '(1)=
Pi gq

)
zinr, 0 qe(q, 0)

(2.13)

2nr, (—1——,'q')
e(q,0)=1+ 1+ ln

2 2

1+-,'q
(2.14)

1 —
g

where e(q,0) is the static dielectric constant,
- Z{*){p)=

(0) p

Fxo. 3. First- and
second-order self-energy
diagrams.

It is convenient in the evaluation of the line integral
contribution to transform variables I~ i'll. Further-
more, since the line integral contribution is real, we

can re-express (2.11) in the form

p+Q

(b) (c)

&iino(p) =
x~ar, e(q, iqg)

+' -'q+pc
X d~ . (2.15)

(-', q+ px)'+I'

The angular integration yields

dx = +O(q'). (2.16)
(-,'q+pa)'+zz' I'+p'

Ke will express the long-range contribution as a power
series expansion in the momentum transfer for which

we retain only the leading terms. Hence, the higher-
order effects from the angular integration will be
neglected. Therefore,

&{inc(p)
'r Afg

(2.17)
(p +I )e(q, zqzz)

&i -'(1)=— 3.37
dq q'+O(q') . (2.19)

zr(nr, )'

The total long-range contribution to the deriva tive
of the quasi-particle self-energy, through terms of
order Pi', is given by the sum of (2.19) and (2.13).
Therefore, 0L.R.'(q), as defined by (1.4), assumes the
form

g 1. x' 3 37
Oz, a '(q) = —— -+- + . (2.20)

2(nr )' (nr, )' 4 8nr, m.

For small q, e(q, iqu) can be approximated by

4nr, -
t' 1) q'

e(q, iqzz) =1+
I

1—zz tan '—I+ . (2.18
~q' k Ij 2(1+I')'

We substitute (2.18) into (2.17) and perform an expan-
sion of the total integrand in powers of the momentum
transfer q. Ke then take the derivative at the Fermi
surface and evaluate the coeScient by numerical

integration. The result is expressed by

We see from the above that the behavior of the extreme
low-momentum-transfer region is primarily governed
by the residue contribution, which has been traced
physically to the effect of transitions along the Fermi
surface. However, as q increases, the perpendicular
transitions in the specific-heat process become more
important. In the realm of intermediate r„ the perpen-
dicular transitions are the dominant contribution to the
q' term. This eGect imposes a large negative curvature
on O'L.a.'(q), a, result which is quite important in that
it allows us to perform a sensible interpolation with the
contributions arising from the high-q region.

We now study the short-range contributions. On the
basis of physical considerations, we would expect the
short-range interactions to be primarily restricted to
electrons of antiparallel spin. That is, repulsive forces
due to the Pauli exclusion principle prevent electrons
of the same spin from getting too close to each other.
These considerations are substantiated by an examina-
tion of the second-order perturbation diagrams, Fig. 3.
The contribution from diagram (a) is identically zero.
This physically corresponds to the fact that a sharp
Fermi surface prohibits an electron and a hole from
being in the same state. The contribution from (b)
involves both parallel and antiparallel spin intermediate
states, while (c) has all internal fermion lines connected
and thus only involves states of parallel spin. For large

q we can make the approximation

lim zi({1+1)—pi) =p({l).
q large

(2.21)

In the region for which the above approximation is
applicable, we see that the contribution of (c) will

effectively cancel against one-half of that of (b).
There is, however, some ambiguity as to the minimum

value of q for which (2.21) remains a reasonable
approximation. Fletcher and Larson, who calculated
the specific heat solely on the basis of the short-range
interactions, extended the approximation down to the
maximum RPA radius of convergence, q, =0.47r, '~'

This approximation does not seem entirely justi6ed for
momentum transfers at or below the Fermi momentum.
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FIG. 5. Plot of C/Co as
calculated by the interpo-
lation procedure with a
comparison to the high-
density results of DuBois.
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resultant derivative of the self-energy for a given value
of r, is obtained from the numerical integration of
cr'(q) over all momentum transfers. Specilc examples
of these are indicated in Fig. 4.

III. RESULTS AND DISCUSSION

In Fig. 5 we have plotted the results obtained for
C/Cs as a function of r, ; we have also indicated the
high-density results of DuBois. DuBois estimates that
his high-density expansion is accurate for r, (1, and
further proposes that his results yield an overenhance-
ment of the C/Cs ratio by as much as 50'%%uq at r, 2

Our results, as apparent from Fig. 5, are in excellent
accord with the high-density results. Ke diRer in the
prediction of the onset of the enhanced ratio; the high-

density results give r, 0.8, while we obtain r, 1.3.
It appears that the most probable point for this effect
to be realized would lie somewhere between these two
values.

%e now apply our results to the calculation of the
specific heat of the alkali metals. In doing so, we follow
Pines" in estimating the eRects of the periodic lattice
by the introduction of an isotropic eRective mass m*

into the kinetic-energy term. The specific-heat ratio
of the alkali metals, which we denote by (C/Cs)*, is

represented by

The results obtained for the alkali metals are listed in
Table I, where the values obtained by calorimetric
experiments are also listed. There we also give the
approxima, te upper limits on the C/Cs ratios which
are obtained from nuclear magnetic resonance data
using a procedure suggested by Pines. " This method
makes use of "interacting Korringa relations. "It must
be stressed, however, that these relations are valid in
only the high-magnetic-field limit and furthermore rely
on the assumption that the Bloch states taking part in
the spin-lattice relaxation mechanism can be thought
of as a gas of completely independent quasi-particles
in the vicinity of the Fermi surface. The interacting
Korringa relation is given by

Here T~ is the spin-lattice relaxation time, ~x/BC is the
Knight shift, y,/xs is the ratio of the actual to the free
Pauli electron spin susceptibility, and pp(Ef)//p(E~)
represents the ratio of the free to the interacting density
of states at the Fermi surface. From a knowledge of
x, and T~, one puts an upper limit on the state density

TABLE I. Experimental values and results obtained.

nr, ' nz'"

(c/c, )*= 1+
'

z'(1)
2

(3.1)

The value of (C/C~)~ for a given density and effective
mass can be obtained from the general C/Cs curve,

Fig. 5, by the application of the relation

no*/m~
(c/co)*
(C/Co). p

'
T~ m/sec'
P X/'X', ) X 10-2
(x.)...X 10
(C/&o) max*

Ll

3.22
1.45
1.14
1.60

150&5
0.0249'

2.08%0.1'
1.38&0.09

Na"

3.96
0.98
1.14
1.25

15.9&3
0.113~

0.89&0.04'
1.11~0.08

K" R.b" Cs"'

4.87 5.18 5.57
0.93 0.89 0.83
1.19 1.20 1.21
1.18

0.653" 1.46~

(3.2)

» D. Pines, in Solid State Physics, edited by F. reit@ and D.
T'urnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 367.

a See D. Pines (reference 13).
~ Calorimetric results with effective-mass corrections as quoted by

Fletcher and Larson (reference 19).
o D. Holcomb and R. F. Norberg, Phys. Rev. 98, 1074 (1955).
d W. D. Knight, Solid State Phys. 2, 93 (1956).
~ R. T. Schumacher and C. P. Slichter, Phys. Rev. 101, $8 (1956).
& R. T. Schumacher and W. E.Vehse, Bull. Am. Phys. Soc.4, 296 (196
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p(Er). The upper-limit condition is due to the fact that
other unaccounted for relaxation mechanisms serve to
increase the value of T~. The experimental values and
the results obtained are given in Table I.

We 6nd it dificult to determine the exact limit on the
accuracy of the interpolation procedure. Besides
assuming nature's regularity in the intermediate region,
we must also contend with our approximations for
both the long- and short-range regions.

In the long-range region, we have explicitly used the
RPA. There are, of course, local field corrections to
these results; a specie. c example of one of these is given
by the diagram in Fig. 6. The question naturally arises
as to what degree these terms enter in the momentum-
transfer expansion. In the calculation of the correlation
energy, Nozieres and Pines found local field corrections
in the p' term (p being the long-range cutoff). Moreover,
they found these corrections to be small in the region
of metallic densities. We have not explicitly evaluated
these corrections to the density of states (such an
analysis entails a calculation similar to DuBois evalua-
tion of local field corrections with the added difhculty
of retaining the explicit momentum-transfer depend-
ence). However, using the same arguments as presented
by Nozieres and Pines we likewise feel the corrections
will be small.

With reference to the short-range interactions, we
6nd it dificult to assess the accuracy of second-order
perturbation theory. It is fairly evident that the short-
range perturbation expansion parameter will be propor-
tional to r, divided by a function, f(p2) Adeter. mination
of the convergence of the perturbation expansion would
necessitate the dificult task of evaluating the next
order in the perturbation series. We find from an
asymptotic consideration of the third-order term that
p2'/f(p2) will be finite in the limit of infinite p2. These
considerations imply that second-order perturbation
theory should prove reliable for intermediate r, as long
as one chooses a large enough P2. These conclusions are
further substantiated by an investigation of the shape
of the o.s.R.'(q) curves as plotted for various values of
r, (Fig. 4). We see that the curves follow a normal
pattern down to values of momentum transfer which
increase with correspondingly increasing values of r,.
The rapid variation in curvature beginning for values
of q 1.3 can, in part, be attributed to the inadequacy
of a second-order result for low momentum transfers.

Fxo. 6. An example of a local 6eld correc-
tion to RPA self-energy.

This behavior further suggests that the choice of a
minimum cutoff in or below this region is inappropriate
for intermediate values of r, . We conclude, therefore,
that the results of Fletcher and Larson are not applicable
for q&1.5. In the interpolation calculation of the
correlation energy" the estimate of error was 15%.
However, our curves indicate that the long- and short-
range contributions tend to cancel each other; the
results obtained are, therefore, more sensitive to a
particular interpolation. An estimate, 25%, is
obtained by considering radical deviations from the
most obvious intermediate path. This estimate of
error in the derivative of the self-energy leads to an
estimate of possible errors in the value of C/Ce of the
order of 10%.

The error estimates of 10% cannot be extended to
the quantitative values given for the alkali metals.
In this application, one must also contend with the
accuracy of the effective mass approximation in
compensating for the effects of the periodic lattice, and
the fact that our calculations have neglected the effects
of electron-phonon corrections. Preliminary investi-
gations" indicate that the electron-phonon interaction
can serve to increase the eBective mass by as much as
20% in the case of Na. This effect is calculated by
coherently adding the contribution to the mass re-
normalization from the electron-phonon interaction.
The 20% correction serves as an indication of what
might happen rather than a statement of fact. That is,
the masses due to electron-electron and electron-phonon
interactions certainly do not add coherently, but rather
must be reformulated in terms of an over-all net
effective interaction.
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