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S. D. SILVERSTEINT}
University of Illinois, Urbana, Illinois

(Received May 24, 1962)

The specific heat of an intermediate density electron gas has been calculated by the use of a momentum-
transfer interpolation procedure analogous to that used by Noziéres and Pines in the calculation of the
correlation energy. The explicit momentum transfer dependence of the derivative of the self-energy at the
Fermi surface has been calculated in the long-wavelength limit by the use of the random-phase approxima-
tion, and in the short-wavelength limit by the use of second-order perturbation theory with the neglect of
parallel-spin interactions. The contributions from the intermediate momentum-transfer interactions are
determined by a smooth interpolation between the short- and long-range regions. The results obtained by
this procedure are in excellent accord with the high-density results for 7;~1, and in their application to the
alkali metals predict the experimentally observed enhancement of the specific heat ratio.

I. INTRODUCTION

T has long been assumed that the low-temperature
specific heat of an interacting fermion system could
be obtained from a knowledge of the single-particle
excitation spectrum in the immediate vicinity of the
Fermi surface. The essential assumption which is
required is that the fermion system be ‘“normal,” in
that there is a one-to-one correspondence between the
excited states of the interacting system to those of the
noninteracting system. This assumption is at the heart
of Gell-Mann’s® calculation of the specific heat of a
dense electron gas, and Landau’s? theory of a Fermi
liquid. A mathematical justification of such an approach,
with the assumption of the wvalidity of perturbation
theory has been given by Luttinger.3
One is led by these arguments to view the low-lying
excitations of the electron gas as those appropriate
to a gas of independent quasi-particles which obey
Fermi-Dirac statistics. The quasi-particles may be
thought of as individual electrons (or holes) plus their
associated polarization clouds. Consequently, the low-
temperature specific heat is given by the standard
linear temperature relation,
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The self-energy, =(p), reflects the modification in the
energy of the individual particles due to the interaction
with the medium; %5 is Boltzmann’s constant, and Pr
is the Fermi momentum. It is convenient to express
the specific heat as the ratio of the interacting value C,
to the Sommerfeld free electron value, Co;
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Historically, the necessity of an appropriate account
of the effects of Coulomb correlations on the specific
heat was made apparent when Bardeen* showed that
the Hartree-Fock approximation predicted a vanishing
density of states at the Fermi surface and an altered
temperature dependence of the form 7'/InT; a result in
contradiction with experiment.

A calculation of the correlation effects was made by
Pines® on the basis of the Bohm-Pines® collective theory
of the electron gas. He calculated the specific heat by
only considering the effect of the exchange contribution
arising from the short-range part of the Coulomb
interaction. The justification for such treatment was
the fact that the collective plasma oscillations are the
dominant low momentum (or correspondingly long
wavelength) elementary excitations of the electron gas.
Under ordinary conditions there is insufficient energy
to excite one of these collective modes. Thus, the low-
momentum-transfer Coulomb interactions which de-
scribe the coupling between electrons and collective
oscillations are effectively “frozen out” for wave
vectors k< k.; k. corresponds to the maximum wave
vector for which the plasmons constitute an independent
mode of the elementary excitations. The results of
Pines are approximate in that he neglected contributions
to the quasi-particle energy from higher-order terms
in the short-range interaction and from the screened
long-range interaction.

Gell-Mann obtained the specific heat in the random
phase approximation (RPA) by an appropriate generali-
zation of the Gell-Mann, Brueckner? technique for the
evaluation of the correlation energy. His resulting
expansion in the density parameter? 7, is:

C/Co=[1—0.0837,(In7,+0.203)+- - - . (1.3)
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6 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
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8 The density is represented in units of the dimensionless
parameter 7,, where #n1=4r/3(as)3, ao being the Bohr radius.
The Fermi momentum Pr becomes 1/aaors, where a= (4/9x)153,
It subsequently proves convenient to work in units where mo-
mentum and energy are expressed in units of the Fermi mo-
mentum and twice the Fermi energy.
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F1c. 1. The graphical representation of the RPA self-energy
process. The dashed and wavy lines correspond to the bare
Coulomb interaction —zV(q), and the screened Coulomb inter-
action —2V (q)/e(q,2). The single lines correspond to free electron
hole propagators.

Quinn and Ferrell,? in a subsequent calculation, used
field-theoretic techniques to obtain the same high-
density expansion. DuBois,® using similar methods,
succeeded in calculating the next order in the 7, expan-
sion. The net results, although extremely useful in a
pedagogical sense, are restricted to densities 7,51 and
thus do not apply to the intermediate 7, region of
metallic densities, (257,56).

A calculation aimed at the intermediate density
region has been given by Fletcher and Larson." Their
work consisted of an extension to second order of the
previously discussed calculation of Pines. Metallic
properties were then calculated solely on the basis of
the short-range, large-momentum-transfer interactions.
As will be shown, their results suffer from the neglect
of long-range interactions and from the inadequacy of
second-order perturbation theory for momentum trans-
fers in the region of the plasmon cutoff Z..

The purpose of our calculation is to obtain the
electronic specific heat for the intermediate region of
metallic densities. We accomplish this by an appropriate
extension of the Noziéres-Pines® interpolation calcu-
lation of the correlation energy. That is, we obtain an
explicit momentum-transfer dependence of the long-
and short-range contributions to the derivative of the
self-energy. We assume that the effect of long-range
interactions can be described by the RPA; the results
for which will be represented in the form

B1PF
EL.R.'(PF)=/ or.r. (g)dyg, (1.4)
0

where =’ denotes the momentum derivative of the
self-energy contribution. The short-range effects will be
calculated on the basis of second-order perturbation
theory with the neglect of parallel-spin interactions.
Likewise, the results will be expressed in the form

o0
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The intermediate momentum-transfer region (8:Pr<gq
<B2Pp) is characterized by an admixture of direct
and exchange contributions which, at present, we have
no direct means of calculating. Therefore, we indirectly
approximate it by a smooth interpolation between the
long- and short-range regions. The contribution to the
derivative of the self-energy from all interactions is
then obtained by a numerical integration of the interpo-
lated ¢’(g) over all momentum transfers.

The results obtained by this procedure are in accord
with the high-density results for r,~1, and in their
application to the alkali metals exhibit the experi-
mentally observed enhancement of the specific-heat
ratio.

II. CONTRIBUTION TO THE SPECIFIC HEAT
FROM DIFFERENT REGIONS OF
MOMENTUM TRANSFER

We first wish to determine the contribution of the
long-range interactions to the self-energy. It has been
shown'? that the long-range effects, characterized by
momentum transfers ¢<"81Pr, are well described by
the RPA. The self-energy expansion within this
approximation is indicated by the perturbation dia-
grams of Fig. 1. From the standard rules for interpreting
such diagrams, we obtain
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The terms in this relation are defined as follows:

(a) v(g) is the bare Coulomb propagator, 47%/¢2.

(b) Mo(gw) is the bare polarization propagator
coming from the closed loop of the second diagram of
Fig. 1.

(c) Gy is the free fermion propagator,

GL=1/[w—p*/2m~+i(1—2n,)5].

(d) e(gu) is the RPA dielectric constant, which is
conveniently expressed in terms of the integral equation
for the RPA screened interaction,

v(q)/ e(q,u) =v(q) —v*(q)Io(q,%)/ (q,2).

(e) G1<° corresponds to the nonpropagating fermion
line in the first diagram of Fig. 1. This form is obtained
from the Wick contraction of the first interaction term
in the standard S matrix expansion of the single-
particle Green’s function. The frequency integral of this
function is given by

(2.2)

(2.3)

dw
/ —Gr1 O (p,w) = —iny. (2.49)
2w
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By making use of (2.3), we can re-express the self-
energy in the more convenient form

d3
Son(p)=— / ()t

<B1PF (27")

d*qdu v(q)
g/
wprpr (2m)* e(qu)

The first term on the right side of (2.5) is independent
of the quasi-particle momentum. Thus, it will not
contribute to the density of states and need not concern
us further. Converting to 7, units,® we express the
contributing part of the self-energy, in rydberg units,
in the form

1 &’q
2nPar, /:1<ﬁ 1 q2

e GP(ptq; p*/2m+tu)
X / dn .
— e(q,u)

—G(p+q;p*/2m+u).  (2.5)

ZrLr.(p)=

(2.6)

We wish to evaluate this integral by contour integration.
Therefore, we must first investigate the analytic
properties of the integrand. The real and imaginary
parts of the RPA dielectric constant are given by

ReeRpA(q,u)
2ar,
i ar/ & q- (3q+p)  (27a)

g —[q-(9/2+p) I
and
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Imenen(@0="" [ &plotu=a-Gate)
7q" J p<i<ip+ql

+é(utq- (34+p))}. (2.7b)
In the long-wavelength limit, the RPA dielectric
constant will have zeros corresponding to the solutions
of the plasmon dispension relation. These solutions
appear in the second and fourth quadrants of the
complex # plane, where the displacement from the real
axis approaches zero in the long-wavelength limit. We
represent these solutions by

u=o,[1+ () TFid.

The plasma frequency wp,, as expressed in our units,
assumes the form wy?=4mar,/3. Furthermore, the
mapping of e(g,#) into the complex # plane will exhibit
cuts extending to = (3¢>+¢)F16. Finally, taking into
account the poles of Gy, we indicate the mapping of
the total integrand of (2.6) and the contour chosen for
the integration in Fig. 2. For reasons of clarity the 0
factors have been chosen to displace the singularities
rather than to prescribe the equivalent deformation
of the contour. Moreover, we are interested in the
self-energies for which > Pr; hence, we only have the

(2.8)
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F16. 2. The mapping of the function Gi*(p+q, 2/2m—+u)/e(q,u) in
the complex # plane. The arrows indicate the contour chosen.

contributions from the G singularity which lies in the
third quadrant. In a manner analogous to Quinn and
Ferrell, the results of the contour integration can be
expressed in the form

E(P)=Eline(P)+2res(P), (2.9)
where
1
Eres (P) = / 3q _.—_._1.__._’
mars J psipra>te<s ¢0e(q, 9 (3q+p))
(2.10)
and
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2.11)

The derivatives of the residue and the line integral
terms yield the contributions from the transitions
along and across the Fermi surface, respectively. This
breakup can be obtained by following DuBois’ pro-
cedure of differentiating the self-energy prior to the
frequency integration. The residue contribution as
shown by Quinn and Ferrell yields the high-density
limit of Gell-Mann. DuBois used both contributions
to obtain the next order in the 7, expansion. In these
procedures, the momentum transfer was limited to
values of <"1 and the functional dependence of ¢ was
not retained. Our treatment differs in that a momentum-
transfer interpolation procedure requires an explicit ¢
dependence.

Considering the residue term first, we obtain, upon
transformation of the momentum restrictions into the
appropriate integration limits,

B1 —q/ﬂ:n 1
dg/
5(‘]3 292+<]Px)

(1—p2—q?) l2pq 1
dq / (2.12)
e(q, gt+gps)

res(p)_—__
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Expanding about the Fermi surface and taking the
derivative, we obtain

2 & o dg
res,(l)"'—"- (213)
wars Jo qe(q,O)
where €(¢,0) is the static dielectric constant,
(-3¢) |1t
e(g,0)= 1+ [ « ' ° :l (2.14)
2q 1-3¢

It is convenient in the evaluation of the line integral
contribution to transform variables # — igu. Further-
more, since the line integral contribution is real,® we
can re-express (2.11) in the form

B1

Zline (P =

q .
o e(g,iqu)
+1 1 +Px
X / B— (215)
S (kg
The angular integration yields
/“ 3gtpe g
dx =
L Gebprtw ety

We will express the long-range contribution as a power
series expansion in the momentum transfer for which
we retain only the leading terms. Hence, the higher-
order effects from the angular integration will be
neglected. Therefore,

2 ol du 2.17)
’erOﬂ's/(; g q/O (1’2+“2)€(9’i9u). ‘

For small ¢, €(g,iqu) can be approximated by

q‘l
— | (218
2(1+u2)2:| 2.18)

FO(¢").  (2.16)

Zline (P) =

dor, 1
e(g,iqu)~1 —I———I:( 1—u tan‘1—> +
T u

We substitute (2.18) into (2.17) and perform an expan-
sion of the total integrand in powers of the momentum
transfer g. We then take the derivative at the Fermi
surface and evaluate the coefficient by numerical
integration. The result is expressed by

81 3.37
Eline,(l)': “/ dq[
0 T(ars)

The total long-range contribution to the derivative
of the quasi-particle self-energy, through terms of
order 8, is given by the sum of (2.19) and (2.13).
Therefore, o1..r.(q), as defined by (1.4), assumes the

f
or.r’ (@) o [2 (ar,)? (ars)2\4 8ars w /1

3+0(q6>] 2.19)
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Fiec. 3. First- and
second-order self-energy
diagrams.

We see from the above that the behavior of the extreme
low-momentum-transfer region is primarily governed
by the residue contribution, which has been traced
physically to the effect of transitions along the Fermi
surface. However, as ¢ increases, the perpendicular
transitions in the specific-heat process become more
important. In the realm of intermediate 7., the perpen-
dicular transitions are the dominant contribution to the
¢® term. This effect imposes a large negative curvature
on o1.%.’(g), a result which is quite important in that
it allows us to perform a sensible interpolation with the
contributions arising from the high-q region.

We now study the short-range contributions. On the
basis of physical considerations, we would expect the
short-range interactions to be primarily restricted to
electrons of antiparallel spin. That is, repulsive forces
due to the Pauli exclusion principle prevent electrons
of the same spin from getting too close to each other.
These considerations are substantiated by an examina-
tion of the second-order perturbation diagrams, Fig. 3.
The contribution from diagram (a) is identically zero.
This physically corresponds to the fact that a sharp
Fermi surface prohibits an electron and a hole from
being in the same state. The contribution from (b)
involves both parallel and antiparallel spin intermediate
states, while (c) has all internal fermion lines connected
and thus only involves states of parallel spin. For large
g we can make the approximation

lim v(q+p—p1)=2(q). (2.21)

q large

In the region for which the above approximation is
applicable, we see that the contribution of (c) will
effectively cancel against one-half of that of (b).

There is, however, some ambiguity as to the minimum
value of ¢ for which (2.21) remains a reasonable
approximation. Fletcher and Larson, who calculated
the specific heat solely on the basis of the short-range
interactions, extended the approximation down to the
maximum RPA radius of convergence, ¢.=0.477,/%
This approximation does not seem entirely justified for
momentum transfers at or below the Fermi momentum.
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We consider the proposal of Noziéres and Pines as being
more reliable, i.e., that the approximation should be
satisfied on the average for momentum transfers greater
than 1.5 (in units of Fermi momentum). Then, restrict-
ing ourselves to values of ¢>1.5, we represent the
short-range contribution to the self-energy by

Zsr.(pB2) = ZUpB)—3Zi(pBy), (2.22)
p>1,85>1.5
where
1 diq
2 (p,80) = — / 2 e
wars Jprai<t, o8, ¢
and
%EbZ(PyﬁD
1 / Epdiq
21t J ipi—al<i<on.lptal<1.8:<e’ ¢ (@+p—py)
1 / dpdiq
21t J pi<i<ipi—gl  1<Iptal B2<a ‘14(1'(‘14'1)'“1)1)‘
(2.24)

Exact integrations over intersections of Fermi
spheres are straightforward but rather lengthy. In the
particular example of (2.24), a simple transformation
of variables converts our expression to the integrals
considered by Fletcher and Larson. They have evalu-
ated the integrals as a function of the minimum mo-
mentum transfer cutoff B.. Rather than recalculate the
integrals we can simply alter their results to obtain the
explicit momentum transfer dependence. We find

1 /=2y 1 4 8
os.r.(Q)=— {—( >+—|:"“——+—(1—Hn2)
wars\ g 2L 3¢ 3¢

7r
13 2\ /l+iq\ 4

+(—~"— + ) ln( )—-—— In(4—¢?
2 2 ¢/ \i-ig) 3¢

+(¥+B7E—;_q3)<13%q2>]}’ 1<z @2

For the region ¢>2, the Pauli-principle restrictions are
considerably simplified; the second term of (2.24)
giving the only contribution. Differentiating and
integrating, we find

2 /2 ¢ 2 2 ¢
osR/=—— l:(—-l—q——) ln<1-|— )‘f‘(——"*‘lr‘—)
2L \3 6 q 3 6

2\ 2
Xln(l-——)-——q], ¢>2  (2.26)
q/ 3

The forms of ¢’(g) for the high- and low-momentum
transfer regions, given by (2.20), (2.25), and (2.26), are
now plotted for values of 7, throughout the region
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1<£7.£5.6. We approximate the form of ¢’(q) for the
intermediate momentum transfers by a smooth curve
drawn between the long- and short-range regions. The
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F1ec. 4. Sample interpolation curves for different values of r,.



Fi16. 5. Plot of C/Cy as
calculated by the interpo-
lation procedure with a
comparison to the high-
density results of DuBois.
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resultant derivative of the self-energy for a given value
of 7, is obtained from the numerical integration of
a’(g) over all momentum transfers. Specific examples
of these are indicated in Fig. 4.

III. RESULTS AND DISCUSSION

In Fig. 5 we have plotted the results obtained for
C/Cy as a function of 7,; we have also indicated the
high-density results of DuBois. DuBois estimates that
his high-density expansion is accurate for 7,51, and
further proposes that his results yield an overenhance-
ment of the C/Cy ratio by as much as 509, at 7,~2.
Our results, as apparent from Fig. 5, are in excellent
accord with the high-density results. We differ in the
prediction of the onset of the enhanced ratio; the high-
density results give 7,~0.8, while we obtain 7,~1.3.
It appears that the most probable point for this effect
to be realized would lie somewhere between these two
values.

We now apply our results to the calculation of the
specific heat of the alkali metals. In doing so, we follow
Pines® in estimating the effects of the periodic lattice
by the introduction of an isotropic effective mass m™*
into the kinetic-energy term. The specific-heat ratio
of the alkali metals, which we denote by (C/Cp)¥, is

represented by
(ars)? m* =
(C/Co)*=[1+ ——E’(l)] .
m
The value of (C/Co)* for a given density and effective

mass can be obtained from the general C/Cy curve,
Fig. 5, by the application of the relation

Cr\* m*/ 1 —1
@) -l Ga)
Co m C/ Co
18D, Pines, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 367.

(3.1)

3.2)

The results obtained for the alkali metals are listed in
Table I, where the values obtained by calorimetric
experiments are also listed. There we also give the
approximate upper limits on the C/C, ratios which
are obtained from nuclear magnetic resonance data
using a procedure suggested by Pines.®® This method
makes use of “interacting Korringa relations.” It must
be stressed, however, that these relations are valid in
only the high-magnetic-field limit and furthermore rely
on the assumption that the Bloch states taking part in
the spin-lattice relaxation mechanism can be thought
of as a gas of completely independent quasi-particles
in the vicinity of the Fermi surface. The interacting
Korringa relation is given by

A3 h Xs 2 Ye 2 PO(EI) 2
() im0 Gy ) 0
3¢/ AxksT\xo/ \va/ \p(E;)
Here T is the spin-lattice relaxation time, A3C/3C is the
Knight shift, xs/xo is the ratio of the actual to the free
Pauli electron spin susceptibility, and po(E;)/o(Ey)
represents the ratio of the free to the interacting density

of states at the Fermi surface. From a knowledge of
xs and T, one puts an upper limit on the state density

TasiE I. Experimental values and results obtained.

Li7 Na23 K39 Rbss Csl33

s 3.22 3.96 487 518 557
m*/m® 1.45 0.98 093 0.89  0.83
(C/Co)* 1.14 1.14 119 120 121
(C/Co)exp 1.60 125 118

T1 m/sec® 1505 15.943

(A3C/30)X 102 0.02494 0.1134 0.653¢  1.464
(xs)expX 108 2.08+0.1°  0.890.04f

(C/Co)max™ 1.3840.09 1.114-0.08

a See D. Pines (reference 13).

b Calorimetric results with effective-mass corrections as quoted by
Fletcher and Larson (reference 19).

¢ D. Holcomb and R. F. Norberg, Phys. Rev. 98, 1074 (1955).

d W, D. Knight, Solid State Phys. 2, 93 (1956).

* R. T. Schumacher and C. P. Shchter Phys. Rev. 101, 58 (1956).

t R. T. Schumacher and W. E. Vehse, Bull. Am. Phys. Soc‘ 4,296 (196
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p(Ey). The upper-limit condition is due to the fact that
other unaccounted for relaxation mechanisms serve to
increase the value of T'y. The experimental values and
the results obtained are given in Table I.

We find it difficult to determine the exact limit on the
accuracy of the interpolation procedure. Besides
assuming nature’s regularity in the intermediate region,
we must also contend with our approximations for
both the long- and short-range regions.

In the long-range region, we have explicitly used the
RPA. There are, of course, local field corrections to
these results; a specific example of one of these is given
by the diagram in Fig. 6. The question naturally arises
as to what degree these terms enter in the momentum-
transfer expansion. In the calculation of the correlation
energy, Nozicres and Pines found local field corrections
in the 8 term (B3 being the long-range cutoff). Moreover,
they found these corrections to be small in the region
of metallic densities. We have not explicitly evaluated
these corrections to the density of states (such an
analysis entails a calculation similar to DuBois’ evalua-
tion of local field corrections with the added difficulty
of retaining the explicit momentum-transfer depend-
ence). However, using the same arguments as presented
by Noziéres and Pines we likewise feel the corrections
will be small.

With reference to the short-range interactions, we
find it difficult to assess the accuracy of second-order
perturbation theory. It is fairly evident that the short-
range perturbation expansion parameter will be propor-
tional to 7, divided by a function, f(82). A determination
of the convergence of the perturbation expansion would
necessitate the difficult task of evaluating the next
order in the perturbation series. We find from an
asymptotic consideration of the third-order term that
B2/ f(B2) will be finite in the limit of infinite 8s. These
considerations imply that second-order perturbation
theory should prove reliable for intermediate 7, as long
as one chooses a large enough f2. These conclusions are
further substantiated by an investigation of the shape
of the os.r.’(¢) curves as plotted for various values of
rs (Fig. 4). We see that the curves follow a normal
pattern down to values of momentum transfer which
increase with correspondingly increasing values of 7,.
The rapid variation in curvature beginning for values
of g~1.3 can, in part, be attributed to the inadequacy
of a second-order result for low momentum transfers.
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F16. 6. An example of a local field correc-
tion to RPA self-energy. I

This behavior further suggests that the choice of a
minimum cutoff in or below this region is inappropriate
for intermediate values of 7,. We conclude, therefore,
that the results of Fletcher and Larson are not applicable
for ¢51.5. In the interpolation calculation of the
correlation energy™ the estimate of error was ~159,.
However, our curves indicate that the long- and short-
range contributions tend to cancel each other; the
results obtained are, therefore, more sensitive to a
particular interpolation. An estimate, ~25%, Iis
obtained by considering radical deviations from the
most obvious intermediate path. This estimate of
error in the derivative of the self-energy leads to an
estimate of possible errors in the value of C/Cy of the
order of 10%.

The error estimates of ~109, cannot be extended to
the quantitative values given for the alkali metals.
In this application, one must also contend with the
accuracy of the effective mass approximation in
compensating for the effects of the periodic lattice, and
the fact that our calculations have neglected the effects
of electron-phonon corrections. Preliminary investi-
gations™ indicate that the electron-phonon interaction
can serve to increase the effective mass by as much as
20% in the case of Na. This effect is calculated by
coherently adding the contribution to the mass re-
normalization from the electron-phonon interaction.
The 209, correction serves as an indication of what
might happen rather than a statement of fact. That is,
the masses due to electron-electron and electron-phonon
interactions certainly do not add coherently, but rather
must be reformulated in terms of an over-all net
effective interaction.
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